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SUMMARY

Many of the bugs in programs show their effects much later in program execu-

tion. For this reason, even the most careful programmers equipped with the state-of-

the-art debuggers might well miss the first occurrence of a bug and thus might have

to restart the program being debugged. Furthermore, for difficult to find bugs, this

process might have to be repeated multiple times. However, every time a restart oc-

curs, parts of a program that already executed without errors have to be re-executed

unnecessarily. These unnecessary re-executions constitute a significant portion of the

debugging time.

Reverse execution can be defined as a method which recovers the states that a

program attains during its execution. Therefore, reverse execution eliminates the need

for repetitive program restarts every time a bug location is missed. This potentially

shortens debug time considerably.

Conventional techniques for recovering a prior state rely on saving the state into a

record before the state is destroyed. However, state saving causes significant memory

and time overheads during execution of programs.

This thesis presents a new approach which, for the first time ever (to the best

of the author’s knowledge), achieves reverse execution at the assembly instruction

level on general purpose processors via execution of a “reverse program.” A reverse

program almost always regenerates destroyed states rather than restoring them from

a record and provides assembly instruction by assembly instruction execution in the

backward direction. This significantly reduces state saving and thus decreases the

associated memory and time costs of reverse execution support.

xi



Furthermore, this thesis presents a new dynamic slicing algorithm that is built on

top of assembly instruction level reverse execution. Dynamic slicing is a technique

which isolates the code parts that influence an erroneous variable at a program point.

By the help of dynamic slicing, programmers can concentrate on the parts of programs

that are actually related to bugs.

Similar to reverse execution, conventional dynamic slicing methods also require

runtime information in the form of program execution trajectories. An execution tra-

jectory captures the control flow information of a program. The algorithm presented

in this thesis achieves dynamic slicing via execution of a “reduced reverse program.”

A reduced reverse program is obtained from a full reverse program by omitting the

instructions that recover states irrelevant to the dynamic slice under consideration.

This provides a reverse execution capability along a designated dynamic slice only.

The use of a reduced reverse program for dynamic slicing removes the need for runtime

execution trajectories.

The methodology of this thesis has been implemented on a PowerPC processor

with a custom made debugger. As compared to previous work, all of which heavily

use state saving techniques, the experimental results show up to 2206X reduction in

runtime memory usage, up to 403X reduction in forward execution time overhead

and up to 2.32X reduction in forward execution time for the tested benchmarks.

Measurements on the selected benchmarks also indicate that the dynamic slicing

method presented in this thesis can achieve up to six orders of magnitude (1,928,500X)

speedups in reverse execution.

xii



CHAPTER I

INTRODUCTION

1.1 Motivation and Aims

As human beings are quite prone to making mistakes, it is difficult for a programmer

to write an error-free program without going through a debugging cycle. For this

reason, debugging is an important part of software development.

Despite today’s computer-aided and automated technologies, debugging is still

most effectively performed by a runtime interaction with the program under consid-

eration. In this way, a programmer can see how a program actually behaves given a

set of inputs and thus can evaluate the anomalies faster.

 

Detect an 
error 

Restart the 
program 

Determine 
the bug 

location(s) 

Error-free 
program 

Remove the 
bug(s) and 

recompile the 
program 

Start the 
program 

Figure 1: A typical debugging cycle.

A typical debugging cycle that many programmers go through is shown in Figure 1.

Unfortunately, many of the bugs in programs do not cause errors immediately, but

instead the bugs show their effects much later in program execution. For this reason,

even the most careful programmer equipped with a state-of-the-art debugger might

well miss the first occurrence of a bug and thus might have to restart the program.

Furthermore, for difficult to find bugs, this process might have to be repeated multiple

times as shown in Figure 1. However, every time a restart occurs, parts of the program

1



 

 

Execute forward Step forward Execute backward Step backward 

Memory 
window 

Breakpoint 
window 

Register 
window 

Source 
window 

Figure 2: A sample view of windows from our reverse debugger tool.

that already executed without errors have to be re-executed unnecessarily. These

unnecessary re-executions may constitute a significant portion of the debugging time.

