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Abstract. The key design challenges in the construction of a SAT-based
relational model finder are described, and novel techniques are proposed
to address them. An efficient model finder must have a mechanism for
specifying partial solutions, an effective symmetry detection and break-
ing scheme, and an economical translation from relational to boolean
logic. These desiderata are addressed with three new techniques: a sym-
metry detection algorithm that works in the presence of partial solutions,
a sparse-matrix representation of relations, and a compact representation
of boolean formulas inspired by boolean expression diagrams and reduced
boolean circuits. The presented techniques have been implemented and
evaluated, with promising results.

1 Introduction

Many computational problems can be expressed declaratively as collections of
constraints, and then solved using a constraint-solving engine. A variety of such
engines have been developed, each tailored for a particular language: resolution
engines for Prolog, Simplex for linear inequalities, SAT solvers for boolean for-
mulas, etc. This paper concerns the design of a general purpose relational engine:
that is, a model finder for a constraint language that combines first order logic
with relational algebra and transitive closure.

A relational engine is well-suited to solving a wide range of problems. For
example,

• Design analysis. A software design, modeled as a state machine over struc-
tured states (expressed as relations), can be checked, within finite bounds, for
preservation of invariants by presenting the engine with a constraint of the
form S ∧¬P , whose solutions are counterexamples satisfying the description
of the system (S) but violating the expected property (P ).

• Code analysis. A procedure can be checked against a declarative specification
using the same method, by translating its code to a relational constraint.

• Test case generation. Unit tests for modules implementing intricate data-
types, such as red-black trees, with complex representation invariants, can
be generated by a relational engine from the invariants.

• Scheduling and planning. For example, given the overall requirements and
prerequisite dependences of a degree program, information about which
terms particular courses are offered in, and a set of courses already taken, a
relational engine can plan a student’s course schedule.
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We have established the feasibility of using a relational engine for design analysis
[1], code analysis [2,3] and test case generation [4] in earlier work. The prototype
tool that we describe in this paper has been applied to design analysis, code
analysis [5], and course scheduling [6]; it is also a mean Sudoku player.

Our earlier work involved the development of the Alloy modeling language
[1] and its analyzer. The Alloy Analyzer was designed for the analysis of soft-
ware models, and attempts to use it as a generic relational engine have been
hampered by its lack of a mechanism for exploiting a priori knowledge about a
problem’s solution. The user provides only a constraint to be solved, and if a
partial solution—or, a partial instance—is available which the obtained solution
should extend, it can be provided only in the form of additional constraints.
Because the solver must essentially rediscover the partial instance from the con-
straints, this strategy does not scale well.

Kodkod is a new tool that, unlike the Alloy Analyzer, is suitable as a generic
relational engine. Kodkod outperforms the Analyzer dramatically on problems
involving partial instances, and, due to improvements in the core technology
that we describe, outperforms Alloy even on the problems for which Alloy was
designed. It also outperforms other SAT-based logic engines (such as Paradox
[7] and MACE [8]) on a variety of TPTP [9] benchmarks.

The underlying technology involves translation from relational to boolean
logic, and the application of an off-the-shelf SAT solver on the resulting boolean
formula. The contributions of this paper are:

• A new symmetry-breaking scheme that works in the presence of partial in-
stances; the inability of Alloy’s scheme to accommodate partial instances
was a key reason for not supporting them.

• A new sparse-matrix representation of relations that is both simpler to im-
plement and better performing than the ‘atomization’ used in Alloy [10].

• A new scheme for detecting opportunities for sharing in the constraint ab-
stract syntax tree inspired by boolean expression diagrams [11] and reduced
boolean circuits [12].

Another major difference between the new tool and Alloy is its implementation
as an API rather than as a standalone application. Alloy can in fact be accessed
as an API, but the interface is string-based and awkward to use. The new tool is
designed to be a plugin component that can easily be incorporated as a backend
of another tool. These considerations, however, while crucial motivations of the
project [13], are not the topic of the present paper.

2 Related Work

A variety of tools have been developed for finding finite models of first order logic
(FOL) formulas [7,8,14,15,16,17,18,19]. Several of these [16,17,18,19] implement
specialized search algorithms for exploring the space of possible interpretations
of a formula. The rest [7,8,14,15] are essentially compilers. Given a FOL formula
and a finite universe of uninterpreted atoms, they construct an equivalent propo-
sitional satisfiability problem and delegate the task of solving it to a SAT solver.
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Most research on model finding has focused on producing high-performance
tools for group-theoretic investigations. LDPP [14], MACE [8], FALCON [18],
and SEM [19] have all been used to solve open problems in abstract algebra. For-
mulation of group-theoretic problems requires only a minimal logic. SEM and
FINDER, for example, work on a quantifier-free many-sorted logic of uninter-
preted functions. MACE and Paradox [7] support quantifiers, but none of these
tools handle relational operators directly, which are indispensable for succinct
description of systems whose state has a graph-like shape (such as networks or
file systems) or for modeling programs with graph-like data structures (such
as red-black trees or binomial heaps). Furthermore, lack of a closure operator,
which cannot be encoded using first order constructs, makes it impossible to
express common reachability constraints.

