
Identifying Maximal Non-Redundant Integer

Cone Generators

Slobodan Mitrovic, Ruzica Piskac, and Viktor Kuncak

EPFL School of Computer and Communication Sciences, Switzerland

Abstract. A non-redundant integer cone generator (NICG) of dimen-
sion d is a set S of vectors from {0, 1}d whose vector sum cannot be
generated as a positive integer linear combination of a proper subset of
S. The largest possible cardinality of NICG of a dimension d, denoted
by N(d), provides an upper bound on the sparsity of systems of integer
equations with a large number of integer variables. A better estimate of
N(d) means that we can consider smaller sub-systems of integer equa-
tions when solving systems with many integer variables. Consequently,
applying better bounds on N(d) when deciding the logic of sets with
cardinality constraints (BAPA) yields a more efficient decision procedure
implementation, and more efficient software verification tools. Previous
attempts to compute N(d) using SAT solvers have not succeeded even
for d = 3. The only known values were computed manually: N(d) = d for
d < 4 and N(4) > 4. We provide the first exact values for d > 3, namely,
N(4) = 5, N(5) = 7, and N(6) = 9, which is a significant improvement
of the known asymptotic bound (which would give only e.g. N(6) ≤ 29,
making a decision procedure impractical for d = 6). We also give lower
bounds for N(7), N(8), N(9), and N(10), which are: 11, 13, 14, and 16,
respectively. We describe increasingly sophisticated specialized search al-
gorithms that we used to explore the space of non-redundant generators
and obtain these results.

1 Introduction

The theory of sets and set operations plays an important role in software verifi-
cation and data flow analysis [1]. Additionally, reasoning about sets is used for
proving correctness of data structures, since a natural choice of an abstraction
function is the abstraction function that maps the content of a data structure
to a set. For full functional verification of complex data structures often it is im-
portant to maintain the number of elements stored in the data structure [8]. The
logic in which one can express set relations, cardinality constraints and linear
integer arithmetic is known under the name Boolean Algebra with Presburger
Arithmetic (BAPA) [4]. The decidability of this logic was long known [3], but it
was not until recently that [4] proved that BAPA admits quantifier-elimination
and has asymptotically the same complexity as Presburger Arithmetic. The
quantifier-elimination algorithm introduced in [4] reduces a given BAPA formula
to a Presburger arithmetic formula using Venn regions. Many verification con-
ditions expressing properties of complex data structures can be immediately

2

formulated in quantifier-free fragment of BAPA [5], denoted QFBAPA. For these
theoretical and practical reasons, we consider only the QFBAPA fragment in this
paper.

Checking the satisfiability of a QFBAPA formula is an NP-complete prob-
lem, where the non-trivial aspect is showing the membership in NP [5]. The
recent advances in SAT solvers made SAT instances coming from hardware and
software verification more amenable to solution attempts than before. However,
despite the existence of a polynomial encoding of QFBAPA into SAT, an effi-
cient QFBAPA solver is still missing. The most recent QFBAPA implementation
[7] uses the state-of-art efficient SMT solver Z3. This implementation relies on
the DPLL(T) mechanism of Z3 to reason about the top-level propositional atoms
of a QFBAPA formula. Although this implementation is based on an an algorithm
that explores all Venn regions, it automatically decomposes problems into sub-
components when possible, and applies Venn region construction only within
individual components. This approach is an important practical step forward,
but there are still natural formulas that cannot be decomposed. For such cases,
the running time of the procedure increases doubly-exponentially in the number
of variables.

An alternative approach towards the efficient implementation is to explore
the sparse model property of QFBAPA. In [5] was shown that, if a given QFBAPA

formula is satisfiable, then there exists an equisatisfiable linear arithmetic for-
mula that is polynomial in the size of the original formula. The decision proce-
dure based on this theorem is described in detail in [5]. The procedure takes as
an input a QFBAPA formula and converts it into an equisatisfiable Presburger
arithmetic formula FPA. Based on the newly derived FPA and the theorem on
a sparse solution for integer linear programming [2], the algorithm computes a
positive integer N ′(d). Number N ′(d) denotes an upper bound of the size of a
“small” model, of a dimension d, that we are searching for. N ′(d) should be read
as: if FPA is satisfiable, then it is also satisfiable in a model with the size at most
N ′(d). The algorithm then runs in a loop and tries to incrementally construct
a model of a size 0, 1, . . . up to size N ′(d). As soon as the first model is found,
the algorithm exits the loop and returns that the original QFBAPA formula is
satisfiable. If no model is found after the loop execution is finished, then the
input formula is unsatisfiable.