However, there is a very powerful technique which may speedup interactive debugging

considerably. This technique is reverse execution.

Reverse execution provides the programmer with the ability to return to a par-

ticular previous state in program execution. When the programmer misses a bug

location by executing a program too far, he or she can roll back the program to a

point where the program state is considered to be correct and then re-execute from

that point on without having to restart the program. This potentially reduces the

overall debugging time significantly.

Figure 2 shows a sample view of windows from the debugger tool we have imple-

mented. The programmer can load an assembly level program to the debugger tool

and execute the program assembly instruction by assembly instruction both in the

forward and the backward direction. At any desired point in execution (either in the

forward or in the backward direction), the programmer can observe the values stored

in registers and memory locations. Moreover, the programmer can set breakpoints at

various places in the program and forward or reverse execute the program until those

breakpoints.
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A reader may ask, “Why is reverse execution at the assembly level important?”

There are various reasons making reverse execution (or even forward execution) at the

assembly instruction level available in a debugger. First, performance and memory

constraints or lack of compiler support usually force assembly language programming

of some software components such as small-scale embedded applications, firmware for

consumer electronics, DSP libraries and operating system modules such as schedulers,

high-performance I/O routines or device drivers. For instance, the majority of boot

code for the computer system of the Pathfinder Spacecraft was written in assembly

language because it was critical for the computer to boot up very quickly in case of

a failure [44]. Furthermore, even for general purpose software, the source code may

not be available at all. Therefore, during debugging of such software components,

programmers have to be involved in assembly instruction level program execution.

Second, in implementing a language construct such as a pointer to an integer,

sometimes the compiler generates assembly different from what the programmer ex-

pected. Similarly, compiler optimizations can move or remove instructions resulting

in assembly code that does not match with the source code anymore, which makes it

very difficult to debug at the source code level.

Finally, reverse execution at the assembly instruction level provides extremely

fast backup capability in case the programmer executes one extra instruction too far,

losing the whole program context leading to a bug.

Much like reverse execution, another powerful technique that may be used to

speed up debugging is dynamic slicing. Dynamic slicing isolates the statements that

influence the value of a variable at a program point in a specific execution instance of

the program. In this way, the programmer can concentrate only on those statements

that are relevant to the bug(s) in the program.

3



Therefore, it is desirable to implement both assembly instruction level reverse

execution and dynamic slicing under a common framework that will help significantly

reduce the time spent on debugging.

1.2 Problem Statement

Note that in the rest of this thesis, the word “instruction” refers to an assembly

instruction.

An execution of an assembly program T on a processor P can be represented by

a transition among a series of processor states S = (S0, S1, S2, ...). From this

representation, instruction level reverse execution of a program can be defined as

follows.

Definition 1.2.1 Instruction level reverse execution: Reverse execution of an assembly

program T running on a processor P can be defined as taking P from its current state Si to a

previous state Sj (0 ≤ j < i). The closest achievable distance between Si and Sj determines

the granularity of reverse execution. If state Sj is allowed to be as early as one instruction before

state Si, then the reverse execution is said to be instruction level reverse execution. 2

The simplest approach for obtaining a previously attained state is saving that

state before the state is destroyed. However, saving a state during execution of a

program introduces two overheads: memory and time. A solution to reduce memory

and time overheads would be to decrease the frequency of state saving during program

execution. However, this prevents an immediate return (i.e., a return without any

forward execution) to an arbitrary point in execution history where state is not saved.

Therefore, in applying state saving, there usually exists a tradeoff between the closest

previous state that can be restored without any forward execution and memory/time

overheads due to state saving.

Similarly, dynamic slicing usually requires runtime control flow information from

the execution of a program in terms of execution trajectories (see Section 2.2.2). As

4



programs can follow more than one control flow path, the actual path the program

follows determines which instructions are redundant instructions that are irrelevant

to a slice. This runtime information is a significant factor making traditional dynamic

slicing methods costly in terms of memory usage.

Briefly, the problem addressed by this thesis is the achievement of time and mem-

ory efficient reverse execution and dynamic slicing. In particular, an approach result-

ing in a dramatic reduction in state saving for both reverse execution and dynamic

slicing is sought.