Nitpick [16] was the first model finder to handle binary relations and transitive
closure in addition to quantifier-free FOL. This made it an attractive choice for
analyzing small problems that involve structured state [20,21]. The usefulness
of Nitpick was, however, limited by its poor scalability and lack of support for
quantifiers and higher-arity relations.

TheAlloylanguageanditsanalyzer[15]addressedboththescalabilityandexpres-
siveness limitationsofNitpick.Theunderlying logic supportsfirstorderquantifiers,
connectives, arbitrary-arity relations, andtransitive closure.Alloyhasbeenapplied
to a wide variety of problems, including the design of an intentional naming scheme
[22], the safety properties of the beam scheduler for a proton therapy machine [23],
code analysis [2,3], test-case generation [4], and network configuration [24].

Alloy’s main deficiency as a general-purpose problem description language
is its lack of support for partial instances. Logic programming languages such
as Prolog [25] and Oz [26] provide mechanisms for taking advantage of partial
knowledge to speed up constraint solving, but they lack quantifiers, relational
operators, and transitive closure. The logic presented in this paper is a superset
of the Alloy language that provides a mechanism for specifying partial instances.
Its accompanying model finder, Kodkod, takes advantage of known information,
scaling much better than the Alloy Analyzer in the presence of partial instances.
Kodkod outperforms the Alloy Analyzer even on the problems without partial
solutions, due to the new translation to propositional satisfiability based on
sparse matrices and a new data structure, Compact Boolean Circuits (CBCs).

Compact Boolean Circuits, described in Section 4.3, are a hybrid between Re-
duced Boolean Circuits (RBCs) [12] and Boolean Expression Diagrams (BEDs)
[11]. Like RBCs, CBCs are a representational form for a quantifier-free logic, and
they restrict variable vertices to the leaves of the graph. Like BEDs, CBCs use
a more extensive set of operators and rules than RBCs to maximize subformula
sharing. CBCs differ from both RBCs and BEDs in that their sharing detection
algorithm is parameterized by a user-controlled variable. In particular, the user
controls the trade-off between the speed of circuit construction and the size of
the resulting circuit by determining the depth d to which syntactically distinct
sub-circuits are checked for semantic equivalence. All three circuit representa-
tions can be straightforwardly converted one to another.



Kodkod: A Relational Model Finder 635

3 Model Finding Basics

A formula in relational logic is a sentence over an alphabet of relational variables.
A model, or an instance, of a formula is a binding of the formula’s free variables
to relational constants which makes the formula true. A relational constant is
a set of tuples drawn from a universe of uninterpreted atoms. An engine that
searches for models of a formula in a finite universe is called a finite model finder
or, simply, a model finder.

3.1 Abstract Syntax

A Kodkod problem (Fig. 1) consists of a universe declaration, a set of relation
declarations, and a formula in which the declared relations appear as free vari-
ables. Each relation declaration specifies the arity of a relational variable and
bounds on its value. The lower bound contains the tuples which the variable’s
value must include in an instance of the formula; the union of all relations’ lower
bounds forms a problem’s partial instance. The upper bound holds the tuples
which the variable’s value may include in an instance. The elements of the tuples
in a constant are drawn from the problem’s universe.

To illustrate, consider the following formulation of the pigeonhole principle—
n pigeons cannot be placed into n − 1 holes with each pigeon having a hole to
itself—for the case of 3 pigeons and 2 holes:

{P1, P2, P3, H1, H2}
Pigeon :1 [{〈P1〉〈P2〉〈P3〉}, {〈P1〉〈P2〉〈P3〉}]
Hole :1 [{〈H1〉〈H2〉}, {〈H1〉〈H2〉}]
nest :2 [{}, {〈P1, H1〉〈P1, H2〉〈P2, H1〉〈P2, H2〉〈P3, H1〉〈P3, H2〉}]
(all p : Pigeon | one p.nest) and
(all h : Hole | one nest.h or no nest.h)

The first line declares a universe of five uninterpreted atoms. We arbitrarily
chose the first three of them to represent pigeons and the last two to represent
holes. Because formulas cannot contain constants, a relational variable v :k [C, C]
with the same upper and lower bound is declared for each k-arity constant C
that needs to be accessed in a problem’s formula. The variables Pigeon and
Hole, for example, serve as handles to the unary constants {〈P1〉〈P2〉〈P3〉} and
{〈H1〉〈H2〉}, which represent the sets of all pigeons and holes respectively. The
variable nest ⊆ Pigeon × Hole encodes the placement of pigeons into holes. Its
value is constrained to be an injection by the problem’s formula.