The number N ′(d) is an upper bound and it can be easily computed from a
dimension of a problem. However, this bound is not tight. Our goal is to establish
the bound on N ′(d) as tight as possible in order to make an efficient implementa-
tions of a QFBAPA solver more feasible. As an illustration of infeasibility, consider
the fact that, if a solution has the size N , the values of the variables range up to
2N . Clearly, if N is too large, this decision procedure easily becomes impractical.

We are interested in deriving the smallest possible number N ′(d), denoted by
N(d), which still preserves the desired property: if formula has a solution, then
it also has a solution of the size N(d). This paper will focus on computing the
values of N(d) using various combinatorial algorithms and their optimizations.

3

The existence of N(d) is guaranteed by the main theorem on a sparse solution
for integer linear programming [2], which states that if a vector is an element of
an integer cone, then it is also an element of some smaller integer cone. The key
observation in [5] was not to use any “small” integer cone, but the smallest one.
For this purpose in [5] was introduced so called a non-redundant integer cone,
representing an integer cone, which does not contain a smaller cone that could
generate a given vector.

The key contribution of this paper is a computation of the exact tight values
of N(d) for some d. We also improve previously known bounds for N ′(d). A com-
putation of N ′(d) is an algorithmically challenging task. Earlier computations
[5] found the exact values only for d = 1, 2, 3.

The following table outlines in comparison the information we knew about
N(d) earlier and the new values derived in this paper:

previous known new results
d lower bound upper bound lower bound upper bound
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 5 16 5 5
5 6 22 7 7
6 7 29 9 9
7 8 36 11 19
8 10 43 13 43
9 11 51 14 51
10 12 59 16 58

We obtained those results by applying the following techniques:

1. we reduced the search space by establishing the isomorphisms between so-
lutions

2. we used the already known solution for N(d) to obtain better estimate on
N ′(d+ 1)

3. we applied Gaussian elimination method to check whether the returned set
of vectors is indeed a non-redundant integer cone

4. we used randomized algorithms to obtain a better estimation for some N ′(d)
values, and for checking efficiency of our implementation

2 Preliminaries

This section summarizes the previously known results that are necessary for a
better understanding of the rest of the paper. We recall the definitions and the
theorems introduced in [5].

Quantifier-free Boolean Algebra with Presburger Arithmetic (QFBAPA) is a
theory that includes reasoning about set relations and operations, and reasoning
about integer linear arithmetic. Sets and integers are connected through the

4

cardinality operator. A simple decision procedure for QFBAPA uses Venn regions
and reduces checking satisfiability of a QFBAPA formula to checking satisfiability
of a corresponding linear integer arithmetic formula. As an illustration consider
the following QFBAPA formula:

|U | = 100 ∧
∧

1≤i<j≤3

|xi ∪ xj | = 30 ∧
∧

1≤i≤3

|xi| = 20 ∧
∧

1≤i≤3

|xi| ⊆ U.

With li we denote fresh integer variables. The above formula is equisatisfiable
with the following formula written in a matrix form:

1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

l000
l001
l010
l011
l100
l101
l110
l111

=

100
30
30
30
20
20
20

(1)

The details of the translation algorithm can be found in [5]. However, this
newly derived formula might have an exponential size in the size of the origi-
nal formula. In this example too, the number of variables is exponential in the
number of sets in the original formula.

Definition 1. Let X ⊆ Z
d be a set of integer vectors. An integer cone generated

by X, denoted with int cone(X), is a linear additive closure of vectors of X:

int cone(X) = {λ1x1 + . . .+ λnxn|n ≥ 0, xi ∈ X, λi ≥ 0 , λi ∈ Z}.

Note that checking satisfiability of (1) reduces to checking whether a vector
belongs to an integer cone. The number of vectors in the integer cone can be infi-
nite and we are interested in deriving the “small” subset of them that would still
generate the same initially given vector. We apply the results obtained in the op-
erational research community on sparse solutions of integer linear programming
problems.

Theorem 1 (Theorem 1 in [2]). Let X ⊆ Z
d be a finite set of integer vectors

and MX = max{n|n = |xij |, xij is an ordinate of vector xi, xi ∈ X}. Assume

that b ∈ int cone(X). Then there exists a subset X̃ ⊆ X such that b ∈ int cone(X̃)
and |X̃ | ≤ 2d log2 (4dMX).

This theorem establishes the bound on the number of vectors of the cone
needed to generate a given vector. Because MX = 1, the number of vectors in
the “smaller” cone is bounded by 2d log2 d+ 4d. In [5] it was observed that this
bound can be reduced to 2d log2 d by taking into account that the vectors are
non-negative.