Having discussed the problems associated with reverse execution and dynamic

slicing, we next outline the approach and the contributions of this thesis.

1.3 Thesis Contributions

In this thesis, for the first time ever (to the best of the author’s knowledge), an instruc-

tion level reverse execution methodology in software for general purpose processors

is proposed via use of “reverse program generation.” The proposed methodology is

unique in the sense that it provides reverse execution at the assembly instruction level

and yet still has reasonable memory and time overheads when the program is being

executed.

In the proposed technique of this thesis, destroyed states are almost always re-

generated instead of being restored from a previously saved record. This provides

faster execution speeds and less memory space overheads as compared to traditional

techniques.

This thesis also implements a new dynamic slicing algorithm on top of assembly

level reverse execution. When a programmer realizes that a variable has an incorrect

value at a certain program point, he or she can reverse execute the program along

the corresponding dynamic slice only. Thus, instructions that are irrelevant to the

bug(s) in the program are skipped and a faster return to the suspicious location can

5



be achieved. Most designers do not know which dynamic slice is needed until the bug

appears. In this case, our approach is faster than re-running the application with the

dynamic slice specified.

The dynamic slicing technique presented in this thesis not only speeds up reverse

execution but also contains an advantage which is usually not offered by traditional

dynamic slicing methods (see Section 2.2.2). Our technique can dynamically recon-

struct the control flow information during reverse execution. Therefore, as opposed

to traditional dynamic slicing methods, our technique does not require an execution

trajectory to extract the control flow information from a program.

1.4 Thesis Organization and Roadmap

The thesis is organized as follows. Chapter 2 presents the related work. Chapter 3

gives an outline of our approach. Then, Chapter 4 explains the implementation of the

proposed reverse execution technique and Chapter 5 fills in special implementation

details. After explaining the reverse execution technique, Chapter 6 gives a sum-

mary of the presented work. Then, Chapter 7 discusses the extensions made to the

presented algorithm with the addition of dynamic slicing support. Chapter 8 gives

various experimental results. Finally, Chapter 9 concludes the thesis.
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CHAPTER II

PREVIOUS WORK

The problem of how to acquire previously destroyed program states has been re-

searched in several contexts. Similarly, there has been a considerable amount of work

with regard to program slicing. In this chapter, we first present different techniques

applied for reverse execution and then present the previous research efforts for pro-

gram slicing.

2.1 Previous Work in Reverse Execution

Reverse execution research can be divided into two different categories. The first

category is the application of pure state saving approaches to restore earlier states in

program execution. The second category, on the other hand, is reverse execution by

a combination of state saving and state regeneration techniques.

State regeneration introduced in the second category reproduces previously de-

stroyed values and thus achieves state recovery without state saving. This helps

reduce the amount of memory usage. However, the first category covers almost all

of the research performed so far to achieve reverse execution of programs. More-

over, we see very limited forms of state regeneration techniques in prior research (see

Section 2.1.2). On the contrary, state regeneration constitutes the basis of this thesis.

The following two subsections provide a summary of previous work in each cate-

gory mentioned above.
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2.1.1 Reverse Execution Techniques by Restore Earlier State

Zelkowitz provides a state restoration capability by inserting trace statements into

the programming language [50]. Each trace statement includes an option that indi-

cates either a condition or a label. Program state is captured starting from a trace

statement until the condition indicated by the trace statement is satisfied or until the

label indicated by the trace statement is reached. However, the programmer has to

anticipate which parts of the program he or she might have to re-execute and then

has to insert trace statements in those program parts beforehand.

Agrawal et al. provide a statement-level state restoration capability for programs

written in a high-level programming language [3]. Agrawal et al. statically asso-

ciate each assignment statement with a set of variables, called a change-set, which is

modified by that statement. Then, during the execution, the associated variables in

the change-set are recorded (saved to memory) for rollback. However, although this

approach provides a statement-level state restoration capability, it might cause large

memory and time overheads during program execution, especially with programs that

modify the state frequently.

