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Abstract. We offer a transition system representing a high-level but
detailed architecture for SMT solvers that combine a propositional SAT
engine with solvers for multiple disjoint theories. The system captures
succintly and accurately all the major aspects of the solver’s global op-
eration: boolean search with across-the-board backjumping, communica-
tion of theory-specific facts and equalities between shared variables, and
cooperative conflict analysis. Provably correct and prudently underspec-
ified, our system is a usable ground for high-quality implementations of
comprehensive SMT solvers.

1 Introduction

SMT solvers are fully automated theorem provers based on decision procedures.
The acronym is for Satisfiability Modulo Theories, indicating that an SMT solver
works as a satisfiability checker, with its decision procedures targeting queries
from one or more logical theories. These proof engines have become vital in veri-
fication practice and hold an even greater promise, but they are still a challenge
to design and implement. From the seminal Simplify [9] to the current state-of-
the-art Yices [10], with notable exceptions such as UCLID [6], the prevailing wis-
dom has been that an SMT solver should contain a SAT solver for managing the
boolean complexity of the input formula and several specialized solvers—linear
arithmetic and “theory of uninterpreted functions” obbligato—that communi-
cate by exchanging equalities between variables (“the Nelson-Oppen style”[15]).
This much granted, there is a host of remaining design issues at various levels
of abstraction, the response to which distinguishes one solver from another.

Our goal is to define the top-level architecture of an SMT solver as a math-
ematical object that can be grasped as a whole and fruitfully reasoned about.
We want an abstract model that faithfully captures the intricacies of the solver’s
global operation—what is going on between the architectural components and
what is going on inside the components that is essential for interaction. We
achieve this goal by presenting the SMT solver as a non-deterministic transi-
tion system. The ten rules of our system (Figure 5) provide a rather detailed
rational reconstruction of the mainstream SMT solvers, covering the mecha-
nisms for boolean search, communication of theory-specific facts and equalities
between shared variables, and global conflict analysis. The system provides a
solid theoretical basis for implementations, which can explore various execution
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strategies, refinements and optimizations, assured of fundamental correctness as
long as they “play by the rules”.

Following the precursor [12] to this paper, we adopt a logic with paramet-
ric polymorphism as the natural choice for SMT solvers, emphasizing cardinality
constraints—not the traditional stable-infinity condition—as an accurate expres-
sion of what matters for completeness of the Nelson-Oppen method in practice.1

Our main results are the termination, soundness, and completeness theorems for
our transition system.

Related Work. We were inspired mainly by the work of Nieuwenhuis, Oliveras,
and Tinelli [16] on abstract DPLL and abstract DPLL modulo theories—transition
systems that model a DPLL-style SAT solver [8] and an SMT solver that extends
it with a solver for one theory. In the follow-up paper [3], the same authors with
Barrett extend their system with features for “splitting on demand” and derive
from it the DPLL(T1, . . . , Tn) architecture. This architecture is closely related
to our system nodpll (Section 5), but is significantly less detailed and transpar-
ent. It refines DPLL modulo a single (composite) theory with appropriate purity
requirements on some, but not all rules. In contrast, nodpll is explicitly modulo
multiple theories, with rules specifying actions of specific theory solvers and the
solvers’ interaction made vivid. For example, equality propagation is spelled out
in nodpll, but which solver in DPLL(T1, . . . , Tn) derives x = z from x = y
and y = z is not clear. Another important difference is in the modeling of con-
flict analysis and it shows even if our systems are compared at the propositional
(SAT solver) level. While [16] and [3] view confict analysis abstractly, tucking it
in a general rule for backjumping, nodpll has rules that directly cover its key
steps: conflict detection, the subsequent sequence of “explanations”, generation
of the “backjump clause”, and the actual backjump. In an SMT solver, in partic-
ular with multiple theories, conflict analysis is even more subtle than in a SAT
solver, and the authors of [16] are the first to point out its pitfalls (“too new
explanations”) and identify a condition for its correct behavior. nodpll neatly
captures this condition as a guard of a rule.

Our work also builds on [7], which has a transition system modeling a Nelson-
Oppen solver for multiple theories, but does not address the cooperation with
the SAT solver. Formal models of SMT solvers that do handle a SAT solver
together with more than one theory are given only in the paper [3] discussed
above and earlier works [2], [5]. Barrett’s architecture of CVC Lite as described
in [2] is complex and too low-level for convenient analysis and application. The
system SMT (T1 ∪T2) of Bozzano et al. [5] describes in pseudo-code a particular
approach for equality propagation taken by the MathSAT solver, which can be
modeled in nodpll; see Section 5.6.

Outline. Section 2 contains (termino)logical background as developed in [12],
but divorcing the solver’s polymorphic language from HOL, to emphasize that
1 The justification for the presence of non-stably-infinite theories in the Nelson-Oppen

framework is studied in recent papers [20,17,4]; in [12], it is shown that the concept
of stable-infinity can be dismissed altogether.



Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL 3

ΣEq = 〈Bool | =α2→Bool, ite[Bool,α,α]→α, trueBool, falseBool, ¬Bool→Bool, ∧Bool2→Bool , . . .〉
ΣUF = 〈⇒ | @[α⇒β,α]→β〉
ΣInt = 〈Int | 0Int, 1Int, (−1)Int, . . . , +Int2→Int, −Int2→Int, ×Int2→Int, ≤Int2→Bool , . . .〉
Σ× = 〈× | 〈-, -〉[α,β]→α×β, fstα×β→α, sndα×β→β〉
ΣArray = 〈Array | mk arrβ→Array(α,β), read[Array(α,β),α]→β, write[Array(α,β),α,β]→Array(α,β)〉
ΣList = 〈List | cons[α,List(α)]→List(α), nilList(α), head[List(α),α]→Bool, tail[List(α),List(α)]→Bool〉

Fig. 1. Signatures for theories of some familiar datatypes. For space efficiency, the
constants’ arities are shown as superscripts. ΣEq contains the type operator Bool and
standard logical constants. All other signatures by definition contain ΣEq, but to
avoid clutter we leave their ΣEq-part implicit. In ΣUF, the symbol UF is for uninterpreted
functions and the intended meaning of @ is the function application. The list functions
head and tail are partial, so are represented as predicates in ΣList.

parametricity is not tied to higher-order logic, even though it is most conve-
niently expressed there. In Section 3, we overview purification—a somewhat
involved procedure in the context of parametric theories—and give a suitable
form of the non-deterministic Nelson-Oppen combination theorem of [12]. Sec-
tion 4 is a quick rendition of the core DPLL algorithm as a transition system
covering the essential features of modern SAT solvers. Section 5 contains the
description of our main transition system for modeling combined SMT solvers,
the basic correctness results for it, and some discussion. All proofs are given in
the appendix.

2 Preliminaries

We are interested in logical theories of common datatypes and their combinations
(Figure 1). A datatype has its syntax and semantics; both are needed to define
the theory of the datatype. We give a brief overview of the syntax and an
informal sketch of semantics, referring to [12] for technical details.

Types. A set O of symbols called type operators, each with an associated
non-negative arity, and an infinite set of type variables define the set TpO of
types over O. It is the smallest set that contains type variables and expressions
F (σ1, . . . , σn), where F ∈ O has arity n and σi ∈ TpO.

A type instantiation is a finite map from type variables to types. For
any type σ and type instantiation θ = [σ1/α1, . . . , σn/αn], θ(σ) denotes the
simultaneous substitution of every occurrence of αi in σ with σi. We say that τ
is an instance of σ if there is some θ such that τ = θ(σ).

Signatures. A signature is a pair 〈O | K〉, where O is a set of type operators
and K is a set of constants typed over O. By this we mean that every element
of K has an arity, which is a tuple of types (σ0, . . . , σn). Here, σ1, . . . , σn are
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the argument types of k, and σ0 is its range type. Constants whose range type
is Bool will be called predicates.

We will use the more intuitive notation k :: [σ1, . . . , σn] → σ0 to indicate the
arity of a constant. Moreover, we will write k : [τ1, . . . , τn] → τ0 if there is a type
instantiation that maps σ0, . . . , σn to τ0, . . . , τn respectively. Note the use of ::
and : for the “principal type” and “type instance” of k respectively. Also note
that arities are not types—the symbol → is not a type operator.2

Terms. For a given signature Σ = 〈O | K〉 and every σ ∈ TpO, we assume there
is an infinite set of variables of type σ; we write them in the (name,type)-form
vσ. The sets Tmσ of Σ-terms of type σ are defined inductively by these rules:

(1) every variable vσ is in Tmσ

(2) if t1 ∈ Tmτ1 , . . . , tn ∈ Tmτn and k : [τ1, . . . , τn] → τ0, then k t1 . . . tn ∈ Tmτ0

Type instantiations act on terms: define θ(t) to be the term obtained by
replacing every variable xσ in t with xθ(σ). If t ∈ Tmσ, then θ(t) ∈ Tmθ(σ). We
define t′ � t to mean that t′ = θ(t) for some θ, and we then say that t′ is a type

instance of t and t is a type abstraction of t′.
For every term t, there exists the most general abstraction tabs charac-

terized by: (1) t � tabs; and (2) t′ � tabs for every t′ such that t � t′. The term
tabs is unique up to renaming of type variables and can be obtained by erasing
all type information from t and then applying a type inference algorithm. For
type inference, see, e.g., [13].

Semantics. The type operators List and Array have arities one and two respec-
tively. The meaning of List is a function of arity one (by abuse of notation, also
denoted List) that given a set E as an argument produces the set List(E) of all
lists with elements in E. The meaning of Array is a function that given two sets
I and E as arguments produces the set Array(I, E) of arrays indexed by I with
elements in E.