5

Definition 2. Let X ⊆ Z
d and let b be an integer vector. Set X is called a

non-redundant integer cone generator for b, denoted by NICG(X, b), if:

– b ∈ int cone(X)
– for every x ∈ X holds: b /∈ int cone(X\{x}).

Nevertheless, we want to avoid computing a non-redundant integer cone gen-
erator for every given vector. The following theorem proved in [5], shows that
it is enough to consider only one particular vector, namely ΣX =

∑

x∈X x. We
define NICG(X) as NICG(X,ΣX).

Lemma 1 Let X ⊆ Z
d
≥0 be a set of non-negative integer vectors. The following

two statements are equivalent:

– there exists a non-negative integer vector b such that NICG(X, b) holds
– NICG(X) holds

Our original motivation was to check satisfiability of QFBAPA formulas. The
decision procedure can be outlined as follows: we reduce satisfiability of the
initial QFBAPA formula to check the membership in an integer cone, where the
generating vectors are bit vectors. Applying Theorem 1 results in the small model
property. Therefore, our new goal becomes to compute the number N(d) for a
given dimension d. The number N(d) sets an upper bound on the cone size: if a
vector is a member of an integer cone, then it is a member of a cone generated
with at most N(d) vectors. To translate it back to the QFBAPA satisfiability
problem: if a QFBAPA formula is satisfiable, then it also has a model where
at most polynomially many Venn regions are non-empty. The number of non-
empty Venn regions is determined using N(d). The decision procedures runs in
the loop from 0 to N(d) and tries to incrementally construct a model of a size
0, 1, . . . , N(d).

Lemma 1 justifies the following definition:

Definition 3. Let d be a non-negative integer. With N(d) we denote the cardi-
nality of a set X such that NICG(X) holds and for any set Y of a greater size
does not hold NICG(Y)

N(d) = max{|X | | X ⊆ {0, 1}d, NICG(X)}

Lastly we provide is the summary on known lower and upper bounds on the
value of N(d), as well as the computed values for N(d) for some d:

Theorem 2. For a positive integer d ≥ 1 and N(d) the following holds:

1. d ≤ N(d)
2. N(d) ≤ (1 + ε(d))(d log2 d), where ε(d) ≤ 1 and lim

d→∞
ε(d) = 0

3. N(d) + 1 ≤ N(d+ 1)
4. N(d) = d, for d = 1, 2, 3
5. N(d) > d for d ≥ 4

In the rest of the paper we will describe the algorithms and optimizations
we used to compute N(4), N(5) and N(6). We will also provide improved lower
bounds on N(7) and N(8).

6

3 Core Techniques: N(4)=5, N(5)=7

In this section we present methods that we initially used to compute values of
N(4) and N(5). Figure 1 describes a simple algorithm that checks whether a set
of vectors X ⊆ {0, 1}d is a non-redundant integer cone.

NICG(X)

// Global variable that stores NICG property of X.
found = false

for each vector x ∈ X

inIntConeTest(X\{x},
∑

X)
if found == true

return false

return true

inIntConeTest(X, b)

if b == 0
found = true

return

if X == ∅
return

newB = b

x = take any element from X

while true

inIntConeTest(X\{x}, newB)
newB = newB − x

if found == true or newB contains negative component
return

Fig. 1: Program NICG: checks whether for a set of integer vector X holds NICG(X)

A simple incremental algorithm for computing the value N(d) works as fol-
lows: the algorithm starts with n and constructs a set X of the cardinality n,
which has the property NICG(X). In the next iteration n gets increased and the
algorithm repeats the same steps. As soon as the algorithm encounters the first
n for which it cannot construct a NICG(X) of the cardinality n, it stops and
returns N(d) = n − 1. The correctness of this algorithm is guaranteed by the
following theorem, originally proved in [5]:

Lemma 2 If NICG(X) and Y ⊆ X, then NICG(Y).

Using this approach we computed N(5) = 7 after approximately 3 hours.

7

Optimization: Binary Search. Instead of incrementally constructing all the
sets, we can apply Lemma 2 together with Theorem 2 to devise an algorithm that
computes the value of N(d) in the binary search manner. The algorithm makes
a guess n on the value N(d) and tries to construct a set X such that |X | = n
and NICG(X). If no such set exists, then N(d) < n, otherwise n ≤ N(d).