Booth and Jones associate each variable in a program with a story tag which

includes the history information about how the variable is computed [14]. When a

variable is used in a computation, its story is added to the story of the computed

variable. At the end of a particular execution, the programmer can trace back how

a variable is computed by observing the story of the variable only. However, this

approach may again cause very large memory usage as the variable stories are built

by pure state saving.

State restoration is also applied in so-called replay techniques for efficient debug-

ging of programs by either hardware [7, 43] or software [19, 35, 36, 40, 42]. In the

replay technique, the state of a program is first saved infrequently during execution

of the program, and then the program state that is not saved is reconstructed by
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replaying the program in the forward direction. In hardware approaches, state saving

is handled by hardware with little or no performance overhead but with inflexibility

and high cost. On the other hand, in software approaches, state saving is handled by

software with flexibility and low cost but with high performance overhead. A typical

drawback of these replay techniques is that since the recorded trace keeps only partial

information about program state, execution can be restarted only at the beginning

of a trace window where state is saved and not at an arbitrary program point. Trace

windows may be fixed [19, 40] or variable [40, 36] in length and their sizes may either

be determined by the programmer [40] or by a program analysis [40, 36]. For instance,

in Miller and Choi’s approach, trace windows which are called emulation blocks are

usually chosen to be program regions that have well-defined entry points [36]. One

such region is a subroutine. Generally, larger trace windows result in smaller traces

but longer replay times.

Two other application areas of state restoration are optimistic or speculative com-

putation [22, 24, 30] and fault tolerance [16, 34]. A computation is optimistic if in-

correct computation is allowed during execution. Tasks executing in parallel usually

have to block due to synchronization requirements on shared data. In optimistic

parallel execution, tasks do not block on shared data and thus are allowed to exe-

cute independently, which potentially improves the execution performance but at the

same time allows incorrect computation. Then, errors caused by possible incorrect

computations are recovered by rolling back the computation of erroneous tasks to a

point in time where state is known to be correct. Similarly, state restoration for fault

tolerance is performed by rolling back in case software errors occur, which is usually

seen in places such as database transaction systems [10, 25].

Rolling back computations or transactions is usually achieved by periodic or in-

cremental state saving. In periodic state saving [20], the whole processor state is

recorded periodically at certain checkpoints during simulation. Then, a previous state
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at a checkpoint can be recovered by restoring that state from the record. However,

in this method, a previous state at an arbitrary point that is not a checkpoint cannot

be immediately recovered. If the checkpointing interval is reduced, memory and time

overheads of state saving are increased. Moreover, recording the whole processor state

at each checkpoint causes redundancy because some portion of the processor state

may be kept unchanged throughout several checkpoints. In incremental state saving

(ISS) [48], instead of recording the whole processor state, only the modified parts of

a state are recorded at each checkpoint. However, in programs where the modified

state space is large, memory and time overheads of incremental state saving might

again exceed affordable limits.

State restoration is also used in computer science education where students can

easily navigate back and forth through well-known algorithms to understand the be-

havior of such algorithms. For this purpose, the common technique applied is program

animation [12, 18]. Program animation constructs a virtual machine with a reversible

set of instructions. Since these instructions are reversible, the program can be run

backwards. However, since reversible instructions are usually constructed as stack

operations, a significant amount of stack memory may be required in program ani-

mation.

Cook presents a state restoration method for Java programs [17]. A Java virtual

machine is another example of a stack-based virtual machine. Most Java bytecode

instructions pop the operands from the operand stack, operate on them and then

push the resulting operands back into the operand stack. In his method, Cook keeps

two main circular buffers for keeping the program state. The first buffer, the program

counter circular buffer, keeps the program counter values. The second buffer, called

the logging circular buffer, keeps the values in the operand stack that are destroyed

as a result of a bytecode instruction. Then, Cook associates a reverse operation with

each bytecode instruction. Basically, during a reverse operation, the program counter
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is restored from the program counter circular buffer while the values in the operand

stack are restored from the logging circular buffer. By using circular buffers, Cook

bounds the memory requirement which otherwise would be huge due to logging of

each modified operand. However, this also bounds the total number of bytecode

instructions that can be reverse executed at a time and requires a runtime validation

of whether there is enough data within a circular buffer for accomplishing a reverse

execution request.