The meaning of polymorphic types is defined once we know the meaning of
type operators. For example, the meaning of the type Array(α, Array(α, β)) is a
function that given any two sets I and E (as interpretations of type variables
α, β) produces the set Array(I, Array(I, E)). If there are no occurrences of type
variables in a type (e.g., List(Bool×Int)), then the meaning of that type is always
the same set; if the set is finite, we call the type finite.

The meaning of a constant is an indexed family of functions. For example,
the meaning of cons is the family {consE | E is a set}, where consE is a function
that takes an argument in E and an argument in List(E) and produces a result
in List(E).

The meanings of type operators and constants of a signature together deter-
mine a structure for that signature. The structure gives meaning to all terms.

2 In [12], the type and term languages asssociated with a signature were defined as
subsets of the higher-order logic, where the function space type operator is primitive
and so arities could be seen as types.
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Consider t = read(write(aArray(α,β), iα, xβ), jα). Once α and β are interpreted
as concrete sets (I and E, say) and interpretations for the variables a, i, x, j
(elements of Array(I, E), I, E, I respectively) are given, the polymorphic term
t becomes a well-defined element of E. In [12], which should be consulted for
more details, this element is denoted �t�〈ι, ρ〉, where ι and ρ together define an
environment for t: ι maps the type variables α, β to sets I, E respectively, and
ρ maps the variables a, i, x, j to elements of Array(I, E), I, E, I respectively.

As a boring exercise, the reader may furnish the signatures in Figure 1 with
meanings of their type operators and constants, thus obtaining definitions of
structures TEq, TUF, TInt, T×, TArray, TList.

Satisfiability. A Σ-formula is an element of TmBool. If φ is a Σ-formula and T
is a Σ-structure, we say that φ is satisfiable in T if �φ�〈ι, ρ〉 = true for some
environment 〈ι, ρ〉; this environment then is called a model of φ. We also say that
φ is valid if ¬φ is unsatisfiable. Validity is denoted |=T φ, and φ1, . . . , φn |=T φ
is an abbreviation for |=T φ1 ∧ · · · ∧ φn ⊃ φ. The theory of a structure is the
set of formulas that are valid in it.

An atomic Σ-formula is either a propositional variable or a term of the
form k t1 . . . tn, where k is a predicate. A Σ-literal is an atomic formula or
its negation. A clause is a disjunction of literals. A query is a conjunction of
formulas. Clauses containing the same literals in different order are considered
equal. (We think of clauses and queries as sets of literals and formulas respec-
tively.) A convex theory is defined by the property that if a set of literals
implies a disjunction of equalities, then one of the disjuncts must be implied.

A cardinality constraint is an “equality” of the form α
.= n, where α

is a type variable and n is a positive integer; an enviroment 〈ι, ρ〉 satisfies this
constraint if α is in the domain of ι and the cardinality of the set ι(α) is n.

Combining Structures. Two signatures are disjoint if the only type operators
and constants they share are those of ΣEq. If T1, . . . , Tn are structures with
pairwise disjoint signatures, then there is a well-defined sum structure T =
T1 + · · ·+Tn; the semantics of its type operators and constants is defined by the
structures they come from. The types and terms of each Ti are types and terms
of T too. We will call them pure, or i-pure when we need to be specific. The
attribute mixed will be used for arbitrary terms and types of a sum structure.

Solvers. A solver for a fragment of a theory is a sound and complete satisfia-
bility checker for sets of formulas (queries) in the fragment. A strong solver

checks satisfiability of queries that contain formulas and cardinality constraints.
In practice, theory solvers are built for queries consisting of literals only. The

well-known argument that this is sufficient in general begins with the observation
that every query Φ is equisatisfiable with one of the form Q = Φ0 ∪ {p1 ⇔
φ1, . . . , pn ⇔ φn}, where the pi are propositional variables, the φi are literals,
and Φ0 is a propositional query, the boolean skeleton of Φ. A truth assignment
M to propositional variables that satisfies Φ0 can be extended to a model for Φ
if and only if the query of literals QM = {φ′

1, . . . , φ
′
n} is T -satisfiable, where φ′

i is
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either φi or ¬φi, depending on whether M(pi) is true or false. Thus, satisfiability
of Φ is decided by checking if QM is satisfiable for some model M of Φ0. This,
of course, calls for a SAT solver to efficiently enumerate the models M .

Parametricity. There is uniformity in the way “polymorphic” functions like cons
compute their results—a consequence of the fact that the definition of consE

takes the set E as a parameter, making no assumptions about it. Precisely pin-
ning down this uniformity concept is somewhat tricky and we content ourselves
with definitions of parametric type operators and parametric constants that are
most convenient for our purposes. They are needed for proper understanding of
Theorem 1 below, but not for much else in this paper. Thus, the reader may
safely proceed with only a cursory reading of the rest of this section.

Recall first that a relation between two sets A and B is a partial bijection

if it can be seen as a bijection between a subset of A and a subset of B. Define an
n-ary set function F to be parametric if it is functorial on partial bijections.
This means that given any partial bijections fi : Ai ↔ Bi, where i = 1, . . . , n,
there exists a partial bijection F (f1, . . . , fn) : F (A1, . . . , An) ↔ F (B1, . . . , Bn);
moreover, there is a requirement that the identity and composition be pre-
served. That is, F (idA1 , . . . , idAn) = idF (A1,...,An) and F (g1 ◦ f1, . . . , gn ◦ fn) =

F (g1, . . . , gn) ◦ F (f1, . . . , fn), where Ai
fi↔ Bi

gi↔ Ci.
Consider a structure whose type operators are all parametric in the above

sense and let k :: [σ1, . . . , σn] → σ0 be a constant of this structure. Observe
that if α1, . . . , αm are all type variables that occur in the types σi, then any
interpretation ι of type variables (that is, an assignment, for each i, of a set Ai

to αi) interprets each type σj as a set, say Sj , and interprets k as a function
kι : S1 × · · · × Sn → S0. Suppose now we have two interpretations ι, ι′ for type
variables, the first just as above, and the second with A′

i and S′
j in place of Ai and

Sj . Suppose also that fi : Ai ↔ A′
i are partial bijections. Since the type operators

of our structure are assumed parametric, there are induced partial bijections
gj : Sj ↔ S′

j , for j = 0, . . . , n. We say that the constant k is parametric if
in this situation we have g0(kι(x1, . . . , xn)) = kι′(g1(x1), . . . , gn(xn)) for every
x1 ∈ dom(f1), . . . , xn ∈ dom(fn).

Finally, a parametric structure is required to have all type operators and
all constants parametric. Our example structures TEq, TUF, TInt, T×, TArray, TList,
with the notable exception of TUF, are all parametric; so are the structures de-
scribing sets, multisets, and arbitrary algebraic datatypes [12].

We should note that the well-known concept of Reynolds parametricity

in programming languages [18] is neither weaker nor stronger than the concept
we are using. In particular, TUF is Reynolds parametric. See [12].

3 Purification and Non-deterministic Nelson-Oppen

In the untyped setting, to purify a query consisting of mixed formulas is to
transform it into an equisatisfiable query consisting of pure formulas. The trans-
formation iteratively replaces a pure subterm t in a mixed formula with a fresh
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proxy variable x, and adds the pure definitional equality x = t to the query.
For example, purifying the one-formula query {1 + f(x) = f(1 + f(x))} results
in the query {y = f(x), z = 1 + y, u = f(z), z = u} that contains two pure
UF -equalities, one pure arithmetical equality, and one equality between vari-
ables, which is a pure formula in any theory. (For ΣUF-terms, we use the familiar
notations f(x) or f x instead of the syntactically correct f@x.) The essence of
Nelson-Oppen cooperation is in giving each theory solver the part of the purified
query that it understands and then proceed with the solvers deducing in turn
new equalities between variables and letting the other solvers know about them.

Types complicate purification, exposing the pertinence of cardinality con-
straints. The typed version of the example above would have {yInt = f Int⇒Int xInt,
uInt = f Int⇒Int zInt} as a pure query to pass to the solver for uninterpreted func-
tions. But this query is not pure since the type Int is foreign to the theory TUF. As
a way out, we can create the ‘type-abstracted modification {yα = fα⇒α xα, uα =
fα⇒α zα}, which is a pure TUF-query; however, while being sound, this transfor-
mation may compromise completeness. Take the example

Φ1 : distinct(fst xInt×Int, snd yInt×Int, fst zInt×Int)
Φ2 : distinct(fst xBit×Bit, snd yBit×Bit, fst zBit×Bit) (1)
Φ : distinct(fst xα×β1 , snd yβ2×α, fst zα×β3)

where distinct(x1, . . . , xn) denotes the query consisting of all disequalities xi = xj

and Bit is a two-element type belonging to some bitvector structure TBV. The T×-
query Φ is the best pure approximation for both Φ1 and Φ2. It is satisfiable, and
so is the (T×+TInt)-query Φ1, but the (T×+TBV)-query Φ2 is not satisfiable. Thus,
to make a T×-solver properly deal with Φ2, we should give it the abstraction Φ
together with the cardinality constraint α

.= 2.

3.1 Solving Semipure Queries

Let us now repeat the above in general terms. Suppose Σ = Σ1 + · · · + Σn is a
sum of pairwise disjoint signatures Σi = 〈Oi | Ki〉 and T = T1 + · · · + Tn is the
corresponding sum of theories. Recall that a Σ-term is i-pure if it is a Σi-term.
Ignoring “impurity” at the type level, define a Σ-term to be i-semipure if it
can be generated using only constants from Ki. Also, let strictly i-semipure

terms be those that are i-semipure and have no occurrences of logical constants.
For example, the queries Φ1 and Φ2 above are semipure, while Φ is pure.