The syntactic productions other than the universe and relation declarations
define a standard relational logic with transitive closure, first order quantifiers,
and connectives. The closure (̂ ) and transpose (̃ ) operators can only be applied
to binary expressions. Mixed and zero arity expressions are not allowed. The
arity of a relation variable and its declared bounds must match. The arity of the
empty set constant, {}, is polymorphic, making it a valid bound in the context
of any declaration.
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problem := univDecl relDecl∗ formula

univDecl := { atom[, atom]∗ }
relDecl := rel :arity [constant, constant]
varDecl := var : expr

constant := {tuple∗}
tuple := 〈atom[, atom]∗〉

arity := 1 | 2 | 3 | 4 | . . .
atom := identifier
rel := identifier
var := identifier

expr := rel | var | unary | binary | comprehension
unary := unop expr
unop :=˜|ˆ
binary := expr binop expr
binop := + | & | - | . | –>
comprehension := {varDecl || formula}

formula := elementary | composite | quantified
elementary := expr in expr | mult expr
mult := some | no | one
composite := not formula | formula logop formula
logop := and | or
quantified := quantifier varDecl || formula
quantifier := all | some

Fig. 1. Abstract syntax

P : problem → binding → boolean
R : relDecl → binding → boolean
M : formula → binding → boolean
X : expr → binding → constant
binding : (var ∪ rel) → constant

P[[A d1 ... dn F]]b =
R[[d1]]b ∧ ... ∧ R[[dn]]b ∧ M[[F]]b

R[[r : [cL, cU ]]]b = cL ⊆ b(r) ⊆ cU

M[[p in q]]b = X[[p]]b ⊆ X[[q]]b
M[[some p]]b = X[[p]]b ⊃ ∅
M[[one p]]b = |X[[p]]b| = 1
M[[no p]]b = X[[p]]b ⊆ ∅
M[[not F]]b = ¬ M[[F]]b
M[[F and G]]b = M[[F]]b ∧ M[[G]]b
M[[F or G]]b = M[[F]]b ∨ M[[G]]b

M[[all v: p || F]]b =
�

(M[[F]](b⊕v�→X[[p]]b))
M[[some v: p || F]]b =

�
(M[[F]](b⊕v�→X[[p]]b))

X[[p + q]]b = X[[p]]b ∪ X[[q]]b
X[[p & q]]b = X[[p]]b ∩ X[[q]]b
X[[p - q]]b = X[[p]]b \ X[[q]]b
X[[p . q]]b = {〈p1,..., pn−1, q2,..., qm〉 |

〈p1,..., pn〉 ∈ X[[p]]b ∧ 〈q1,..., qm〉 ∈ X[[q]]b
∧ pn = q1}

X[[p –> q]]b = {〈p1,..., pn, q1,..., qm〉 |
〈p1,..., pn〉 ∈ X[[p]]b ∧ 〈q1,..., qm〉 ∈ X[[q]]b}

X[[˜p]]b = {〈p2, p1〉 | 〈p1, p2〉 ∈ X[[p]]b}
X[[ˆp]]b = {〈x, y〉 | ∃ p1,..., pn |

〈x, p1〉, 〈p1, p2〉,..., 〈pn, y〉 ∈ X[[p]]b}
X[[{v: p || F}]]b = {〈x〉 : (X[[p]]b) |

M[[F]](b⊕(v�→x))}
X[[r]]b = b(r)
X[[v]]b = b(v)

Fig. 2. Semantics

3.2 Semantics

The meaning of a problem (Fig. 2) is determined by recursive application of four
meaning functions: P , R, M and X . The functions R and M evaluate relation
declarations and formulas with respect to a binding of variables to constants.
The function P deems a problem true with respect to a given binding if and
only if its declarations and formula are true under that binding. The function
X interprets expressions as sets of tuples. Atoms, tuples, and constants have
their standard set-theoretic interpretations. That is, the meaning of an atom is
its name, the meaning of a tuple is a sequence of atoms, and the meaning of a
constant is a set of tuples.
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4 Analysis

The analysis of a Kodkod problem P involves four steps:

1. Detecting P ’s symmetries.
2. Translating P into a Compact Boolean Circuit, CBC(P ).
3. Computing SBP(P ), a symmetry breaking predicate [27,28] for P .
4. Transforming CBC(P ) ∧ SBP(P ) into conjunctive normal form, CNF(P ).
5. Applying a SAT solver to CNF(P ), and, if CNF(P ) is satisfiable, interpreting

its model as an instance of P .

The first two steps are the focus of this section. The third step is done in a
standard way (e.g. [28]), by computing a simple lex-leader symmetry breaking
predicate for the symmetry classes detected in the first step. The fourth step
is performed using the standard translation from boolean logic to conjunctive
normal form (see, for example, [29]). The last step is delegated to an off-the-shelf
SAT solver, such as zchaff [30] or MiniSat [31].

4.1 Symmetry Detection

Many problems exhibit symmetries. For example, the pigeons in the pigeonhole
problem are symmetric, as are the pigeonholes; if there were a solution with a
particular assignment of pigeons to holes, exchanging two pigeons or two holes
would yield another solution. More formally, we define the symmetries of a prob-
lem as follows.

Definition 1. Let A={a0,. . . ,an} be a universe, D a set of declarations over
A, and F a formula over D. Let l : A → A be a permutation, and define l(t)
to be 〈l(ai0), . . . , l(aik)〉 for all tuples t=〈ai0,...,aik 〉, l(c) to be {l(t)|t ∈ c}
for all constants c ⊆ Ak, etc. The permutation l is a symmetry of the problem
P = (A, D, F ) if and only if, for all bindings B, the binding l(B) : rel → constant
is a model of P , written l(B) |= P , whenever B |= P , and l(B) �|= P whenever
B �|= P . The bindings B and l(B) are said to be isomorphic.