When compared to pure state saving saving approaches explained in this section,

our reverse execution technique via generation of a reverse reverse program potentially

reduces the runtime memory usage considerably. This is because most of the program

state is regenerated by the reverse program. Moreover, regeneration of program states

via a reverse program reduces the number of state saving instructions in the original

code and thus provides faster forward execution times.

2.1.2 Previous Work in State Regeneration at the Source Code Level

Floyd makes use of state regeneration in the area of nondeterministic algorithms [21].

A nondeterministic algorithm is an algorithm that may come up with a different

solution to a problem at each run of the algorithm. However, the solution is not

reached by a random process but by incrementally constructing a path that leads to

a success. In Floyd’s approach, whenever a nondeterministic algorithm enters a path

leading to a dead end, the algorithm state at the most recent point where a decision

is made is restored and alternative solutions are sought from that point on.

Floyd achieves reverse execution by defining a reverse operation for each operation

in a nondeterministic algorithm. However, a reverse operation without state saving

can only be generated for reversible constructive operations. A constructive operation

is an operation where the variable being modified (the target operand) is the same

as one of the source operands. The operation “x = x + 1” is an example of a
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constructive operation. On the other hand, a constructive operation is reversible

only if there exists an operation that can fully recover the prior value of the target

operand of the constructive operation. For instance, the prior value of the target

operand of “x = x ⊕ 1” can be fully recovered by executing the same operation once

more. Therefore, “x = x ⊕ 1” is reversible. On the other hand, although “x = x / 2”

is constructive, this operation might not be reversible for the case where the target

operand x cannot always be fully recovered due to a possible precision loss in the

computed result.

State regeneration finds its application in a limited sense in the area of debugging

optimized code as well [1, 28, 49]. Hennessy introduces the term “currency” of a

variable [28]. A variable is current at a program point if the value of the variable at

that program point is the same as the variable’s expected value according to the source

code. Since code optimizations such as code motion and dead variable elimination

may move or remove assignments to variables in the object code, the value of a

variable at a certain point in the optimized code may not be equal to the value of

the variable at the corresponding point in the unoptimized code, which causes the

variable to be “noncurrent” at that program point. In such a case, the current value

of the variable has to be recovered to provide the user with a consistent view of the

program being debugged. This recovery operation is where reverse execution comes

into play.

A typical recovery technique in this field is to reevaluate noncurrent variables using

appropriate definitions of those variables in the program. However, since the main

focus in this area has been on the determination of whether a variable at a program

point is current or not rather than on the recovery of a noncurrent variable, the

recovery techniques applied in this area are generally very restrictive and ineffective.

For instance, Wismuller reports that only 2-5% of all encountered noncurrent variables

can be recovered in his benchmarks [49].
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Carothers et al. introduce another approach for optimistic parallel simulations [15].

This approach is source transformation. In source transformation, the source code

(e.g., in C) is transformed to a reversible source code version. Then, from the re-

versible version a reverse source code is obtained. The reverse source code reverses

the effect of the original source code. However, similar to Floyd’s approach [21],

Carothers et al. also apply state saving for all operations except reversible construc-

tive ones. Consequently, the execution time and memory requirements of the reverse

code are increased.

Biswas and Mall also generate a reverse program from a program given in the C

programming language [13]. For constructive operations in C which use operands such

as “*=” or “+=”, they generate reverse statements that use the inverse operators.

Thus, for instance, “*=” becomes “/=”. However, similar to other approaches pre-

sented in this section, these constructive operations are the only cases where reverse

execution is performed without state saving. Moreover, in cases where the underlying

processor may truncate the result (such as an overflow condition), the correctness of

the reverse execution is indeterminate. For all other operations, Biswas and Mall keep

a trace file that holds the necessary state to reverse execute a C program. In their

paper [13], Biswas and Mall state (referring to non-constructive assignment state-

ments in the form of a = b op c), “Thus, it is not possible to define an inverse for

this [sic] type [sic] of assignment statements and the old value of the variable must

be maintained in a trace file.” In a similar quote, the DDD (a front-end for GNU

GDB debugger) v3.2 manual on page 98 states, “DDD cannot undo what your pro-

gram did. After a little bit of thought, you will find that this would be impossible

in general.” In this thesis, we show that even destructive assignment statements are

indeed reversible without state saving.