Every i-semipure term t has the best pure abstraction tpure defined to
be the most general abstraction of t with respect to the signature Σi. Thus, for
every semipure query Φ there exists an essentially unique pure abstraction Φpure.
For example, Φpure

1 = Φpure
2 = Φ, where the queries are from (1).

Note that Σ-terms without occurrences of non-logical constants are i-semipure
for every i. For such a term t, we define tpure to be the TEq-pure abstraction of
t. For example, (xInt = yInt ∧ uInt×Int = vInt×Int)pure = (xα = yα ∧ uβ = vβ).

If the query Φ is semipure and θ is a type instantiation such that θ(Φpure) = Φ,
denote by Φcard the set of cardinality constraints α

.= n, where α ∈ dom(θ) and
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θ(α) is a finite type of cardinality n. One can show that an i-semipure query Φ
is T -satisfiable if and only if Φpure ∪ Φcard is Ti-satisfiable [12]. Hence, a strong
solver for i-pure queries suffices to solve i-semipure queries.

3.2 Purification

Let T and T1, . . . , Tn be as above. Given any input T -query, we can purify
it by introducing proxy variables and definitional equalities and so obtain an
equisatisfiable T -query, say Φ, that contains only semipure formulas. In fact, we
can obtain Φ such that every formula in it is either a propositional clause or has
one of the following definitional forms:

(A) p ⇔ (x = y) (B) p ⇔ φ (C) x = t

where (i) p, x, y are variables, φ is a strictly semipure literal, and t is a strictly
semipure term; (ii) every variable occurs as the left-hand side in at most one
definitional form; (iii) no (propositional) variable that occurs in propositional
clauses of Φ can occur in the right-hand side of any definitional form. This
is proved in [12] under the assumption that non-logical constants do not take
arguments of boolean type.3

Partition now Φ into subsets Φ�, Φ�, Φ1, . . . , Φn, where Φ� contains the propo-
sitional clauses in Φ, Φ� contains definitional forms (A), and each Φi contains the
definitional forms (B) and (C) whose right-hand sides φ, t are strictly i-semipure.
Note that Φ� is i-pure for every i, and Φ� is i-semipure for every i.

Example 1. Purifying the formula f(x) = x ∧ f(2x − f(x)) > x produces Φ� =
{p, q}, Φ� = {p ⇔ y = x}, ΦUF = {y = f(x), u = f(z)}, ΦInt = {z = 2x − y, q ⇔
u > x}. For readability we omit type superscripts on variables, but see Figure 4
below where this example can be seen in its full typed glory.

3.3 Nelson-Oppen

Let Φ = Φ� ∪ Φ� ∪ Φ1 ∪ · · · ∪ Φn be as above and let us call a variable shared

if it occurs in at least two of the queries Φ�, Φ�, Φ1, . . . , Φn. For a set V of vari-
ables, define an arrangement on V to be a consistent query that for every two
variables x, y ∈ V of the same type contains either x = y or x = y. Partitioning
V into subsets V σ according to the types of variables, we see that an arrange-
ment determines and is determined by a set of equivalence relations on each
class V σ.

The following result is a slightly more general version of (and easily derived
from) Theorem 1 of [12]. It is the basis of the non-deterministic Nelson-Oppen
procedure in the style of Tinelli-Harandi [19], but for parametric theories.

3 This assumption is hardly a restriction since we have the polymorphic if-then-else
constant ite handy in ΣEq. Bringing the input query to the desired equisatifiable
form Φ also requires that all occurrences of ite be compiled away by replacing z =
ite(p, x, y) with the equivalent (p ⊃ z = x) ∧ (p̄ ⊃ z = y).
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Theorem 1. Suppose each of the theories T1, . . . , Tn is either TUF or is paramet-
ric. Let M be an assignment4 to shared propositional variables and let Δ be an
arrangement of all remaining shared variables. Then: Φ∪Δ∪M is T -satisfiable
if and only if (with the convention that T� stands for TEq)

– Φ� ∪ M is satisfiable;
– (Φi ∪ Δ)pure ∪ Φcard

i ∪ M is Ti-satisfiable, for every i ∈ {�, 1, . . . , n}.

4 DPLL with Conflict Analysis

We define a transition system dpll that models the operation of a DPLL-style
SAT solver, including conflict analysis. In Section 5 it will be extended with rules
for Nelson-Oppen cooperation of multiple theories.

The only parameter of dpll is a finite set of propositional literals L, closed
under negation. A dpll state is a triple 〈Ψ, M, C〉, where: (1) Ψ is a set of
clauses over L (2) M is a checkpointed sequence of literals in L, meaning that
each element of M is either a literal or a special checkpoint symbol �, (3) C is
either a subset of L or a special symbol no cflct.

The “input” to dpll is an arbitrary set of clauses Ψinit, modeled as an initial
state in which Ψ = Ψinit, M = [ ], and C = no cflct. The rules describing the
state-to-state transitions are given in Figure 2. The rules have the guarded as-
signment form: above the line is the condition that enables the rule, below the
line is the update to system variables Ψ, M, C.

The notation used in the rules is defined as follows. The negation of a literal
l is l̄. The relation l ≺ l′ means that an occurrence of l precedes an occurrence
of l′ in M . Note that M can be written uniquely in the form M = M 〈0〉 +
� + M 〈1〉 + � + · · · + � + M 〈d〉, where + denotes sequence concatenation and
� does not occur in any M 〈i〉. The superscripts indicate “decision levels” and
M [m] = M 〈0〉 + � + · · · + � + M 〈m〉 is the prefix of M up to decision level m.
A literal can occur at most once in M ; we write level l = i if l occurs in M 〈i〉.
Finally, the number k occurring in the rules is an arbitrary non-negative integer.

An example run of dpll is given in Figure 3. The correctness of the system
is expressed by the following theorem, proved in the appendix.

Theorem 2 (Correctness). All runs of dpll are finite. If, initialized with the
set of clauses Ψinit, dpll terminates in the state 〈Ψ, M, C〉, then: (a) C = no cflct
or C = ∅; (b) If C = ∅ then Ψinit is unsatisfiable; (c) If C = no cflct, then M
is a model for Ψinit.

By restricting the set of behaviors of nodpll, we can obtain more accurate mod-
els of modern SAT solvers. Let Explain uip be the rule obtained by strengthening
the guard of Explain with the conditions ∀l′ ∈ C. l′ � l and ∃l′ ∈ C. level l′ =
level l that force the explanation sequence to find the first “unique implication
point” [14] and stop when it is has been found. Consider the strategy
4 We view assignments as sets of literals; e.g. {p̄, q, r̄} is the assignment that maps p, r

to false and q to true.
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Decide
l ∈ L l, l /∈ M

M := M + � + l

UnitPropag
l ∨ l1 ∨ · · · ∨ lk ∈ Ψ l1, . . . , lk ∈ M l, l /∈ M

M := M + l

Conflict
C = no cflct l1 ∨ · · · ∨ lk ∈ Ψ l1, . . . , lk ∈ M

C := {l1, . . . , lk}

Explain
l ∈ C l ∨ l1 ∨ · · · ∨ lk ∈ Ψ l1, . . . , lk ≺ l

C := C ∪ {l1, . . . , lk} � {l}

Learn
C = {l1, . . . , lk} l1 ∨ · · · ∨ lk /∈ Ψ

Ψ := Ψ ∪ {l1 ∨ · · · ∨ lk}

BackJump
C = {l, l1, . . . , lk} l ∨ l1 ∨ · · · ∨ lk ∈ Ψ

level l > m ≥ level li
(i = 1, . . . , k)

C := no cflct M := M [m] + l

Fig. 2. Rules of dpll

(((Conflict ; Explain uip∗ ; [Learn ; BackJump]) ‖ UnitPropag)∗ ; [Decide])∗ (2)

where ‖ denotes the non-deterministic choice, α∗ means “apply α as long as
possible”, and [α] means “apply α once if possible”. Note that the rule Conflict is
triggered by a clause all of whose literals are asserted false in M , and UnitPropag
is triggered by a clause in which all but one literal is asserted false in M . To turn
(2) into a deterministic algorithm, one must specify the search for the trigger
clause. This is what the “two-watched-literals” scheme is for; it ensures that
trigger clauses are quickly found after each Decide step. When Decide is to be
applied, the choice of the decision literal is based on some heuristics, the most
popular being VSIDS of [14]. As for the “non-chronological backtracking” in
BackJump, the backjump level m is normally taken to be the minimum possible,
i.e., the largest of the numbers level li (i = 1, . . . , k). With the exception of
restarts and clause forgetting (easily modeled, harder to tune; see Figure 6), the
above gives a rather complete top-level picture of Chaff [14]. One can also prove
that for the strategy (2) the guard of Learn is automatically satisfied, justifying
the fact that the implementations do not perform this expensive check.