The set of symmetries of P , denoted by Sym(P ), induces an equivalence relation
on the bindings that map the variables declared in D to sets of tuples drawn from
A. Two bindings B and B′ are equivalent if B′ = l(B) for some l ∈ Sym(P ).
Because each l ∈ Sym(P ) maps bindings that are models of P to other models
of P and bindings that do not satisfy P to other non-models, it is sufficient to
test one binding in each equivalence class induced by Sym(P ) to find a model of
P . Isomorph elimination (a.k.a. symmetry breaking), using either a symmetry-
aware model finder on P [18,19,16] or a SAT solver on CNF(P ∧SBP(P )) [7,32],
typically speeds up the model search by orders of magnitude. Many interesting
problems are intractable without symmetry breaking [27,33].

In the case of a standard typed logic such as the Alloy language or SEM’s logic,
symmetry detection in a universe of uninterpreted atoms is straightforward:
Sym(P ) is the set of all permutations that map an atom of A to itself or to
another atom of the same type. Atoms of the same type are interchangeable



638 E. Torlak and D. Jackson

because neither logic provides a means of referring to individual atoms. The
Kodkod logic does, however, so even if it were typed, atoms of the same type
would not necessarily be interchangeable.

Here, for example, is a toy specification of a traffic lights system showing a case
where the conceptual typing of atoms does not partitionA into equivalence classes:

{N, E, G, Y, R}
Green :1 [{〈G〉}, {〈G〉}]
Light :1 [{〈N〉〈E〉}, {〈N〉〈E〉}]
display :2 [{}, {〈N, G〉〈N, Y〉〈N, R〉〈E, G〉〈E, Y〉〈E, R〉}]
(all light: Light | one light.display) and
(one Light.display & Green or no Light.display & Green)

The traffic-system universe consists of five atoms that are conceptually parti-
tioned into two ‘types’: the atoms representing the stop lights at an intersection
(north-south and east-west) and the atoms representing the colors green, yel-
low, and red. The formula constrains each light to display a color and requires
that at most one of the displayed colors be Green. The stop-light atoms form an
equivalence class, but the color atoms do not. In particular, only Y and R are
interchangeable. To see why, consider the following model of the problem:

B = {Green �→{〈G〉}, Light �→{〈N〉〈E〉}, display �→{〈N, Y〉〈E, G〉}}.

Applying the permutations l1 = (N E)(Y R) and l2 = (G Y R)1 to B, we get

l1(B) ={Green �→{〈G〉}, Light �→{〈E〉〈N〉}, display �→{〈E, R〉〈N, G〉}},
l2(B) ={Green �→{〈Y〉}, Light �→{〈N〉〈E〉}, display �→{〈N, R〉〈E, Y〉}}.

The binding l1(B) is a model of the problem, but l2(B) is not because it violates
the constraint {〈G〉} ⊆ Green ⊆ {〈G〉} imposed by the declaration of Green.

The traffic lights example reveals two important properties of declarations
and formulas.2 First, a permutation l is a symmetry of a set of declarations D
if it fixes the constants in D, i.e. if l(c) = c for each c occurring in D. The
permutation l1, for example, is a symmetry of the traffic-lights declarations.
Second, any permutation is a symmetry of a formula. The binding l2(B) is a
model of the traffic-lights formula even though it is not a model of the problem.

These observations lead to a simple criterion for deciding whether a permu-
tation l is a symmetry of a problem: l ∈ Sym(P ) for all P = (A, D, F ) if and
only if l maps each constant that occurs in D to itself.

Theorem 1 (Symmetry Criterion). Let A be the universe of discourse and
D = {r1 :k1 [c1, c2], r2 :k2 [c3, c4], . . . , rm :km [c2m−1, c2m]} a set of declarations
over A. The permutation l : A → A is a symmetry for all problems P and
formulas F such that P = (A, D, F) if and only if l fixes c1, c2, . . . , c2m.
1 Recall that cycle notation for permutations [34] indicates that each element in a pair

of parenthesis is mapped to the one following it, with the last element being mapped
to the first. The elements that are fixed under a permutation are not mentioned, i.e.
(N E)(Y R)=(N E)(Y R)(G).

2 The proofs of all assertions and theorems stated in this section can be found in the
technical report on Kodkod [35], available at http://hdl.handle.net/1721.1/34218.
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Because every relational constant is isomorphic to a graph, Thm. 1 equates the
task of finding Sym(P ) to that of computing the automorphisms of the graphs
that correspond to the constants in D—a problem with no known polynomial
time solution [36]. So, we use the algorithm in Fig. 3 to find a polynomially com-
putable subset of Sym(P ) that is equal to Sym(P ) for many problems, including
the pigeonhole, traffic lights, and all problems in Section 5.

base(A: univDecl, D: relDecl∗)

1 S ← {A}
2 for all r :k [cL, cU ] ∈ D do
3 S ← part(cL, S)
4 S ← part(cU , S)
5 return S

part(c: constant, S: set of sets)