As an illustration, consider d = 5. Applying Theorem 2 to compute the
bounds on the value of N(5), the algorithm derives the interval in which N(5)
occurs: 6 ≤ N(5) ≤ 11. The first guess is N(5) = 8. Then the algorithm tries
to construct a set X such that |X | = 8 and NICG(X). Because such a set does
not exist, the algorithm will not construct it implying 6 ≤ N(5) ≤ 7. The next
guess is N(5) = 7. Since there exists a set X such that |X | = 7 and NICG(X),
the algorithm will construct such a set and output N(5) = 7.

Incremental Construction vs Binary Search. We have implemented both,
the incremental construction and the binary search approach, to derive N(5).
The binary search approach found N(5) faster than the incremental construc-
tion approach. However, our experimental results show that the binary search
approach is slower than the incremental construction approach in computing
N(d) for d > 5. The difference in the experimental results is caused by the fact
that testing the existence of a set X such that NICG(X) is computationally
more expensive than testing the existence of a set Y such that NICG(Y) when
|X | > |Y |. Another issue with the binary search approach is that if the initial
interval is not tight enough, the algorithm might make a guess on N(d) that is
significantly larger than the value N(d) itself.

As an example consider d = 5. In the incremental approach the algorithm
must examine at most

(

31
6

)

+
(

31
7

)

+
(

31
8

)

= 11254581 sets of vectors. In the

binary search approach the algorithm must examine
(

31
7

)

+
(

31
8

)

= 2921750 sets of
vectors, where the value 31 represents cardinality of the set {0, 1}5\{0, 0, 0, 0, 0}.

Optimization: Preserving Sums. In order to obtain a more efficient com-
putation of N(d) we tried an approach based on preserving sums of vectors,
which can be later reused in the computation. The idea on preserving sums
was motivated by the following observation: if Y ⊂ X and NICG(X), then
ΣX 6∈ int cone(Y). To benefit from the observation, for every examined Y for
which NICG(Y) holds the algorithm must keep track of the sum ΣY . We have
tried this heuristic, but did not obtain any significant improvement. The advan-
tage of such an approach is that the algorithm can compute new sums quickly,
and detect not NCIG faster. The disadvantage is the process of maintaining
sums. The search algorithm must be aware which sums should be stored and
which removed. In certain cases the search algorithm must copy the whole data
structure that keeps the sums. Our experiments have shown that maintaining so
much information is more costly than the calculation.

3.1 Isomorphic sets

So far the algorithms searched for the solution over all sets of vectors of given
cardinality. We applied optimizations to early detect if set does not improve the

8

solution. Also, we introduced approaches which improved maintaining informa-
tion about the sets. But common to all those cases was that almost all the sets
were examined. This was a big drawback: we will demonstrate that one does not
need to examine all the sets. To motivate our observations, consider the follow-
ing two sets: X1 = {(1, 1, 0), (0, 1, 0)} and X2 = {(0, 1, 1), (0, 1, 0)}. Performing

a permutation

(

1 2 3
3 2 1

)

on indices of components of the vectors in X1 we obtain

X2. Permuting components of the vectors does not affect the solution. Therefore,
if set X1 does not lead to the solution, then X2 does not lead, too. Similarly, if
X1 leads to the solution, X2 leads as well. The observation allow us to consider
only vectors that are not isomorphic, where isomorphism between two sets of
vectors is defined as follows:

Definition 4. We say that two sets of vectors X,Y ⊆ {0, 1}d are isomorphic
if there exists a permutation P over the set {1, . . . , d} and a bijective function
fP : X → Y defined as

fP (x) = y ⇔ xi = yP (i), i = 1, . . . , d.

Basically, there are two ways to check, call it check functions, whether we already
considered an isomorphic set:

1. For each considered set X so far, mark all isomorphic sets to X , i.e. mark
all d! sets (note that some of them might repeat) storing them in a structure
marked. Before a new set is processed check whether it is in marked.

2. Store each considered set in a structure done. When there is a new set X to
be examined, run all d! permutations on X . For each permutation p check if
p(X) is in done.

We used this approach for d ≤ 7. There are 264 different sets in case d = 6.
A particular set can be isomorphic to at most 6! other sets. Because this is an

equivalence relation, at least 264

6! non-isomorphic sets should be stored somehow.
This is far away too much. To avoid this problem, we can use a bit different
method. Let us define

X(k) = {x|x ∈ X and x contains exactly k non− zero components}.