The top-level MiniSAT [11] looks almost the same; we only need to replace
Explain uip∗ in (2) with the sequence Explain uip∗ ; Explain min∗, where the con-
flict clause-minimizing rule Explain min is obtained by strengthening the guard
of Explain with the condition l1, . . . , lm ∈ C.
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〈Ψ, [ ], no cflct〉 Decide−−−→ 〈Ψ, �1, no cflct〉 UnitPropag−−−−−−→
〈Ψ, �12, no cflct〉 Decide−−−→ 〈Ψ, �12�3, no cflct〉 UnitPropag−−−−−−→

〈Ψ, �12�34, no cflct〉 Decide−−−→ 〈Ψ, �12�34�5, no cflct〉 UnitPropag−−−−−−→
〈Ψ, �12�34�56, no cflct〉 Conflict−−−−→ 〈Ψ, �12�34�56, {2, 5, 6}〉 Explain−−−−→
〈Ψ, �12�34�56, {2, 5}〉 Learn−−−→ 〈Ψ ′, �12�34�56, {2, 5}〉 BackJump−−−−−→

〈Ψ ′, �125̄, no cflct〉 Decide−−−→ 〈Ψ ′, �125̄�3, no cflct〉 UnitPropag−−−−−−→
〈Ψ ′, �125̄�34, no cflct〉 Decide−−−→ 〈Ψ ′, �125̄�34�6̄, no cflct〉

Fig. 3. A run of dpll. The initial set of clauses Ψ = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6, 2̄ ∨ 5̄ ∨ 6̄} is
taken from [16]. The Learn move changes Ψ into Ψ ′ = Ψ ∪{2̄∨ 5̄}. The BackJump move
goes from decision level 3 to decision level 1. The final assignment satisfies Ψ .

5 The Combined Solver

In this section, we define of our Nelson-Oppen-with-DPLL transition system
nodpll, state its correctness results, and discuss some features and extensions.
The system can adequately express important design decisions and allows a great
deal of freedom for implementation.

The parameters of nodpll are pairwise disjoint theories T1, . . . , Tn. The “in-
put” to nodpll is a (T1+· · ·+Tn)-query Φ, purified into Φ�∪Φ�∪Φ1∪· · ·∪Φn as
in Section 3. Assume that all variables occurring in these formulas have distinct
names and let vars(Θ) denote the set of names of variables in Θ.

5.1 State, Rules, and Initialization

Let I = {�,�, 1, . . . , n}. The state variables of nodpll are the following:

– Shared variable sets Vi for i ∈ I. These are sets of variable names, not
necessarily disjoint. For every i ∈ I define (paraphrasing [5]) the set Li of
interface literals to consist of variables in Vi ∩ V� and their negations,
and also equalities of the form x = y, where x, y ∈ Vi � V�.

– Local constraints Ψi for i ∈ I. Here, Ψ� is a set of propositional clauses
and Ψi for i ∈ {�, 1, . . . , n} is a set of (pure) Ti-formulas and cardinality
constraints. We require that vars(Ψ�) ⊆ V� and that vars(Ψi)∩vars(Ψj) ⊆
Vi ∩ Vj ∩ V� for distinct i, j = �.

– Local stacks (checkpointed sequences) Mi for i ∈ I. Any element of Mi

is either � or a labeled literal—a pair 〈l, j〉, where l ∈ Li and j ∈ I.
– The conflict C—either a set of labeled literals or a special symbol no cflct.

The input query Φ defines the initial state sΦ
init, in which: Ψ� = Φ�; Ψi =

Φpure
i ∪ Φcard

i for i = �; Mi = [ ] for every i; C = no cflct; V� = vars(Φ�);
Vi =

⋃
j �=i vars(Φi) ∩ vars(Φj) for i = �,�; and V� = (vars(Φ�) ∩ vars(Φ�)) ∪⋃

i�=�(Vi � V�). An example is given in Figure 4.
The transitions of nodpll are defined by the rules in Figure 5. The following

two paragraphs explain the additional notation used in these rules.
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(a) Φ = {f Int⇒Int(xInt) = xInt, f Int⇒Int(2xInt − f Int⇒Int(xInt)) > xInt}

(b)
Φ� = {pBool, qBool} ΦInt = {zInt = 2xInt − yInt, qBool ⇔ uInt > xInt}
Φ� = {pBool ⇔ (yInt = xInt)} ΦUF = {yInt = f Int⇒Int(xInt), uInt = f Int⇒Int(zInt)}

(c)
Ψ� = {pBool, qBool} ΨInt = {zInt = 2xInt − yInt, qBool ⇔ uInt > xInt}
Ψ� = {pBool ⇔ (yα = xα)} ΨUF = {yβ = fβ⇒β(xβ), uβ = fβ⇒β(zβ)}

Fig. 4. Initialization of nodpll. (a) the input query Φ from Example 1, (b) the result
of purifying Φ, (c) generated local constraints for nodpll. The shared variable sets are
V� = {p, q}, VUF = {x, y, z, u}, and VInt = {x, y, z, u, q}. Note that a variable of Φ, say
xInt, has different “identities” in the pure queries Ψi: xα in Φ�, xβ in ΨUF, and xInt in
ΨInt. They all have the same name, but different types.

We write C	 for the set of (unlabeled) literals occurring in C. We write
l ∈ Mi to mean that 〈l, j〉 ∈ Mi holds for some j. For i = �,�, the symbol
|=i denotes entailment modulo Ti; |=� is propositional entailment, and |=� is
entailment modulo TEq. Note that all literals occurring in the rules contain un-
typed (shared) variables and so there is an abuse of notation when we write
Ψi, l1, . . . , lk |=i l in the rule Explaini. Of course, this entailment should be un-
derstood as Ψi, l

′
1, . . . , l

′
k |=i l′ where each primed literal is obtained by replacing

the untyped variables occurring in it with the equally named typed variable of
Ψi. (Recall that the variables of Ψi have the same names as variables of Φi, but
possibly more general types.) The same convention is used in the rules Inferi and
Conflicti.

It is easy to see that all local stacks have the same number of occurrences of
�. Thus, each Mi can be written as Mi = M

〈0〉
i +�+M

〈1〉
i +�+ · · ·+�+M

〈d〉
i ,

where d is the current decision level and � does not occur in any M
〈k〉
i .

Note that some of the sequences M
〈k〉
i may be empty; however, M

〈k〉
Bool is non-

empty for 1 ≤ k ≤ d and its first element is called the kth decision literal.
The rule Explain uses the notation 〈l, j〉 ≺Mi 〈l′, j′〉; by definition, this means
that both labeled literals occur in Mi and that the occurrence of 〈l, j〉 precedes
the occurrence of 〈l′, j′〉. For correctness of this definition, we need to know that
in any local stack, any literal can occur at most once. This invariant is proved
in the appendix. Finally, the function level used in the BackJump rule is defined
only for literals that occur in M�; we have level l = k if l occurs in M

〈k〉
�

.
This completes the definition of the system nodpll. As with dpll, to check

the satisfiability of a formula Φ, we can start with the state sΦ
init and apply the

rules of nodpll in arbitrary order; if we end up with a final state in which
C = no cflct, then Φ is satisfiable; otherwise, the final state will have C = ∅ and
Φ is unsatisfiable.

Example 2. If nodpll is initialized with Ψ�, Ψ�, ΨUF, ΨInt from Figure 4, the
first 13 steps could be (1) Infer�, (2) Infer�, (3) LitDispatch�, (4) LitDispatchInt,
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Decide
l ∈ L l, l̄ /∈ M

M := M + � + 〈l, 〉 Mi := Mi + � (all i �= )

Inferi

l ∈ Li l, l̄ /∈ Mi Ψi, Mi |=i l

Mi := Mi + 〈l, i〉

LitDispatchi

(i �= )
l ∈ Li 〈l, j〉 ∈ M l /∈ Mi

Mi := Mi + 〈l, j〉

EqDispatchi

(i �= , )
x, y ∈ Vi 〈x = y, j〉 ∈ M x = y /∈ Mi

Mi := Mi + 〈x = y, j〉

LitPropagi

(i �= )
l ∈ L 〈l, i〉 ∈ Mi l, l̄ /∈ M

M := M + 〈l, i〉

EqPropagi

(i �= , )
x, y ∈ V 〈x = y, i〉 ∈ Mi x = y /∈ M

M := M + 〈x = y, i〉

Conflicti

C = no cflct 〈l1, i1〉, . . . , 〈lk, ik〉 ∈ Mi Ψi, l1, . . . , lk |=i false

C := {〈l1, i1〉, . . . , 〈lk, ik〉}

Explaini

〈l, i〉 ∈ C 〈l1, i1〉, . . . , 〈lk, ik〉 ≺Mi 〈l, i〉 Ψi, l1, . . . , lk |=i l

C := C ∪ {〈l1, i1〉, . . . , 〈lk, ik〉} � {〈l, i〉}

Learn
C� = {l1, . . . , lk} C� ⊆ L l1 ∨ · · · ∨ lk /∈ Ψ

Ψ := Ψ ∪ {l1 ∨ · · · ∨ lk}

BackJump
C� = {l, l1, . . . , lk} l ∨ l1 ∨ · · · ∨ lk ∈ Ψ

level l > m ≥ level li
(i = 1, . . . , k)

C := no cflct M := M
[m] + 〈l, 〉 Mi := M

[m]
i (all i �= )

Fig. 5. Rules of nodpll

(5) Infer�, (6) EqDispatchInt, (7) InferInt, (8) EqPropagInt, (9) EqDispatchUF,
(10) EqDispatchUF, (11) InferUF, (12) EqPropagUF, (13) EqDispatchInt, with these
rules modifying the local stacks as follows:

M� : [ ]
(1)−→ [ p ]

(2)−→ [p, q ]

M� : [ ]
(3)−→ [p]

(5)−→ [p, y = x ]
(8)−→ [p, y = x, z = x]

(12)−→ [p, y = x, z = x, u = y]

MUF : [ ]
(9)−→ [y = x]

(10)−→ [y = x, z = x]
(11)−→ [y = x, z = x, u = y ]

MInt : [ ]
(4)−→ [q]

(6)−→ [q, y = x]
(7)−→ [q, y = x, z = x ]

(13)−→ [q, y = x, z = x, u = y]

We omit the labels in labeled literals; the highlighted occurrence of each lit-
eral indicates its label in all stacks. The execution terminates in 6 more steps
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Forget
C = no cflct φ ∈ Ψ� Ψ� � {φ} |= φ

Ψ� := Ψ� − {φ}

Restart
C = no cflct

Mi := M
[0]
i (all i)

ThLearni

l1, . . . , lk ∈ L� Ψi |=i l1 ∨ · · · ∨ lk

Ψ� = Ψ� ∪ {l1 ∨ · · · ∨ lk}

Fig. 6. Additional rules for nodpll

ConflictInt, ExplainUF, ExplainInt, Explain
�
, Explain

�
,Explain

�
that transform C as

follows: no cflct → {q, y = u} → {q, z = x} → {q, y = x} → {q, p} → {q} → ∅.
An imlementation of nodpll would require theory solvers S�,S�,S1, . . . ,Sn.