6 S′ ← {}
7 k ← arity(c)
8 C ← {a1 | 〈a1, . . . , ak〉 ∈ c}
9 for all s ∈ S do

10 if s ⊆ C or s ∩ C = ∅
11 thenS′ ← S′ ∪ {s}
12 else S′ ← S′∪{s ∩ C}∪{s\C}
13 if k > 1 then
14 C ← {〈a2, . . . , ak〉 | 〈a1, a2, . . . , ak〉 ∈ c}
15 P ← {s | s ∈ S′ ∧ s ∩ C �= ∅}
16 P ← {}
17 for all p ∈ P do
18 S′ ← S′ \ p

19 while p �= ∅ do
20 x ← choose(p) � pick an atom from p

21 X ← {〈a2, . . . , ak〉 | 〈x, a2, . . . , ak〉 ∈ c}
22 X ← {a | a ∈ p ∧ (〈a〉 × C ) ∩ c = X}
23 p ← p \X
24 S′ ← S′ ∪ {X}
25 P ← P ∪ {X}
26 for all p̄ ∈ P do
27 S′ ← part(p̄, S′)

28 return S′

base({b,c,d,e}, g:2[{},{〈b,c〉〈b,d〉〈e,e〉}])
S = {{b,c,d,e}}
� r = g:2[{},{〈b,c〉〈b,d〉〈e,e〉}]
S part({}, {{b,c,d,e}}) = {{b,c,d,e}}
S part({〈b,c〉〈b,d〉〈e,e〉}, {{b,c,d,e}})
...
part({〈b,c〉〈b,d〉〈e,e〉}, {{b, c, d, e}})

S′ = {}
k = 2
C = {b, e}
� s = {b,c,d,e}

S′ {{b,e}, {c,d}}

C = {〈c〉〈d〉〈e〉}
P = {{b, e}}
P = {}
� p = {b,e}
S′ {{c,d}}

� 1st 2nd

x b e
X {〈c〉〈d〉} {〈e〉}
X {b} {e}
p {e} {}
S′ {{b},{c,d}} {{b},{c,d},{e}}
P {{〈c〉〈d〉}} {{〈c〉〈d〉},{〈e〉}}

� p̄={〈c〉〈d〉} p̄={〈e〉}
S′ {{b},{c,d},{e}} {{b},{c,d},{e}}
return {{b},{c,d},{e}}

Fig. 3. Symmetry detection algorithm and a sample trace. Trace events are horizontally
aligned with the pseudocode. Loops are shown as tables, with a column per iteration.

The intuition behind the algorithm is the observation that constants in most
problem declarations are expressible as unions of products of ‘types’ with zero
or more ‘distinguished’ atoms. For example, the bounds on the variables in the
traffic lights problem can be expressed as Green = T{G}, Light = Tlight, and
display ⊆ Tlight×T{R,Y}∪Tlight×T{G}, where the ‘types’ are Tlight = {N, E} with no
distinguished atoms and Tcolor = T{R,Y} ∪ T{G} = {G, Y, R} with the distinguished
atom G. We call the sets {R, Y}, {G} and {N, E} a base partitioning of the traffic-
lights universe with respect to the problem’s declarations.
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Definition 2. Let A be a universe, c a constant over A, and S = {S1, . . . , Sn}
a set of sets that partition A. S is a base partitioning of A with respect to
c if c can be expressed as a union of products of elements in S ∪ {∅}, i.e.:
∃x ≥ 1 | ∃s1, . . . , sxk ∈ S ∪ {∅} | c =

⋃x−1
j=0 (sjk+1×. . .×sjk+k), where k=arity(c).

The algorithm base finds the coarsest base partitioning for a given universe A
and declarations D. It works by minimally refining the unpartitioned universe,
S = {A}, until each constant in D can be expressed as a union of products of
the computed partitions (lines ??-??). The correctness and local optimality of
base follow by induction from Theorems 2 and 3:

Theorem 2 (Soundness). Let D = {r1 :k1 [c1, c2], . . . , rm :km [c2m−1, c2m]}
be a set of declarations over A and S = {S1, . . . , Sn} a base partitioning of A
with respect to the constants c1, . . . , c2m. If a permutation l : A → A fixes all
Si ∈ S, then it also fixes c1, . . . , c2m.

Theorem 3 (Local Optimality). Let A be the universe of discourse, c a con-
stant over A, and S = {S1, . . . Sn} a set of sets that partition A. Applying part

to c and S will subdivide S into the coarsest S′ = {S′
1, . . . , S

′
m} that is a base

partitioning of A with respect to c.

The former tells us that the set of permutations induced by a base partitioning
for D satisfies the symmetry criterion (Thm. 1), and the latter that each call
to part generates the coarsest base partitioning of A with respect to a given
constant in D. It is also not difficult to see that the worst case running time
of the algorithm is polynomial in the size of D, where |D| = O(K|A|K) with
K = max(k1, . . . , km). In practice, the proportion of time spent on symmetry
detection during analysis is negligible because K is usually small (< 5), and
the algorithm works on a compact, interval tree representation of constants [35],
which reduces the memory overhead exponentially for most problems.