Then we sayX and Y are isomorphic if (X(1), X(2)) is isomorphic to (Y (1), Y (2)).
With such a method, sets X = {(1, 0, 0, 0) , (1, 1, 1, 0)} and Y = {(1, 0, 0, 0),
(1, 1, 0, 1)} will not be considered as isomorphic, although they are isomorphic

by a permutation

(

1 2 3 4
1 2 4 3

)

. Thus, it does not cover all isomorphic pairs, but

allow us to shrink the usage of memory.
Finally, the required memory is sufficiently small that we can store sets in

the both cases in an array. As a result, the check function can be executed in
a constant time. The first approach uses O(d! · T) time (T is number of non-
isomorphic sets) for marking, and O(d! ·M) memory. Once we do that, the check
function is performed in a constant time.

9

The second approach uses O(1) time to store an examined set, and it uses O(M)
memory. For each stored setX there are multiple isomorphic sets. Note that some
of those sets do not always have d! isomorphic sets, like for example {(1, 0, 0, 0)}.
Actually, most of the time they have less than d!. Before storing a set X we have
to generate d! other sets and check whether they are in done or not. There are T ′

isomorphic sets, where for d = 6 the value T ′ is a few hundred times bigger than
T . This approach gives the time complexity O((T + T ′) · d!), and the memory
complexity O(M).
In our case, we have already shrank memory, thus the memory is not an issue,
but time efficiency. Therefore we choose the first approach.

Using this optimization we obtained a method that in a few minutes calcu-
lates N(5) = 7.

4 Gaussian Elimination: N(6)=9

In Section 3 we described a different approaches towards a construction of NICG
sets. Most of the approaches consider NICG property only of currently calcu-
lated set. We also argued why the approach in which we try to maintain as many
information as possible is not very efficient. Knowing that, we decided to merge
ideas from the both approaches and come with a more efficient algorithm.
The idea about maintaining too much information is not good, as we have
explained. However, maintaining some amount of “not NICG(Y)” information
might reduce the search space, and thus improve the running time. The prop-
erty “not NICG(Y)” allow us to avoid computing over every set X such that
Y ⊂ X . For instance, consider an example where Y = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0),
(1, 1, 0, 0, 0)}. Y is not NICG because

∑

Y = 2(1, 1, 0, 0, 0). There are
(

28
4

)

+
(

28
5

)

+
(

28
6

)

+
(

28
7

)

+
(

28
8

)

= 4787640 sets X , such that |X | ≤ 8, Y ⊂ X . Most
of those sets would be considered if we do not shrink them using the fact not
NICG(Y). Quite a lot of sets is affected by only one set, thus we decided to use
information about not NICG sets.
On the other side, we decided not to use information about NICG sets, but for a
given setX to test NICG(X) on fly. In Section 1 we saw that answering NICG(X)
is the same as answering is there a solution to the corresponding system of equa-
tions. Instead of using the procedure inIntConeTest to answer that, we try to
solve system using Gaussian elimination.

Answering whether a given set X has the NICG(X) property by solving the
corresponding system with Gaussian elimination might look like an inefficient
approach. To understand such a view, consider a system of five equations and
eight variables (what could be the case for d = 5) such that its solution contains
three parameter-variables. Each component of a vector sum of the eight binary
vectors is a non-negative integer value not greater than 8. Therefore there are
93 possibilities to assign values to the three parameters.
A system that represents a set for d ≥ 6 might contain even more parameter-
variables resulting in even more possible assignments to the parameter-variables.
However, it turned out that, for the systems our search algorithms constructed,

10

Gaussian method works very good since most of the parameter-variable assign-
ments are not valid.

This approach verified result for d ≤ 5 and gave N(6) = 9 in around a thirty
minutes.
Below are given examples of sets of vectors that represent solutions for d = 1 . . . 6.
Those sets are obtained by applying the described approaches.

d 1 2 3 4 5 6

N(d) 1 2 3 5 7 9

a solution
(

1
)

(

1 1
0 1

)

1 1 1
1 0 1
0 1 1

1 1 1 1 0
1 1 1 0 1
0 1 0 1 1
0 0 1 1 1

1 1 1 1 0 0 1
1 1 0 0 1 1 1
0 1 1 1 1 0 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1

1 1 1 1 0 0 1 1 1
1 1 1 0 1 1 0 1 1
0 1 0 1 1 0 0 0 1
0 0 1 1 0 1 0 1 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 0 1

Table 1: Solutions for different d values, an example solution per a value. Full set of
solutions is available at [6].

5 Speeding up Search using Weak Isomorphisms

In Subsection 3.1 we have seen two approaches that might be used to eliminate
isomorphic states. One of the approaches is time inefficient, and another one is
memory costly. Both, time and memory inefficiency, grows exponentially, which
suggests that any of those approaches can be used only for small d values. On
the other side, both of these methods are very strict in sense that for a given
type of isomorphism, the methods eliminate all isomorphic states (i.e. detect all
isomorphic (X(1), X(2)) states, as has been already explained).