Each solver Si would be responsible for maintaining its local stack Mi, local con-
straint set Ψi, and for the implementation of the rules Inferi, LitPropagi, EqPropagi,
Conflicti, Explaini, BackJump. The SAT solver S� would additionally implement
the rules Decide, LitDispatchi, Learn; and the pure equality solver S� would ad-
ditionally implement the rules EqDispatchi. In addition, a central controller C
would be needed to manage the global conflict set C. With a little effort to en-
sure that explanations from theory solvers are expressed in terms of SAT literals,
the conflict set could alternatively be handled by the SAT solver.

5.2 Correctness

A labeled literal may occur in more than one local stack. As local stacks grow
and shrink during a run of nodpll, the same labeled literal may become created
(by rules Decide, Infer, or BackJump), multiply its presence in local stacks (the
dispatch and propagation rules), then partially or entirely disappear from the
stacks (rule BackJump), then become created again etc. This intricate dynamics
makes nodpll significantly more complex than dpll, but the basic correctness
properties still hold.

Theorem 3 (Termination). Every run of nodpll is finite and ends in a state
where C = no cflct or C = ∅.

Theorem 4 (Soundness). If a final state with C = ∅ is reachable, then the
input query is T -unsatisfiable.

Completeness results for nodpll are derived from Theorem 1. Note that The-
orem 1 immediately implies a complete decision procedure: enumerate all as-
signments M to shared propositional variables and all arrangements Δ for other
shared variables and see if there is a pair M, Δ that is consistent with all lo-
cal constraints Ψi. Instead of this inefficient blind search, nodpll progressively
builds M as M� and Δ as the set of all equalities implied by Ψ�∪M�. Thus, when
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an execution of nodpll started at sΦ
init reaches a final state where C = no cflct,

if we can prove that the accumulated M and Δ are consistent with the local
constraints, it would follow that Φ is satisfiable. However, if a participating the-
ory Ti is not convex, it may happen that Ψi implies x = y ∨ u = v, while neither
x = y nor u = v is implied by any local constraints; thus, Δ contains x = y and
u = v and so is not consistent with Ψi. It is well known that convexity guar-
antees completeness for the original basic Nelson-Oppen cooperation algorithm
[15], and case (i) of Theorem 5 is the analogous result for nodpll. Complete-
ness can also be achieved by proxying all equalities between shared variables
with fresh propositional variables ([5], see Section 5.6 below), leaving it to the
SAT solver to find the arrangement of shared variables by purely boolean search.
This result is covered by case (ii) of Theorem 5.

Theorem 5 (Completeness). Suppose each of the theories T1, . . . , Tn is either
TUF or is parametric. Suppose a final state with C = no cflct is reachable from
the initial state generated by the input query Φ = Φ�∪Φ�∪Φ1 ∪· · ·∪Φn. Suppose
also that one of the following conditions holds:

(i) Ti is convex and Φcard
i = ∅, for all i ∈ {1, . . . , n};

(ii) for every pair x, y of shared variables of the same type, Φ� contains a defin-
itional form p ⇔ (x = y).

Then Φ is T -satisfiable.

Theorems 3, 4 and 5 are proved in the appendix.

5.3 Strengthening Propositional Rules

Clearly, dpll is a subsystem of nodpll, but its rules UnitPropag, Conflict and
Explain are less permissive than the corresponding rules Infer�, Conflict� and
Explain

� of nodpll. If we change these three rules of nodpll with the equally
named rules in Figure 7, then the correspondence would be exact. This change
would not affect nodpll in any significant way. In particular, the proof of cor-
rectness properties of nodpll given in the appendix would apply verbatim to
the modified system.

5.4 Why Are the Literals Labeled?

Every literal that gets added to any of the local stacks is a logical consequence
of the decision literals and the local constraints Ψi. When a conflict is reached,
we need to identify a subset of decision literals that is sufficient for the conflict.
The “explanation” mechanism serves this purpose; starting with a conflicting set
of literals, it picks a non-decision literal from the set, detects the inference step
that created it, and replaces the literal with a subset of the local stack that was
used by the inference step. The result is a new conflicting set of literals that is
in a precise sense “older”, so that repeating the literal explanation process will
terminate (with a conflicting set of decision literals).
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Infer�
l ∈ L� l, l /∈ M� l ∨ l1 ∨ · · · ∨ lk ∈ Ψ l1, . . . , lk ∈ M�

M� := M� + 〈l,�〉

Conflict�
C = no cflct 〈l1, i1〉, . . . , 〈lk, ik〉 ∈ M� l1 ∨ · · · ∨ lk ∈ Ψ�

C := {〈l1, i1〉, . . . , 〈lk, ik〉}

Explain
�

〈l,�〉 ∈ C 〈l1, i1〉, . . . , 〈lk, ik〉 ≺M�
〈l,�〉 l ∨ l1 ∨ · · · ∨ lk ∈ Ψ�

C := C ∪ {〈l1, i1〉, . . . , 〈lk, ik〉} � {〈l,�〉}

Fig. 7. Rules of dpll within nodpll

Detecting the inference step that created a particular literal is the main pur-
pose of labels: the label in a labeled literal simply signifies the theory responsible
for its derivation. Without labels, the explanation process would be too ambigu-
ous and potentially circular—the phenomenon termed “too new explanations”
in [16]. As an illustration, consider the five-step execution of nodpll in Fig-
ure 8, where we indicate only the changes of local stacks M�, M1, M2, the other
parts of the nodpll state being unaffected. We assume that l̄ ∨ l′ ∈ Ψ� and
Ψ2, l

′ |=2 l—the facts responsible for the Infer� and Infer2 steps.

M� : [ ]
(2)−→ [l]

(3)−→ [l, l′]

M1 : [ ]
(1)−→ [l]

M2 : [ ]
(4)−→ [l′]

(5)−→ [l′, l]

M� : [ ]
(2)−→ [〈l, 1〉] (3)−→ [〈l, 1〉, 〈l′,�〉]

M1 : [ ]
(1)−→ [〈l, 1〉]

M2 : [ ]
(4)−→ [〈l′,�〉] (5)−→ [〈l′,�〉, 〈l, 2〉]

Fig. 8. A five-step run: (1) Infer1, (2) LitPropag1, (3) Infer�, (4) LitDispatch2, (5) Infer2

Suppose that, as shown on the left in Figure 8, we use non-labeled literals in
the local stacks. Assume that sometime in the future a conflict arises, with the
conflict set that contains l but not l′. Say, C = {l} ∪ D. Then Explain2 applies
and changes C to {l′} ∪ D. But then Explain

�
applies and changes C back to

{l} ∪ D. So the system can repeat explaining l and l′ with each other forever.
The same situation, but with labeled literals, is shown on the right in Figure 8:

The conflict set C is now {〈l, 2〉} ∪ D. It becomes {〈l′,�〉} ∪ D after Explain2,
and then becomes {〈l, 1〉} ∪ D after Explain

�. At this point, we cannot explain
〈l, 1〉 with 〈l′,�〉, and this prevents the circularity that was possible when labels
were not used. Instead, rule Explain1 will have to explain 〈l, 1〉 with the (in this
case, empty) set of literals that were used in the Infer1 step.

5.5 Basic Extensions

The system nodpll can be extended with new rules to capture secondary fea-
tures, often without significantly complicating correctness proofs.
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The rules Forget Restart, and ThLearn in Figure 6 are used in practice to
improve the boolean search. Reasonably restricting their use to preserve termi-
nation, they can be safely added to the basic nodpll. This has been addressed
in [16].

Extending nodpll with the rule ThLearn makes it possible to propagate dis-
juncions of shared equalities; one can prove, by an argument that goes back
to [15], that with this rule the system becomes complete even for non-convex
theories.

nodpll keeps the variable and constraint sets Vi, Ψi constant, except for Ψ�,
which grows with each Learn or ThLearn step and shrinks with Forget or Restart.
However, it is useful to also have rules that modify Vi and/or Ψi. A simple rule
that replaces Ψi with an equisatifiable Ψ ′

i that may even use fresh variables [7,16]
would allow us to generate (x /∈ u ∧ x ∈ v) ∨ (x ∈ u ∧ x /∈ v) when u = v (in set
theory) and u = 3x − 1 ∧ v = 2x + 1 when 2u + 3y = 1 (in integer arithmetic),
where in both cases x is fresh. Adding new variables (proxies of theory facts)
to V� is the essence of “splitting on demand” [3]; together with the above Ψi-
modifying rule and ThLearn, it models Extended T-Learn of [3]. Termination is
an issue again, but manageable, as shown in [3].