4.2 Sparse-Matrix Translation to Boolean Logic

We translate a Kodkod problem P = (A, D, F ) to an equisatisfiable boolean
formula using the same basic idea employed by the Alloy Analyzer—that a rela-
tional expression can be represented as a matrix of boolean values [15]. Given a
relation declaration r :k [cL, cU ] over a universe A = {a0, . . . , an−1}, we encode
r as a k-dimensional boolean matrix m with

m[i1, . . . , ik] =

⎧
⎨

⎩

true ⇔ 〈ai1 , . . . , aik
〉 ∈ cL

freshVar() ⇔ 〈ai1 , . . . , aik
〉 ∈ cU −cL

false otherwise

where i1, . . . , ik ∈ [0 . . n) and freshVar() returns a fresh boolean variable. Ex-
pressions are then translated using matrix operations, and formulas become con-
straints over matrix entries (Fig. 4). For example, the join of two expressions,
p.q, is translated as the matrix product of the translations of p and q, and the
non-emptiness formula, some p, is translated as the disjunction of the entries in
the matrix translation of p.
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TP: problem → bool
TR: relDecl → univDecl → matrix
TM: formula → env → bool
TX: expr → env → matrix
env: (quantVar ∪ relVar) → matrix
freshVar: boolVar
bool := true | false | boolVar |
¬ bool | bool ∧ bool | bool ∨ bool

boolVar := identifier

−→x , −→y , 〈i1, ..., ik〉 � vectors
� �: matrix→〈int〉 � minimum index
� �: matrix→〈int〉 � maximum index
||: matrix→dim � dimensions

M: dim→(〈int〉→bool)→matrix � constructor
M(sd, f) = {m | |m|=sd ∧
∀−→x ∈ {0, ..., s−1}d, m[−→x ]=f(−→x )}

M: dim→〈int〉→matrix � constructor
M(sd, −→x ) = M(sd,
λ−→y . if −→y =−→x then true else false)

TP[A d1 ... dn F] =
TM[F](

Sm
i=1(ri �→TR[di]A))

TR[r :k [cL, cU ]]A = M(|A|k, λ[i1,..., ik].
if 〈ai1 , ..., aik

〉 ∈ cL then true
else if 〈ai1 , ..., aik

〉 ∈ cu−cL then freshVar()
else false)

TM[p in q]e =
V

(¬TX[p]e ∨ TX[q]e)

TM[some p]e =
W

(TX[p]e)

TM[one p]e = let (m = TX[p]e) in
W�m�

−→x =�m� (
V

(¬M(|m|, −→x )⊕m))

TM[no p]e =
V

(¬TX[p]e)

TM[!F]e = ¬ TM[F]e

TM[F && G]e = TM[F]e ∧ TM[G]e

TM[F || G]e = TM[F]e ∨ TM[G]e

TM[all v: p || F]e = let (m = TX[p]e) in
V�m�

−→x =�m�(¬m[−→x ] ∨ TM[F](e:v �→M(|m|, −→x )))

TM[some v: p || F]e = let (m = TX[p]e) in
W�m�

−→x =�m�(m[−→x ] ∧ TM[F](e:v �→M(|m|, −→x )))

TX[p + q]e = TX[p]e ∨ TX[q]e

TX[p & q]e = TX[p]e ∧ TX[q]e

TX[p - q]e = TX[p]e ∧ ¬TX[q]e

TX[p . q]e = TX[p]e · TX[q]e

TX[p–>q]e = TX[p]e × TX[q]e

TX[˜p ]e = (TX[p]e)T

TX[ˆp ]e = iterative-square(TX[p]e)

TX[{v: p || F}]e = let (m = TX[p]e) in
M(|m|, λ−→x . m[x]∧TM[F](e:v �→M(|m|, −→x ))}

Fig. 4. Translation rules

A key difference between the Kodkod and Alloy [15] translation algorithms
is that the latter is based on types. The Alloy Analyzer encodes a k-arity re-
lation r of type T1 → . . . → Tk as a boolean matrix with dimensions |T1| ×
. . . × |Tk|. Since operands of many matrix operators must have particular di-
mensions, the operands of their corresponding relational operators are forced to
have specific types. For example, in a world with three women and three men,
the Alloy Analyzer would reject the perfectly reasonable attempt to form the
maternalGrandmother relation by joining the relation mother: Person → Woman with
itself, because a 6 × 3 matrix cannot be multiplied by itself. There are two ways
to remedy this problem: (1) force the type of mother up to Person → Person, dou-
bling the size of its boolean representation, or (2) atomize mother into two pieces,
motherw: Woman → Woman and motherm: Man → Woman, and split the expres-
sion mother.mother into motherw.motherw + motherm.motherw before handing it to
the translator [10]. AA takes the latter approach which has not worked well in
practice because of its awkward handling of transitive closure expressions [10].

We avoid the problems of a type-based translation by encoding all k-arity rela-
tions over A as k-dimensional sparse matrices |A|×. . .×|A|. A sparse translation
matrix is represented as a sorted map from flat indices [35] to boolean formu-
las. Each k-tuple, and its corresponding matrix index, is encoded as an integer
in the range [0 . . . |A|k). A sparse matrix maps a tuple’s integer representation
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only if it is non-false. For example, the sparse matrix representation of the dis-
play relation from the traffic-lights problem maps the flat indices of the upper
bound tuples {〈N, G〉〈N, Y〉〈N, R〉〈E, G〉〈E, Y〉〈E, R〉} to boolean variables, and leaves
the indices of the remaining tuples in A × A unmapped (i.e. false). Consecutive
indices that map to true are encoded using a run-length encoding, enabling a
compact representation of lower bounds.

