
SmartFloat: Numerical Error Estimator
Eva Darulová, Advisor: Viktor Kuncak

Numerical Software Verification
Modern computing has adopted the floating point type as a default way to describe
computations with real numbers. Thanks to dedicated hardware support, such
computations are efficient on modern architectures. Reasoning about the resulting
programs remains difficult because of the large gap between the finite representation
and the ideal real mathematics.
Our library solution [1] provides two data types that provide a better understanding:
AffineFloat tracks a single computation in double precision and provides tight

roundoff error bounds
SmartFloat tracks a range of floating-point values and computes besides the actual

resulting interval also a guarateed upper bound on the roundoff error commited

This lets us determine, for example, that the second method on the right produces a
more precise result.
> triangleTextbook(9.0, SmartFloat(4.8, 0.9),

SmartFloat(4.8, 0.9))

[6.25, 8.62] +/- 1.10e-14

> triangleKahan(9.0, SmartFloat(4.8, 0.9),

SmartFloat(4.8, 0.9))

[6.25, 8.62] +/- 3.11e-15

def triangleTextbook(a: SmartFloat,
b: SmartFloat, c: SmartFloat): SmartFloat = {

val s = (a + b + c)/2.0
sqrt(s ∗ (s − a) ∗ (s − b) ∗ (s − c))
}

def triangleKahan(a: SmartFloat,
b: SmartFloat, c: SmartFloat): SmartFloat = {

if(b < a) {
val t = a
if(c < b) { a = c; c = t }
else {

if(c < a) { a = b; b = c; c = t } else { a = b; b = t }
}
}
else if(c < b) {

val t = c; c = b;
if(c < a) { b = a; a = t } else { b = t }
}
sqrt((a+(b+c)) ∗ (c−(a−b)) ∗ (c+(a−b))

∗ (a+(b−c))) / 4.0
}

Range Arithmetic
Traditionally: Intervals

Represent each variable as an interval x̄ = [xlo, xhi] and
perform each operation with directed rounding.
! Intervals suffer from the range-explosion problem, so that
overapproximations become too pessimistic too quickly.

Our approach: Affine Arithmetic
Represent variables as affine forms [2]

x̂ = x0 +
n∑

i=1

xiεi, εi ∈ [−1, 1]

whose represented range is

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n∑

i=1

|xi|

Unlike in interval arithmetic, correlations between variables are
taken into account, and thus a much more precise analysis is
possible.

The library uses two interpretations of affine arithmetic:
AffineFloat Each affine form representes one floating-point value

and the deviations xi the accumulated roundoff errors.
SmartFloat Each affine form representes a range of floating-point

values. An additional affine form tracks the maximum roundoff
error over this range.

Experiments

A comparison of our results obtained with AffineFloat (AF) to the
results obtained with interval arithmetic (IA) on a set of scientific
benchmarks [3, 4]:

Benchmark rel. error AF rel. error IA IF/IA error
Scimark SOR 5 iter. 2.33e-14 4.87e-14 2.1

10 iter. 4.62e-13 3.21e-12 7.0
15 iter 8.85e-12 2.10e-10 23.7
20 iter 1.68e-10 1.38e-8 82.1

Nbody, 1s, h=0.01 1.58e-13 1.28e-13 0.8
1s, h=0.0156 1.04e-13 8.32e-14 0.8
5s, h=0.01 2.44e-10 7.17e-10 2.9
5s, h=0.015625 1.42e-10 4.67e-10 3.29

Spectral norm 2 iter 1.88e-15 7.13e-15 3.8
5 iter 4.93e-15 2.48e-14 5.0

10 iter 7.51e-15 5.62e-14 7.5
15 iter 1.01e-14 8.81e-14 8.7
20 iter 1.71e-14 1.19e-13 7.0

(For roundoff estimates over input ranges, like in the example
above, intervals cannot be used at all.)

Integration
All that is needed to put our library into action is the replacement of
Double types by SmartFloat or AffineFloat. The new types integrate
seamlessly into Scala thanks to

operator overloading
special treatment of equals (==) for numeric types
implicit conversions
availability of the library functions
log, expr, pow, cos, sin, tan acos, asin, atan, abs, max, min and the
constants Pi and E.

Applications
Robustness A global flag is used to signal conditionals that cannot

be unambiguously decided due to too large roundoff errors or
input ranges.

Testing Using for example a binary search-like approach, we can
use our library to generate a set of test interval inputs that will
exercise all paths through a program, or refine paths based on
roundoff errors.

User-defined Errors Apart from roundoff errors, SmartFloat can be
used to propagate automatically user-added errors, e.g.
approximations of errors of an iterative numerical method itself.

References
1 E. Darulova, V. Kuncak, On the Design and Implementation of SmartFloat and AffineFloat, EPFL-REPORT-164956, 2011.

2 L. H. de Figueiredo, J. Stolfi, Self-Validated Numerical Methods and Applications, Brazilian Mathematics Colloquium monograph, IMPA, 1997.

3 The Computer Language Benchmarks Game. http://shootout.alioth.debian.org/, Jan 2011.

4 R. Pozo and B. R. Miller. Java SciMark 2.0. http://math.nist.gov/scimark2/about.html, 2004.

Darulova, Kuncak (LARA, EPFL) SmartFloat: Numerical Error Estimator June, 2011 1 / 1