5.6 Equality Proxying and Propagation

If in Example 2 we had a proxy for y = u, say r ⇔ y = u, with this definional
form put in both ΨInt and ΨUF, and with r in V�, then instead of propagating
y = u from MUF to MInt with EqPropag and EqDispatch in steps 12 and 13, we
can equivalently propagate r with LitPropag and LitDispatch.

The delayed theory combination (DTC) approach of MathSAT [5] takes
this idea to the extreme: at the initialization time, introduce a proxy boolean
variable exy for every equality x = y between shared variables and put the
definitional form exy ⇔ x = y in Ψi for all i such that x, y ∈ Vi. Then let
nodpll communicate equalities only through their boolean proxies exy. This
way we can eliminate the rules EqPropag and EqDispatch altogether.

DTC guarantees completeness even if participating theories are not convex;
see case (ii) of Theorem 5. It is also conceptually simple and so is used in the
theoretical system DPLL(T1, . . . Tn) [3]. The disadvantage is that it requires
addition of a potentially large set of new variables. Yices [10] adopts DTC but
goes a step further and curtails proliferation of proxies exy by introducing them
only “on demand”, thus ignoring provably useless ones. On the other hand, in
Simplify [9] and in CVC Lite [2] propagation of equalities can occur directly,
without creating propositional proxy variables.

Techniques for equality propagation clearly deserve further study and exper-
imentation; nodpll provides a flexible medium to express various approaches.

5.7 Participating Solvers

The requirements on the deductive strength of individual solvers can be read off
from Figure 5 and are exactly as specified by the DPLL(T ) framework [16]. Infer
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needs deduction of new literals from those in the local stack and Explain needs
a subset (preferably small) of the local stack that suffices for that deduction.
Conflict requires detection of inconsistency and an inconsistent (small again)
subset of the local stack. How complete a solver needs to be with respect to Infer
and Conflict depends on the approach taken with equality proxying (and on the
convexity if of the theory) and is discussed in [16].

There is also an explicit requirement to deal with cardinality constraints,
which sometimes can be delegated to the equality module and the SAT solver
by introducing clauses saying that every variable of a specific finite type is equal
to one of (representatives of) elements of that type [10]. This issue has been only
recently raised [12] and is awaiting proper treatment.

6 Conclusion

Gaps between published algorithms and their actual implementations are in-
evitable, but in the SMT area they are often too large. Clarification efforts are
needed and recent work on the DPPL(T ) architecture [16] shows how such ef-
forts pay off with superior implementations. Our involvement in the design of a
comprehensive SMT solver prompted the question of what exactly is “DPLL(T )
with Nelson-Oppen”, but the available answers were lacking in various ways.
With the transition system nodpll presented in this paper, we have identified
an abstraction layer for describing SMT solvers that is fully tractable by formal
analysis and comfortably close to implementation. It gives a precise setting in
which one can see the features of existing systems, search for improvements, and
recount them.
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A Appendix

Proof of Theorem 2

There is little here that is not contained in the proofs of Theorems 3, 4, 5. Yet,
we give a full proof of Theorem 2 because it may be of independent interest and
because it may serve as an introduction to the more involved proofs that follow.

Starting the proof of termination of dpll, define the relation M � M ′ on
checkpointed sequences to mean that either M = M ′, or for some m, M [m] is a
proper prefix of M ′[m]. It is easy to prove that � is a partial order.

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/KrsGGT-RR-06.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/KrsGGT-RR-06.pdf
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Observe that with respect to the ordering �, the rules Decide, UnitPropag and
BackJump increase the M -component of the dpll state, while the other three
rules leave M unchanged. Observe also that the set of all possible values for M
is finite, as a consequence of this easily checked invariant of dpll:

If l occurs in M , then it occurs only once and l̄ does not occur at all. (3)

It follows now that in every run

sinit → s1 → s2 → . . . (4)

of dpll, only finitely many steps are based on Decide, UnitPropag and BackJump.
Since there must be a BackJump between any two occurrences of Conflict (to
restore C = no cflct), the number of occurrences of Conflict in (4) is also finite.
The same is true about Learn because there are only finitely many clauses to
add to Ψ . Thus, the only possibility for (4) to be infinite is that from some
point on, all steps are based on the rule Explain. To see that every sequence of
Explain-based steps must be finite, observe first an easy invariant of dpll:

Every literal in C occurs in M . (5)

Notice then that, leaving M intact, Explain replaces a literal l of C with a set of
literals that precede l in M . Thus, with each application of Explain, the set C
gets smaller in the multised ordering that the ordering of M induces on subsets
of M .5

For the rest of the proof, assume that s	 = 〈Ψ	, M	, C	〉 is a final state ob-
tained by running dpll initialized with the set of clauses Ψinit. It remains to
prove

C	 = no cflct or C	 = ∅; (6)
If C	 = ∅ then Ψinit is unsatisfiable; (7)
If C	 = no cflct, then M	 is a model for Ψinit. (8)

Proof of (6). Assuming the contrary, suppose C	 is a non-empty set and let l
be an arbitrary element of it. By (5), l occurs in M	. Considering a particular
run sinit → s1 → s2 . . . → s	, let sn be the last state in this run such that sn.M
does not contain l. Note that the transition sn → sn+1 must be based on Decide,
UnitPropag, or BackJump, since the other three rules do not update M . Note
that sn+1.M = sn.M + l and also that

sn+1.M is a prefix of si.M for all i > n. (9)

Indeed, if (9) is not true, then in the execution sn+1 → · · · → s	 there must be
a BackJump to the level smaller than the level of l, and it must remove l from
M , contradicting the assumption that l occurs in si.M for all i > n.
5 “M �mul N holds iff you can get from M to N by carrying out the following

procedure one or more times: remove an element x and add a finite number of
elements, all of which are smaller than x.” [1]
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If the transition sn → sn+1 is a UnitPropag or BackJump, then Explain is
applicable to sn+1 and so by (9), Explain is applicable to s	 as well, contradicting
the finality of s	. Thus, our transition must be based on the rule Decide, and
so l is a decision literal (a literal immediately following an occurrence of �) in
s	.M . Since l was by assumption an arbitrary element of C	, it follows that all
elements of C	 are decision literals. As a consequence, the levels of literals in C	
are all distinct. Now, depending on whether the clause

∨
l∈C�

l̄ is in Ψ or not,
either BackJump or Learn applies to s	. In both cases we run into contradiction
with the finality of s	.

Proof of (7). We prove by simultaneous induction that the following two prop-
erties are invariants of dpll. Note that (7) is a special case of (11) when k = 0.

Ψ is equivalent with Ψinit (10)
If C = {l1, . . . , lk}, then Ψinit |= l1 ∨ · · · ∨ lk (11)

Both properties are trivially true for initial states. Assuming s → s′ is a tran-
sition based on a rule R of dpll, and s satisfies (10) and (11), we proceed to
prove that s′ satisfies these conditions too.

If R is not Learn, then s′.Ψ = s.Ψ and so s′ satisfies (10) by induction hypoth-
esis. If R is Learn, the proof that s′ satisfies (10) is a simple application of the
induction hypotheses (10) and (11). Thus, s′ satisfies (10) in all cases.

Now we prove that s′ satisfies (11). The only non-trivial cases are when R
is Conflicti or Explaini, since in all other cases we have s′.C = s.C. When R
is Conflicti, from the guard l1 ∨ · · · ∨ lk ∈ s.Ψ and (10), we obtain the desired
relation Ψinit |= l1 ∨ · · · ∨ lk immediately.

Suppose R is Explaini and let γ be the clause consisting of the inverses of
literals of s.C − {l}. By induction hypothesis, we have Ψinit |= γ ∨ l̄. Also, the
guard of Explain and (10) imply Ψinit |= l1 ∨ · · · ∨ lk ∨ l. The required relation
Ψinit |= γ ∨ l1 ∨ · · · ∨ lk follows immediately.

Proof of (8). From (5) and non-applicability of Decide, it follows that M	 is an
assignment: for every l ∈ L, it contains either l or l̄. By (10), we only need to
prove M	 |= γ for every clause γ = l1 ∨ · · · ∨ lk in Ψ	. But if this were not true,
we would have li ∈ M	 for i = 1, . . . , k and so Conflict would be applicable to
the stat s	, contradicting its finality.

Proof of Theorems 3 and 4

Assuming that the input formula Φ is fixed, we will write sinit for sΦ
init. For any

state s, the union of local constraints s.Ψ�, s.Ψ�, s.Ψ1, . . . , s.Ψn will be denoted
s.Ψ .

Let us start with a set of invariants of nodpll:

All local stacks contain the same number of occurrences of �; (12)
In any local stack, any literal can occur at most once; (13)
If l occurs in M�, then l̄ does not occur in M�. (14)
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All these properties are obviously true in the initial state. Directly examining
all rules, we can easily check that if s → s′ and s satisfies the properties, then
so does s′.

Consider an arbitrary execution sequence (finite or infinite)

π : sinit = s0 → s1 → s2 → . . . (15)

For each state sk in π we will collect the local stacks sk.Mi (i = �,�, 1, . . . , n) into
the global stack sk.O that interleaves them all. The elements of that stack will
be triples 〈l, j, i〉, denoting the occurrence of 〈l, j〉 in Mi. The global stacks sk.O
are defined inductively as follows. First, sinit.O is the empty sequence. Then, if
the transition sk → sk+1 is based on the rule R, let sk+1.O = sk.O if R is Learn,
Conflicti or Explaini; if R is BackJump, let sk+1.O = (sk.O)[m] + 〈l̄,�,�〉; finally,
if R is one of the remaining six rules, let sk+1.O = sk.O + U , where U is given
in the following table:

R : Decide Inferi LitDispatchi EqDispatchi LitPropagi EqPropagi

U : � + 〈pε,�,�〉 〈l, i, i〉 〈pε, j, i〉 〈x = y, j, i〉 〈pε, i,�〉 〈x = y, i,�〉

It follows immediately from the definition that 〈l, i, j〉 occurs in s.O if and
only if 〈l, i〉 occurs in s.Mj . The ordering of occurrence triples in s.O will be
denoted �.