4.3 Sharing Detection with Compact Boolean Circuits

Formal specifications make frequent use of quantified formulas whose ground
form contains many identical subcomponents. Detection and exploitation of this
and other kinds of structural redundancy can greatly reduce the size of a prob-
lem’s boolean encoding, leading to a more scalable analysis. Equivalent sub-
formulas can be detected either at the problem level or at the boolean level.
The Alloy Analyzer takes the former approach [37]. Our implementation uses
Compact Boolean Circuits to detect sharing at the boolean level.

A Compact Boolean Circuit (CBC) is a partially canonical, directed, acyclic
graph (V, E, d). The set V is partitioned into operator vertices Vop = Vand ∪
Vor ∪ Vnot and leaves Vleaf = Vvar ∪ {T, F}. An and or an or vertex has two
children, and a not vertex has one child. The degree of canonicity is determined
by an equivalence relation on vertices (which embodies standard properties of
the logical operators, such as commutativity, associativity, etc.) and the circuit’s
compaction depth d ≥ 1. In particular, no vertex v ∈ V can be transformed into
another vertex w ∈ V by applying an equivalence transformation to the top
d ≥ 1 levels of the subgraph rooted at v.

An example of a non-compact boolean circuit and its compact equivalents is
shown in Fig. 5. Fig. 5(a) contains the formula (x∧y∧z) ⇔ (v∧w) encoded using
the operators {and, or, not} as (¬((x∧y)∧z)∨(v∧w))∧(¬(v∧w)∨(x∧(y∧z))).
Fig. 5(b) shows an equivalent CBC with the minimal compaction depth of d = 1,
which enforces partial canonicity at the level of inner nodes’ children. That is,
the depth of d = 1 ensures that all nodes in the circuit are syntactically distinct,
forcing the subformula (v ∧ w) to be shared. Fig. 5(c) shows the original circuit
represented as a CBC with the compaction depth of d = 2, which enforces partial
canonicity at the level of nodes’ grandchildren. The law of associativity applies to
the subformulas ((x ∧ y) ∧ z) and (x ∧ (y ∧ z)), forcing ((x ∧ y) ∧ z) to be shared.

The partial canonicity of CBCs is maintained in our implementation by a
factory data structure which synthesizes and caches CBCs. The factory cre-
ates a new circuit from given components only if it does not find an equivalent
(up to depth d) one in its cache. This ensures that all syntactically equivalent
ground formulas and expressions are translated into the same circuit. Semanti-
cally equivalent nodes are encoded using the same circuit if their equivalence can
be established by looking at the top d ≥ 1 levels of their subgraphs. CBCs also
end up catching structural redundancies in the boolean representation itself that
could not be detected at the problem level. The net result is a tighter encoding
than can be generated using a problem-level detection mechanism.
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Fig. 5. A non-compact boolean circuit and its compact equivalents

5 Results

We have compared the performance of Kodkod to that of three other tools, the
Alloy Analyzer (version 3), MACE (version 4), and Paradox (version 1.3)3 on
two sets of problems:

• Symmetric problems include the pigeonhole problem and the ‘Ceilings
and Floors’ problem from the Alloy 3 distribution. Like the pigeonhole prob-
lem, ‘Ceilings and Floors’ is unsatisfiable and highly symmetric.

• TPTP problems consist of twelve TPTP [9] benchmarks from various prob-
lem domains. Because the TPTP problems had to be translated to our logic
by hand (in the obvious way, by translating predicates and functions as re-
lations, predicate application as membership testing, function application
as join, etc.), the overriding criterion for benchmark selection was syntactic
succinctness. Other selection criteria were a high difficulty rating (> 0.6),
complex relationships between predicates and functions (geo, med, and set
problems), prevalence of unit equalities (alg212 and num374), and presence
of partial instances (alg195 and num378).

The results are given in Fig. 6. The table shows each problem’s rating, if any, the
size of its universe (|A|), and the model finders’ performance on it. For symmetric
problems, we use two different universe sizes to demonstrate how changing search
bounds impacts model finders’ performance. For TPTP problems, the shown
universe size is the largest universe for which at least three of the model finders
produced a result in five minutes. The performance data for Alloy 3, Kodkod,
and Paradox includes the analysis time, rounded to the nearest second, and the
size of the generated CNF, given as the total number of variables and clauses.
MACE4 does not report CNF statistics. All analyses were performed on a 3.6
GHz Pentium 4 with 3 GB RAM. Alloy 3, Kodkod and Paradox were configured
with MiniSat [31] as their SAT engine; MACE4 uses its own internal SAT solver.
Kodkod’s sharing detection parameter d was set to 3. Analyses that did not