Every approach to the problem we have used so far can be described by the
following algorithm:

Solve(currSolution, nonUsedV ectors)

// currSolution represents a NICG set of vectors that is
already considered as part of some solution.
// nonUsedV ectors represents set of vectors that
can be used to build a solution from the current state.
update solutions by currSolution // solution is a global set of solutions.
vector = choose element from nonUsedV ectors
nonUsedV ectors = nonUsedV ectors\vector
update isomorphic states
if NICG(currSolution ∪ vector)

Solve(currSolution ∪ vector, nonUsedV ectors)
Solve(currSolution, nonUsedV ectors)

11

The algorithm above generates a search tree. The method we use to eliminate
isomorphic states in the search tree directly affects both, the running time and
the memory usage.
As we can see, on one side are the introduced methods that eliminate a lot of
states, but they use too much time, or too much memory. On the other side, if
we do not use any method for elimination we have to search over a huge tree,
but then we do not use any extra time or memory for elimination. Instead of
devising a method that rely on benefits only of one or the another side, we have
tried to “meet in the middle”.
A method that we describe is not so strict in elimination, as the previous methods
were, but it is very efficient as we are going to show by the results.

Suppose the algorithm is in a state (currSolution = X,nonUsedV ectors =
A), and it chooses to examine vector = x. In this state the algorithm must
decide which states (X ∪y,A\x) it is not going to visit, knowing that it is going
to visit (X ∪ x,A\x). Note that even if NICG(X ∪ x) returns false, the state
(X ∪ x,A\x) can be considered as a visited one, but such that it does not lead
to the solution. Obviously, if X ∪ x is isomorphic to X ∪ y, there is no point to
search over subtree represented by X ∪ y. By isomorphism between sets X and
Y we denoted existence of a permutation that maps X to Y . Additionally, we
observe that if there exists a permutation P such that P (X) = X and P (x) = y,
then there exists a permutation P ′ such that P ′(X ∪ x) = X ∪ y. The opposite
does not stand always.
Consider even more specific type of permutations that make two states being
isomorphic. We say that a permutation P ’preserves order of ones’ of a collection
of vectors X , if the following holds:

(∀x ∈ X)(∀i ∈ {1, . . . , d})xi = 1 ⇒ P (i) = i,

where by xi is denoted vector-component of x at the position i. In other words,
when P is applied on X it does not change order of ones in that collection of
binary vectors. Of course, it immediately leads to the conclusion P (X) = X .
This type of permutations we call “1-order preserving” permutations.

In our algorithm we describe 1-order preserving permutations by using a
single boolean array fixedPerms of the size d. If fixedPerms[i] = true it
means that the array represents a collection of permutation such that for every
permutation P from the collection it stands P (i) = i. The array fixedPerms is
updated in the following way:

– Initially, fixedPerms = {false}d.
– When a new vector x is added to the current state X , array fixedPerms is

updated as follows:

for i = 1 . . . d
if the i-th component of x == 1

fixedPerms′[i] = true

Therefore, for each newly added vector the algorithm updates fixedPerms in
O(d) time. For each state the algorithm needs additional d bits to represent the

12

corresponding array. Testing whether two vectors x and y are isomorphic with
respect to 1-order preserving collection given by fixedPerms can be done as
follows:

IsomorphicVectors(x, y, fixedPerms)

if number of ones in x 6= number of ones in y
return false

for i = 1 . . . d
if fixedPerms[i] == true

if the i-th components of x and y differ
return false

return true

The method IsomorphicVectors for particular input executes in O(d) time.
As we have seen, eliminating states according to 1-order preserving collec-

tion is both time and memory efficient. However, such approach is a bit weak,
and it does not eliminate all isomorphic states. This can be illustrated with the
following example. Suppose currSolution = {(1, 1)} and nonUsedV ectors =
{(1, 0), (0, 1)}. The only permutation that does not change order of ones in

currSolution is

(

1 2
1 2

)

, therefore fixedPerms = {true,true}. Thus, call of

IsomorphicVectors((1, 0), (0, 1), {true,true}) will return false. However,

there exists a permutation

(

1 2
2 1

)

that maps {(1, 1), (1, 0)} onto {(1, 1), (0, 1)},

what means that these two states should be considered as isomorphic.
Although the last approach is based on weak isomorphism it runs faster then

the previously described approaches for d = 1 . . . 6. For d = 6 there exist 254
non-isomorphic solutions. The algorithm that uses Gaussian elimination finds
80000 solutions, with many of them being isomorphic. The search lasts for about
45 minutes. The algorithm that implements the weak isomorphism finds nearly
5000 solutions in about 5 minutes.