Lemma 1. The following properties hold for all states in π.

(a) If 〈l, j〉 ≺Mi 〈l′, j′〉 then 〈l, j, i〉 � 〈l′, j′, i〉.
(b) If 〈l, i〉 occurs in Mj, then it also occurs in Mi and we have 〈l, i, i〉 � 〈l, i, j〉.

Proof. Straightforward induction. �
Corollary 1. If the rule LitDispatchi or EqDispatchi applies to a reachable state,
then j = i. (The number j here is from the rule as stated in Figure 5.)

Proof. Let s be a state in which LitDispatchi applies. (We omit the discussion
of the entirely analogous EqDispatch case.) Using an execution sequence π that
contains s, we have 〈pε, j, i〉 ∈ s.O and so, by part (b) of Lemma 1, 〈pε, j, j〉 ∈ s.O.
In particular pε ∈ Mj , which together with the guard pε /∈ Mi implies i = j. �
For each state s, define

s.C∗ =
{

no cflct if s.C = no cflct
{〈l, i, i〉 | 〈l, i〉 ∈ s.C} otherwise

Lemma 2. (a) For every reachable state s with s.C = no cflct, all elements of
s.C∗ occur in s.O.

(b) If s is a reachable state and s → s′ is a transition based on the rule Explaini,
then s′.C∗ �mul s.C∗, where �mul is the multiset ordering6 induced by the
relation � on the set of triples occurring in s′.O = s.O.

6 The guard of Explaini implies that neither s.C∗ nor s′.C∗ can be no cflct, so they
can be compared by �mul.
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Proof. First we prove (a) by induction. Let s, s′ be two consecutive states in any
execution sequence π and let the transition s → s′ be based on a rule R. If R is
any of the first six rules in Figure 5, or if R is Learn, then s′.C∗ = s.C∗ and s′.O
contains s.O. If R is BackJump, then s′.C = no cflct. In all these cases, there is
nothing to check. Finally, if R is either Conflicti or Explaini, then s′.O = s.O,
and s′.C −s.C consists of pairs 〈lν , iν〉 that occur in s.Mi. Thus, 〈lν , iν , i〉 occurs
in s.O, and by Lemma 1(a), the new element 〈lν , iν , iν〉 of s.C∗ occurs in s.O
too.

For part (b), we have

s′.C = s.C − {〈l, i〉} + {〈l1, i1〉, . . . , 〈lk, ik〉},

where 〈l1, i1〉, . . . , 〈lk, ik〉 ≺s.Mi 〈l, i〉. Thus, by Lemma 1(a,b),

〈lν , iν , iν〉 � 〈lν , iν , i〉 � 〈l, i, i〉

for ν = 1, . . . , k. �

Proof of Theorem 3. Part 1: Termination. Immediately from the definition of
the global stack, for every nodpll transition s → s′ we have s.O = s′.O if the
transition is based on Learn, Conflict, or Explain, and s.O ≺ s′.O if the transition
is based on any other rule. The ordering ≺ here is that of checkpointed sequences,
introduced in the proof of Theorem 2.

Assume now the theorem is not true and suppose the execution sequence π
in (15) is infinite. From the previous paragraphs, we have

sinit.O � s1.O � s2.O � . . . (16)

The invariant (13) (unique occurrence of literals in local stacks) implies that
the set of all possible tuples s.O where s is a nodpll state is finite. This imme-
diately implies that only finitely many inequalities in (16) can be strict.

Since (16) is thus an eventually constant sequence, the first six rules of nodpll

and BackJump (which all necessarily change s.O) can occur only finitely many
times in π. Since Conflict applies only when C = no cflct and replaces it with a
set, and since only BackJump can make C = no cflct again, we derive that Conflict
also can occur only finitely many times in π. Since there are only finitely many
clauses that Learn might add to Ψ�, this rule also occurs finitely many times.
Therefore, all but finitely many transitions in π are based on Explain.

Now, for some m, we have that all transitions in the subsequence sm →
sm+1 → . . . of π are based on Explain. By Lemma 2, this yields an infinite
descending chain sm.C∗ �mul sm+1.C

∗ �mul . . ., contradicting well-foundedness
of the multiset ordering. This finishes the proof that nodpll is terminating. �
Recall that a decision literal in a state s is any labeled literal 〈l,�〉 that occurs
immediately after � in s.M�. Let Mdec be the subsequence of M� consisting of
all decision literals and let M

[n]
dec be the sequence of the first n decision literals.

We will also need the notation for conflict clauses: if s.C = {l1, . . . , lk}, define
s.Ccls = l1 ∨ · · · ∨ lk, and if s.C = no cflct, define s.Ccls = true. Note that
s.Ccls = false if s.C = ∅.



24 S. Krstić and A. Goel

Lemma 3. The following are invariants of nodpll:

(a) Ψ |=T Ψinit and Ψinit |=T Ψ ;
(b) Ψinit |=T Ccls;
(c) For every i, Ψinit, Mdec |=T Mi.

Proof. The initial state obviously satisfies all three conditions.
We prove (a) and (b) by simultaneous induction. If s → s′ is a transition based

on a rule R of nodpll, and s satisfies (a) and (b), we prove that s′ satisfies these
conditions too.

If R is not Learn, then s′.Ψ = s.Ψ and so s′ satisfies (a) by induction hypoth-
esis. If R is Learn, then s′.Ψ = s.Ψ ∪ {s.Ccls}, so the proof that s′ satisfies (a) is
a simple application of the induction hypotheses (a) and (b).

Now we prove that s′ satisfies (b): Ψinit |=T s′.Ccls. The only non-trivial cases
are when R is Conflicti or Explaini, since in all other cases we have either s′.C =
s.C or s′.C = true (the latter happens if R is BackJump). When R is Conflicti,
the truth of the guard s.Ψi, li, . . . , lk |=i false directly implies s.Ψi |=i s′.Ccls. By
induction hypothesis (a) Ψinit |=T s.Ψi. Combining the two facts proves our goal.

Suppose finally R is Explaini. The clause s′.Ccls is obtained from s.Ccls by
removing the literal l̄ and adding literals l1, . . . , lk. We have s.Ψi, li, . . . , lk |=i l
from the guard of our rule. We also have Ψinit |=T s.Ccls and Ψinit |=T s.Ψi from
the induction hypotheses (b) and (a) respectively. Combining these facts proves
that s′ satisfies (b) too.

Having proved that (a) and (b) hold for all reachable states, it only remains
to prove (c). We will prove that the following generalization of (c) holds for all
reachable states.

For every i and n, Ψinit, M
[n]
dec |=T M

[n]
i . (17)

Again, we reason by induction. If R, the rule used in a transition s → s′, is one
of the first six (from Decide to EqPropag) in Figure 5, it is easy to see by direct
examination that s′ satisfies (17) if s satisfies it. For the next three rules we have
s′Mi = s.Mi (for all i), so there is nothing to prove. Thus, we may assume that
the transition s → s′ is based on BackJump. The only fact needed to prove that
s′ satisfies (17) that is not immediately implied by the induction hypothesis is
Ψinit, M

[m]
dec |=T l̄, where m and l are as in the rule BackJump in Figure 5. This

follows from two facts: (1) Ψinit |=T s.Ccls, and (2) Ψinit, M
[m]
dec |=T l′ for every

l′ ∈ s.C − {l}. Fact (1) is part (b) of our lemma, and fact (2) follows from our
induction hypothesis, because the guard of BackJump implies that l′ ∈ s.M

[m]
�

for every l′ ∈ s.C − {l}. �

Proof of Theorem 3. Part 2: Final States. Suppose s is a final state with s.C =
no cflct and let sinit → s1 → s2 → . . . → s be a run leading to s. Arguing by
contradiction, assume s.C = ∅. Note that

∨
l∈C l̄ ∈ Ψ�, because otherwise Learn

would apply to s. We claim that in this situation all elements of C are decision
literals. Since no two decision literals can have the same level, this claim implies
that BackJump applies to s, which is a contradiction.
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It remains now to prove our claim: every element 〈l, i〉 of s.C is a decision
literal. By Lemma 2 (a), 〈l, i〉 occurs in s.Mj for some j, and then by Lemma 1
(b), 〈l, i〉 ∈ s.Mi. Let n be the largest integer such that 〈l, i, i〉 /∈ sn.O. Let
R be the rule used in the transition sn → sn+1. By definition of the global
stack, we have sn+1.O = sn.O[m] + 〈l, i, i〉 (when R is BackJump), sn+1.O =
sn.O+�+〈l, i, i〉 (when R is Decide), or sn+1.O = sn.O+〈l, i, i〉, in the remaining
cases. The “remaining cases” actually consist only of Inferi; the propagation rules
change the global stack by adding to it triples 〈l′, i′, j′〉 with i′ = j′, and the
same is true of the dispatch rules by Corollary 1. If R is Decide, we are done.
Thus, it only remains to eliminate the possibilities when R is Inferi or BackJump.