3 Paradox 2.0b, the latest version, does not perform as well as 1.3 on our benchmarks.
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alloy analyzer 3 kodkod paradox 1.3
ma

ce4

problem
rat-

ing
|A| sec vars clauses sec vars clauses sec vars clauses sec

s
y
m
m
e
t
r
i
c

p
r
o
b
l
e
m
s

ceil
12 1 2,723 11,704 0 1,749 3,289 0 299 1,373 4
20 16 9,987 46,740 14 6,477 12,449 – 695 4,850 –

pigeon
39 2 15,703 76,994 0 6,953 12,648 – 1,041 9,889 0
99 33 92,191 576,554 5 82,613 156,843 – 5,901 143,344 0

t
p
t
p

p
r
o
b
l
e
m
s

alg195 0.89 14 31 195,408 834,508 3 77,240 254,239 22 30,771 982,467 –
alg212 1.00 7 277 395,297 6,432,170 64 301,725 1,012,808 1 20,747 135,588 14
com008 0.67 11 6 15,384 77,378 6 8,565 14,624 94 6,467 31,275 –
geo091 1.00 8 72 81,267 587,728 16 33,463 73,292 84 19,146 145,373 –
geo158 1.00 6 8 29,831 185,038 2 12,574 26,552 9 8,262 49,955 –
med007 0.67 15 10 19,052 108,454 2 15,072 31,476 36 7,981 48,449 –
med009 0.67 17 12 25,177 144,968 3 20,198 42,263 28 11,850 66,758 –
num374 1.00 5 50 70,229 291,573 55 63,661 200,238 3 6,763 52,671 9
num378 1.00 21 – – – 1 0 0 193 74,736 1,692,990 1
set943 1.00 7 159 25,124 101,040 20 18,883 43,694 11 8,648 46,977 –
set948 1.00 7 7 40,776 159,735 1 24,970 60,787 61 16,226 86,932 –
top020 1.00 9 – – – 48 1,378,863 2,343,728 54 96,232 1,545,950 6

Fig. 6. Results for symmetric and TPTP problems. Gray shading indicates the fastest
time(s) for each problem; dashes indicate timeouts.

complete within five minutes are indicated by dashes. The fastest analysis time
for each problem is highlighted with gray shading.

The data on symmetric problems demonstrates the effectiveness of our sym-
metry detection algorithm compared to that of Alloy 3, which derives optimal
symmetry information from Alloy’s type system, and Paradox, which employs a
sort inference algorithm to find symmetry classes. MACE4 performs no symme-
try breaking, but, interestingly, its internal simplifications allow it to determine
that the pigeonhole problem is unsatisfiable apparently without performing any
search. The TPTP data shows that Kodkod’s performance is competitive with
Paradox’s and MACE4’s on a variety of classical logic problems. Kodkod out-
performs MACE4 and Paradox on problems describing complex relationships
between predicates and functions (e.g. geo091 or set948) and on problems with
partial instances (alg195 and num378). MACE4 and Paradox, however, are su-
perior on problems that contain many unit equalities or deeply nested universal
quantifiers, such as alg212 and num374. These results are consistent with our
overall experience using Alloy 3, Kodkod, MACE4 and Paradox.

The above problems were chosen to compare Kodkod to other SAT-based
model finders, but they are in fact not representative of the class of problems for
which Kodkod and Alloy were developed. Software design problems, in contrast
to these mathematical problems, tend to have less regular structure, despite the
grounding out of quantifiers. We compared Kodkod to Alloy 3 on three design
problems: Dijkstra’s mutual exclusion scheme [38], leader election in a ring [39],
and the transfer protocol of the Mondex smart card [40].

The results are shown in Fig. 7. For the mutual exclusion and leader election
problems, we use two different universe sizes; for the Mondex problem, we check
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alloy analyzer 3 kodkod

problem |A| vars clauses

fol

→
cnf

berk

min

mini

sat

zch

aff
vars clauses

fol

→
cnf

berk

min

mini

sat

zch

aff

exclusion
30 74,818 722,236 20 7 1 10 20,080 120,097 3 0 0 1
45 357,253 4,874,911 142 150 9 – 67,695 543,597 19 13 5 10

election
15 14,272 78,031 2 1 1 1 8,665 29,590 1 0 0 0
24 91,594 662,188 16 143 109 – 45,136 183,484 3 62 76 –

m
on

de
x A241 51 50,926 416,744 10 27 90 52 35,791 86,402 1 4 87 9

OpTotal 51 43,256 381,458 7 3 2 1 0 0 0 0 0 0
IgnoreInv 51 43,413 386,812 6 7 4 4 28,243 57,604 1 2 22 2

TransferInv 51 50,902 419,094 7 174 – 173 35,761 83,172 1 46 – 53

Fig. 7. Results for design problems. Gray shading indicates the fastest SAT solving
time(s) for each problem; dashes indicate timeouts.

a variety of assertions in the same universe. The performance data includes the
size of the generated CNF and the time, in seconds, taken to generate and solve
it using various SAT engines [41,31,30]. In all cases, Kodkod produces smaller
formulas, which are solved faster by BerkMin [41] and zChaff [30]. Interestingly,
on the Mondex problem (and a few others we encountered), MiniSat actually
performs worse on Kodkod’s formulas than on Alloy 3’s larger formulas. Note
that translation time is dramatically lower in Kodkod than in Alloy 3; the trans-
lation scheme in Alloy 3 used a more complicated (and apparently less effective)
template mechanism for detecting sharing.
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29. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. In:

SBMC. Volume 2. (2006) 1–26
30. Mahajan, Y.S., Fu, Z., Malik, S.: zchaff2004: An efficient sat solver. In: SAT

(Selected Papers). (2004) 360–375
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