The state regeneration techniques proposed in this thesis are applicable in wider

range of situations than the state regeneration techniques presented in this section.
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Therefore, state regeneration efficiency is potentially much higher in our techniques

when compared to previous techniques. This results in larger savings in terms of

memory and time costs.

2.1.3 Previous Work in State Regeneration at the Assembly Instruction
Level

We have made an exhaustive literature survey searching for a software approach that

achieves reverse execution at the assembly instruction level. However, we could not

find any such work. Therefore, this thesis might be the first work to achieve reverse

execution at the assembly instruction level on general purpose processors by use of

reverse program generation.

2.2 Previous Work in Program Slicing

Program slicing algorithms can be divided into two major types according to whether

the slice extraction is performed at compile time (static slicing) or at runtime (dy-

namic slicing). In this section, we present a brief history of static slicing as well as

dynamic slicing algorithms. An interested reader can find detailed surveys of slicing

algorithms in [11, 27, 46].

2.2.1 Static Slicing

Program slicing was first proposed by Weiser [47]. His approach statically determines

the program statements that potentially affect a variable at a certain statement. Here,

the variable under consideration and the statement at which it is computed form the

slicing criterion. Weiser computes slices from a control flow graph of the subject

program. For this purpose, Weiser iteratively finds data flow information between

control flow graph nodes. This information reveals at each control flow graph node

the variables, called relevant variables, that transitively affect the computation of
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the variable in the slicing criterion. Then, the slice is found as a combination of all

program statements that compute the relevant variables in a program.

In Weiser’s approach the extracted slices are executable. That is, the extracted

slice is itself an executable subset of the original program. Also, the slices introduced

by Weiser are backward meaning that the statements affecting the variable in the

slicing criterion are found by a backward traversal of the control flow graph nodes

starting from the node computing the variable in the slicing criterion.

Ottenstein and Ottenstein use a different intermediate representation to compute

slices [41]. Instead of a control flow graph, they use a program dependence graph

(PDG). The statements and the control flow predicates in a program constitute the

vertices of a PDG, while the data and control dependence relationship between the

vertices are represented by the edges of a PDG. Slicing is defined as a reachability

problem in a PDG. The nodes that are reachable from the vertex that computes the

variable in the slicing criterion are included in the slice. Later, Horwitz et al. introduce

various modifications to the PDG approach to determine static slices of a program

including multiple procedures or unconditional jumps such as goto statements [29].

Bergeretti and Carre introduce forward slicing [8]. Instead of looking for variables

that might affect the variable in question (as in the case of backward slicing), forward

slicing specifically looks for variables that might be affected by the variable in question.

Therefore, as opposed to backward slicing, forward slicing traces the dependencies

between variables in the forward direction.

Harman and Danicic propose a different approach to slicing [26]. They define a

slice called an effect minimal slice. An effect minimal slice is a slice that preserves

the effect of the original program on the variable in the slicing criterion, but that

is not necessarily constructed as a subset of the original program. Harman and

Danicic convert an imperative program to its functional equivalent and then perform

algebraic transformations on the resulting functional program by using the properties

15



of functional languages. The transformations replace the statements in the original

program with less number of equivalent statements that have the same overall effect

on the variable in the slicing criterion. Therefore, a thinner static slice can be obtained

for the variable in the slicing criterion.

The main drawback of static slicing is that it has to be conservative in making

decisions that require runtime information of a program. For instance, if two state-

ments statically affect the variable in the slicing criterion, but one of the statements

actually is never executed in a particular debugging session, static slicing has to con-

servatively include both statements in the slice because the decision of whether the

statements will be executed or not may not be made statically. Thus, static slicing

usually provides slices larger than one could potentially obtain by using a dynamic

slicing technique including the dynamic slicing technique proposed in this thesis.