Note that in all cases sn+1.O must be a prefix of s.O, because otherwise there
would have been a BackJump to a level smaller than the level of 〈l, i, i〉 in the
execution sn+1 → · · · → s, and it would have removed 〈l, i, i〉 from the global
stack, contradicting the assumption that 〈l, i, i〉 occurs in si.O for all i ≥ n + 1.
Thus, sn+1.Mi is a prefix of s.Mi.

Suppose R is Inferi. The guard of Inferi implies Ψi, l1, . . . , lk |=i l for some
l1, . . . , lk ∈ sn.Mi, Since sn.Mi is a prefix of sn+1.Mi, it is also a prefix of s.Mi.
This implies that Explaini is enabled at s—a contradiction because s is final.

Suppose now R is BackJump: sn+1.O = sn.O[m] + 〈l, i, i〉. We have i = � and
〈l, i〉 = 〈l0,�〉, where sn.C = {〈l0, i0〉, 〈l1, i1〉, . . . , 〈lk, ik〉} and level l0 > k ≥
level lν (ν = 1, . . . k). The levels here are computed with respect to sn. Thus,
l1, . . . , lk ∈ sn.M�. Moreover, since the backjumping level in the transition sn →
sn+1 is m, from the guard of BackJump we have that the literals l1, . . . , lk occur in
(sn.M�)[m] (the level of each is at most m). Since sn+1.M� = sn.M

[m]
�

+ 〈l0,�,�〉
and sn+1.M� is a prefix of s.M�, these literals occur in s.M� as well, and their
occurrences in s.M� precede the occurrence of l0. The guard of BackJump implies
also that the clause l0 ∨ l1 ∨ · · · ∨ lk is in sn.Ψ�, and so it must be in s.Ψ� too (any
transition that changes Ψ� makes it larger). The facts just collected immediately
imply that Explain

� applies to s, which (again) is not possible because s is final. �
Proof of Theorem 4. This is a special case of Lemma 3(b), since Ccls = false when
C = ∅. �

Proof of Theorem 5

By Theorem 1, to prove that Φ is T -satisfiable, it suffices to find an assignment
M to variables occurring in Φ� and an arrangement Δ of other shared variables
in Φ such that

M |= Φ� (18)
(Φi ∪ Δ)pure ∪ Φcard

i ∪ M is Ti-satisfiable for every i ∈ {�, 1, . . . , n} (19)

Since Ψi = Φpure
i ∪ Φcard

i , the condition (19) can be restated as

Ψi ∪ Δ ∪ M is Ti-satisfiable for every i ∈ {�, 1, . . . , n}. (20)
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Now, suppose we are in a final state s of nodpll. We will first see how s
determines M and Δ such that (18) holds. Then we will show that (20) holds if
we assume either of the conditions (i), (ii).

Define M to be s.M�. In s, as in any final state, s.M� contains every variable
in V� or its negation—otherwise the rule Decide would apply. Thus, M can be
seen as a full assignment to propositional variables in V�. Since all variables of
s.Ψ� are in V�, we must have either M |= s.Ψ� or M |= ¬(s.Ψ�). In the latter
case, M would have to falsify some clause of s.Ψ�, so the rule Conflict� would
apply, which is not true since we are in a final state. Thus, M |= s.Ψ�. Since Ψ�
is initially Φ� and can only grow with applications of nodpll rules, the desired
relation M |= Φ� holds.

For the rest of the proof, observe that rules of nodpll do not modify local
constraints other than Ψ�; thus, s.Ψi = Ψi holds for every i = �.

Recall that Φ� consists of formulas of the form p ⇔ (x = y), where p ∈ V�
and x, y are shared variables. Since M = s.M� is an assignment to V�, we have
either p ∈ M , or p̄ ∈ M . In the first case, we must have p ∈ s.M�, and in the
second case, we must have p̄ ∈ s.M�—otherwise, LitDispatch� would apply to s.
(Note that p, p̄ ∈ L�.) Since Ψ� ∪ s.M� is consistent (otherwise, Conflict� would
apply to s), it follows that the set Ψ� ∪ s.M� ∪ M is consistent too. Consider an
arbitrary model of this set and define Δ to be the arrangement of V� determined
by that model. Clearly, (20) holds for i = �.

Arguing by contradiction, assume (20) is not true for some i. This implies
that Ψi ∪ Δi ∪ M is not Ti-satisfiable, where Δi is the subset of Δ containing
the (dis)equalities between variables in Vi. Indeed, if one has a Ti-model for
Ψi ∪ Δi ∪ M , then this model extends to a model of Ψi ∪ Δ ∪ M by interpreting
the non-Vi variables of Δ as arbitrary elements constrained only by equalities
and disequalities of Δ − Δi. (It is easy to argue that such extensions exist.)

Notice that for unsatisfiability of Ψi ∪ Δi ∪ M , propositional literals that
occur in M but not in Ψi are irrelevant. Thus, Ψi ∪ Δi ∪ M i is Ti-unsatisfiable,
where M i is the subsequence of M containing only variables in V�∩Vi and their
negations. Now, every element of M i must also be in Mi, because otherwise the
rule LitDispatch would apply. As a consequence, Ψi ∪Δi ∪Mi is not Ti-satisfiable.

At this point, we have to use our assumptions (i) or (ii).

Case 1: Assume (i) holds. Write Δi = Δ+ ∪ Δ−, where Δ+ and Δ− contain
equalities and disequalities respectively. Then Ψi, Mi, Δ

+ |=i ¬Δ−. For each defi-
nitional form p ⇔ φ in Ψi, either p or p̄ occurs in Mi (because p ∈ V�∩Vi and M is
an assignment to all variables in V�). Obtain Ψ ′

i from Ψi by replacing p ⇔ φ with
φ or ¬φ, depending on whether Mi contains p or ¬p. Clearly, Ψi, Mi |=i Ψ ′

i and
Ψ ′

i , Δ
+ |=i ¬Δ−. Now, Ψ ′

i ∪ Δ+ is a set of Ti-literals (here we use the assumption
that Ψi contains no cardinality constraints) and Δ− is a disjunction of equalities.
Since Ti is convex, we must have Ψ ′

i ∪ Δ+ |=i x = y for some x, y ∈ Vi such that
(x = y) ∈ Δ−. In other words, Ψi, Mi |=i x = y for some x, y such that 〈x, y〉 /∈ δ.
Since Inferi does not apply, we must have (x = y) ∈ Mi. Then, since EqPropagi

does not apply, we must have (x = y) ∈ s.M�. This contradicts consistency of
s.M� ∪ Δ that has already been established, finishing the proof.
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Case 2: Assume (ii) holds. Since Ψi ∪ Δi ∪ Mi is Ti-unsatisfiable, we have
Ψi, Mi |=i ¬Δi, and so Ψi, Mi |=i ¬φ for some φ ∈ Δi. Now, φ is either x = y
or x = y, for some x, y ∈ Vi. By assumption (ii), there is a variable p ∈ V� ∩ Vi

such that p ⇔ (x = y) is in Ψ�. As we already argued, we have either p ∈ Mi

and p ∈ s.M�, or p̄ ∈ Mi and p̄ ∈ s.M�. Assume first p ∈ Mi; then (x = y) ∈ Δ
(by definition of Δ), so φ must be (x = y), so Ψi, Mi |=i ¬p, which implies
Ψi, Mi |=i false and therefore applicability of Conflicti to our final state. This is
a contradiction. In the same way the contradiction is obtained in the remaining
case p̄ ∈ Mi. �
Note that in case (i), the proof relies on the full strength of rules Inferi for
inferring equalities between variables. In case (ii), however, the proof relies only
on the full strength of the rules Conflicti and it would go through even if the
rules Inferi (i = 1, . . . , n) were removed from the system.

Note also that completeness can be proved on the per theory basis, where
different theories satisfy different sufficient conditions for completeness. For ex-
ample, instead of requiring in Theorem 5 that one of the conditions (i), (ii) holds,
it suffices to make these requirements per theory. Precisely, we can change the
last assumption of Theorem 5 to read as follows: for every i ∈ {1, . . . , n}, one of
the following conditions holds:

(i′) Ti is convex and Φcard
i = ∅;

(ii′) for every pair x, y ∈ Vi of shared variables of the same type, Φ� contains a
definitional form p ⇔ (x = y).

The proof above would apply with minimal changes.

Finally, we give an example showing that in case (i) the completeness does
not necessarily hold without the assumption Φcard

i = ∅.

Example 3. Let x1, x2, x3, x4 be variables of type α, and let Φ be the T×-query
consisting of the cardinality constraint α

.= 2 and all constraints 〈xi, xj〉 =
〈xk, xl〉, where (i, j, k, l) is a permutation of (1, 2, 3, 4). It is easy to see that Φ is
satisfiable and that in every model 〈ι, ρ〉 of Φ, three of the variables x1, x2, x3, x4
are mapped by ρ to the same element of ι(α), while the fourth is mapped to the
other element of the two-element set ι(α).

Now suppose we have five variables xi of type α, five disjoint theories Ti and
queries Φi such that the variables occurring in Φi are xj , where j ∈ {1, . . . , 5} �

{i}. Suppose also that each Φi contains the cardinality constraint α
.= 2 and

that—as in the example of T× and Φ above—for every i, the query Φi is Ti-
satisfiable, but that every model requires the four variables in Φi to be mapped
to the two elements of the domain set in a 3:1 fashion (three variables mapped
to the same element, the fourth to a distinct element).

The union of the queries Φ1, . . . , Φ5 is unsatisfiable: there is no partition of a
set of five elements that when restricted to any four-element subset produces a
3:1 partition.
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