6 Randomizing Search Order; New Lower Bounds

The algorithms we have presented so far deterministically choose the next state
from the current state. We developed a randomized algorithm that chooses a next
state randomly in such a way that all states reachable from the current state have
the same probability to be chosen. The uniform probability distribution on choice
over the states is achieved by shuffling list of states reachable from the current
state, and then picking the first state from the shuffled list as the next state.
Although the implementation difference is minor, results are significantly better
than using deterministic algorithm, as can be seen in the following paragraph.

We did not succeed to get exact values for N(7), N(8), N(9) or N(10).
Instead, we got better lower estimate of these values. Those estimates are:
N(7) ≥ 11; N(8) ≥ 13; N(9) ≥ 14; N(10) ≥ 16. It is interesting that in less

13

than a second we got result N(6) ≥ 9. In a few minutes we got N(7) ≥ 11,
and in an hour we got N(8) ≥ 13, N(9) ≥ 14 and N(10) ≥ 16. On the other
hand, deterministic algorithm uses the following amount of time: N(6) ≥ 9 in a
minute; N(7) ≥ 11 after a few hours; N(8) ≥ 13 we did not get even after a day
of running the algorithm.

7 Better estimate of N ′(7) using Decomposition: from 36
to 19

The best known estimate so far for N ′(7) is 36. We successfully improved this
upper bound to 19 as follows:
Let X be a solution for d = 7, i.e. X ⊆ {0, 1}7 and |X | = N(7). Then set X can
be decomposed into two subsets X0 and X1 such that

– X0 ∩X1 = ∅,
– X0 ∪X1 = X ,
– X0 contains only vectors which first component is 0,
– X1 contains only vectors which first component is 1.

From Lemma 2 it follows that X0 and X1 are NICG sets. Since the first compo-
nent of each vector in X0 is 0, X0 can be considered as a set of 6-dimensional
vectors. Therefore, |X0| ≤ N(6). In order to estimate an upper bound on |X1|,
we use the same algorithm as we use to obtain N(6), with the input defined as
set {x | x ∈ {0, 1}7 ∧ x1 = 1}. Running the algorithm on such a set we get the
final result, a set Y , after 30 minutes with |Y | = 10. Therefore, |X1| ≤ 10. Since
every solution for d = 7 can be decomposed into X0 and X1, with upper bounds
9 and 10, respectively, it implies that solution for d = 7 is of cardinality of at
most 9 + 10 = 19.

8 Improvement of N ′(d) for Arbitrary d

8.1 Isomorphism on row additions

Each NICG set of vectors X can be described as a matrix of dimension d× |X |,
where each column of the matrix represents a single vector from X , and no
two different columns represent the same vector. In this section we introduce
an isomorphism of NICG solutions that involves additions and substructions on
rows of matrices.

Consider an NICG set of vectors X , and the corresponding matrix M . We
will say that two rows, i1 and i2, do not share variable if there does not exists j
such that Mi1,j = 1 and Mi2,j = 1. We can state the following lemma.

Lemma 3 Consider a matrix M , and assume that M contains at least two rows
that do not share variable. Let two of these rows be i1 and i2. Let a matrix M ′

be obtained from the matrix M by replacing the row i2 by the row-sum i1+ i2. M
represents NICG set of vectors if and only if M ′ represents NICG set of vectors.

14

Corollary 1. For NICG set X, and its corresponding matrix M , such that M
contains two rows i1 and i2 such that every variable presented in i1 is presented
in i2 as well, there exists an NICG set X ′ which can be obtained from X by
replacing the row i2 by the row-subtruction i2 − i1.

Lemma 3 gives a new insight about isomorphic NICG sets. Using the lemma, we
give a better estimate of N ′(d), as presented in Section 8.2.

8.2 Upper Bound Improvement for large d

In this section we give a better estimate of N ′(d). The improvement rely on
result presented in Section 8.1. State the following lemma:

Lemma 4 For each NICG set X, and its corresponding matrix M , there exists
an NICG set X ′, along with its corresponding matrix M ′, such that

(1) |X | = |X ′|, and
(2) every row in M ′ contains at least one value 0.