2.2.2 Dynamic Slicing

As explained in the previous subsection, static slicing does not employ any runtime

information and thus static slicing may compute large slices. This disadvantage of

static slicing motivated Korel and Laski [31] to introduce dynamic slicing. Their

approach incorporates runtime information to find the statements that actually affect

a variable at a program point. Thus, the resulting slices are more compact and precise

than the program slices proposed by Weiser [47]. First, the subject program is run

and an execution history is obtained. The execution history tells which statements

in the program actually execute. Then, using this information, statements upon

which the variable in the slicing criterion is dynamically data or control dependent

are extracted.

Agrawal and Horgan incorporate a dependence graph, which they call a dynamic

dependence graph (DDG), to calculate dynamic slices of a program [4]. In the sense

that a dependence graph is used, Agrawal and Horgan’s approach can be considered
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as an extension to the PDG based static slicing algorithms. Later Agrawal, DeMillo

and Spafford present a solution based on DDGs for inter-procedural dynamic slicing

of programs [2].

There has been research in forward computation of dynamic slices as well [9, 32].

In a forward dynamic slicing technique, a dynamic slice is obtained during execution

of the program. Therefore, the runtime trace information is kept bounded. However,

since forward slicing does not start from the instruction in the slicing criterion, it

calculates all possible dynamic slices for all variables in a program. Therefore, forward

dynamic slicing algorithms are usually slow.

In dynamic slicing techniques, the processing of a complete program trace also

constitutes a large memory usage. Zhang et al. present an algorithm which keeps

a record of the complete execution history and then processes only the necessary

information in that record for the purpose of generating a particular dynamic slice [51].

This potentially reduces the memory cost of slice extraction.

The main drawback of traditional dynamic slicing methods is that these methods

either use too much runtime information or are not performed in a demand-driven

fashion starting from a specific dynamic slicing request. Moreover, the traditional

dynamic slicing methods do not provide a way for reverse execution along a dynamic

slice. However, the dynamic slicing method proposed in this thesis is demand-driven,

can regenerate most of the control flow information required to extract the dynamic

slice during reverse execution and provides a way to reverse execute the dynamic

slices.

2.3 Summary

In this chapter, we presented various prior research in reverse execution and dynamic

slicing. The reverse execution technique we present in this thesis usually causes much
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less memory and time overheads than the prior reverse execution techniques. More-

over, as opposed to previous approaches, the dynamic slicing technique we propose

reduces runtime memory usage and provides reverse execution along dynamic slices.

We will eventually show the advantages of our technique over the previous techniques

with quantitative comparisons in Chapter 8. In the next chapter, we present an

overview of our approach for reverse execution at the instruction level. The imple-

mentation details of our reverse execution technique and the extensions for dynamic

slicing support are explained in chapters subsequent to the next chapter.
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CHAPTER III

OVERVIEW OF REVERSE CODE

GENERATION

Our approach is mainly based on regenerating a previously destroyed state rather

than restoring that state from a record. When state regeneration is not possible,

however, we recover a destroyed state by state saving. Hereafter, we refer to the

recovery of a state as state restoration if that recovery involves state saving. If there

is no state saving involved in a particular state recovery, we refer to such recovery as

state regeneration.

We achieve both state regeneration and state restoration by the help of a reverse

program. Given an assembly program T either written directly in assembly or com-

piled into assembly from a high level programming language, we generate a reverse

program RT from T by a static analysis at the assembly instruction level. We call our

algorithm which we use to generate a reverse program the Reverse Code Generation

(RCG) algorithm.

The RCG algorithm can be divided into three main steps. These steps are program

partitioning, reversing an assembly instruction and combining the reverse instruc-

tions. Figure 3 shows the flow of control between these three steps. The RCG algo-

rithm first passes over the input program and partitions the input program (Step 1).