Proof. If M satisfies the condition (2), then let X ′ = X and the proof is done.
Therefore, assume that M contains a row i such that all its values are 1. It means
that variables of every row j are contained in row i as well. By Corollary 1, there
exists X1 that is obtained from X by replacing the row i by the row i − j. If
X1 contains a row with 1s only, then we are going to apply Corollary 1 on X1

getting X2. We continue this process until we get Xr that does not contain row
with all 1s. Because there is finite number of rows, Xr will be obtained in a finite
number of steps. Once we obtain Xr, let X

′ = Xr. By the construction and the
corollary, Xr satisfies both (1) and (2), implying Xr is NCIG.

This completes the proof.

Acording to Lemma 4, there exists a solution X to the problem such that the
corresponding matrix does not contain a row with all values being 1. Thus we
have that every component of the sum of vectors of X never exceed N − 1. If
we recall proof of Theorem 2 in [5], we obtain an upper bound on N to be the
maximal value such that

2N ≤ Nd.

The last inequality gives a slight improvement on an upper bound of N(d).
The upper bound can be even more improved by using result N(d) > d+ 1,

for d > 4, given in [5]. Consider a solution X and its corresponding matrix M
for d > 4. By Lemma 4 there exists a solution such that each row contains at
least one 0 value. Assume each of the rows contains a single 0 value. Therefore,
at least N(d)− d columns would contain 1s only. Since N(d)− d ≥ 2 for d > 4,
the system is not NICG. Therefore, the assumption is wrong and there exist at
least one row that contains 2 zeros. The last gives a new improvement on upper
bound on N that can be described by the following inequality:

2N ≤ Nd−1 · (N − 1).

15

9 Different Approaches

In order to compute N(d) we used general solvers for solving systems of equations
with non-negative integer variables. The solvers were used to give an answer
whether a particular set of vectors X has the NICG property. If M is the matrix
that represents X , then existance of the NICG property can be answered as
follows:

– Let Mk be defined as a matrix which k-th column contains only 0s, and
every other column is a copy of the corresponding column in M .

– If for every matrix Mk, for 1 ≤ k ≤ #of columns in M, there does not exist
a non-negative integer solution, then X has the NICG property, otherwise
it does not have.

We tried this approach using standard solvers GLPK and jOpt. None of them
was even nearly efficient as our implementation of NICG property, the one im-
plemented using Gaussian elimination. Probably, reason behind this is a fact
that in our case we were mainly working with systems of small number of equa-
tions. For such systems our optimized implementation of Gaussian method has
very good performance. On the other side, GLPK and jOpt probably implement
efficient solutions but with high constant w.r.t to O-notation, what as the result
gives that Gaussian elimination overperform those libraries.

10 Conclusions

QFBAPA has the small model property. An upper bound on the size of a small
model is provided by the number N(d), where d is the dimension of the corre-
sponding QFBAPA model. In this paper we computed the exact values for N(4),
N(5) and N(6). We also significantly improved the known bounds for N(7),
N(8), N(9) and N(10). Those numbers are used to determine the size of small
models for QFBAPA formulas.

However, our motivation was twofold: first, we obtained the bounds that
dramatically improve constant factors in the theoretically optimal algorithm for
QFBAPA. Second, we provided another case study in developing domain-specific
algorithms for combinatorial search. Although we found a domain-specific search
algorithm to be the most effective, the problem may prove to be fruitful ground
for future general-purpose constraint-solving techniques.

References

1. A. Aiken. Introduction to set constraint-based program analysis. Science of Com-
puter Programming, 35:79–111, 1999.

2. F. Eisenbrand and G. Shmonin. Carathéodory bounds for integer
cones. Operations Research Letters, 34(5):564–568, September 2006.
http://dx.doi.org/10.1016/j.orl.2005.09.008.

16

3. S. Feferman and R. L. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57–103, 1959.

4. V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Boolean Al-
gebra with Presburger Arithmetic. J. of Automated Reasoning, 2006.
http://dx.doi.org/10.1007/s10817-006-9042-1.

5. V. Kuncak and M. Rinard. Towards efficient satisfiability checking for Boolean
Algebra with Presburger Arithmetic. In CADE-21, 2007.

6. LARA. Non-redundant integer cones - resources. http://lara.epfl.ch/dokuwiki/nicg,
February 2011.

7. P. Suter, R. Steiger, and V. Kuncak. Sets with cardinality constraints in satisfiability
modulo theories. In R. Jhala and D. Schmidt, editors, Verification, Model Checking,
and Abstract Interpretation, volume 6538 of Lecture Notes in Computer Science,
pages 403–418. Springer Berlin / Heidelberg, 2011.

8. K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data struc-
tures. In ACM Conf. Programming Language Design and Implementation (PLDI),
2008.