Then, the RCG algorithm goes into a main loop where each program partition is

read instruction by instruction in program order (lexical order). After an instruction

α is read, the RCG algorithm generates the reverse of α (Step 2 in Figure 3) and

combines the reverse with the rest of the reverse program generated so far (Step 3).
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Step 2 and Step 3 are repeated until the end of a program partition is reached. When

the end of a program partition is reached, the RCG algorithm moves to the next

program partition and iterates over Step 2 and Step 3 for the instructions in the next

program partition. These steps are repeated until all the partitions inside a program

are processed and the end of the program is reached.

 

Partition the input program 

Read an instruction α from the current partition 

Generate a reverse for α 

end of partition? 

end of program? 

Y 

start 

end 

N 

N 
Go to the next partition 

Combine the reverse of α with the rest of the reverse program 

Step 2 (see Section 4.2) 

Step 1 (see Section 4.1) 

Step 3 (see Section 4.3) 

Y 

Figure 3: A high-level view of the RCG algorithm.

In the following sections, we first state our main assumptions for the applicability

of the RCG algorithm and then discuss each RCG step briefly.

3.1 Preliminary Assumptions

We assume a certain set of inputs to be provided to the RCG algorithm. Let us

first describe our assumptions regarding the inputs of the RCG algorithm and then

explain under which conditions the RCG algorithm can apply the state regeneration

techniques that will be presented in the rest of this thesis.
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3.1.1 Inputs of the RCG Algorithm

Figure 4 shows the input of the RCG algorithm. First, the RCG algorithm takes as

input either through a Graphical User Interface (GUI) or as a command line argument

an assembly program T without associated source code. We assume no symbol table

nor any other compiler related information whatsoever. The assembly code can be

hand-written or generated by a compiler. Moreover, compiler optimizations do not

limit the applicability of the RCG algorithm. As will be shown in Section 8, the RCG

algorithm can provide significant savings in execution time and memory usage even

with highly-optimized programs as input. Also, we assume that the input program is

single-threaded, is not self-modifying and does not change base addresses of program

sections (such as the global data section or the stack) dynamically.

 

li  r11,0x1 
cmpw  r8,r11 
blt   0x8024 
add    r9,r12,r10 
ori    r10,r12,0x0 
ori    r12,r9,0x0 
addi   r11,r11,0x1 
b      0x8008 
blr     
... 
 
Input program 

RCG  
Command line 

or                  
GUI 

Overflow/underflow switch (“-no-extract-from-use”) 
Number of maximum recursions (“-max-recursions=N”) 

RCG options 

Figure 4: Inputs of the RCG algorithm.

In addition to the input program, the RCG algorithm accepts two options from

the user (Figure 4). These options affect the reverse code generation process. First,

in case of an overflow or an underflow during an operation to be reversed, a specific

state regeneration technique, which we will name the extract-from-use technique and

describe in Section 4.2.2, may not work properly. Therefore, in a program that may
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trigger an overflow or an underflow, the user notifies the RCG algorithm by use

of a command line switch (“-no-extract-from-use”) or through a GUI that overflow

or underflow may occur (see Figure 4); otherwise, if “-no-extract-from-use” is not

specified in the command line input (or through a GUI), RCG assumes no overflow

or underflow ever occurs under any situation (e.g., for any possible data input). The

use of “-no-extract-from-use” option ensures that the reverse code functions correctly

in cases where overflow or underflow may occur.

Second, the user specifies by use of a command line option “-max-recursions=N”

(or through a GUI) the upper limit for how many times the RCG algorithm may

recursively apply the state regeneration techniques. In this option, the maximum

number of recursions allowed is specified by N . As will be explained in Section 4.2, the

RCG algorithm usually applies the state regeneration techniques recursively because

these techniques may not give a solution after only one iteration. However, each

recursive application of state regeneration techniques increases the running time of

the RCG algorithm. Therefore, the upper limit N set by the “-max-recursions=N”

option helps limit the time cost of the RCG algorithm. If an upper limit N is not set,

the RCG algorithm applies state regeneration techniques repetitively until a point

where all paths to possible solutions are traversed. If no solution can be found along

those paths, state saving is dictated.

Next, we state the assumptions we make regarding the reverse code generation

process.

3.1.2 Assumptions for RCG

Now, suppose that an assembly program T attains a series of states S = (S0, S1, S2, ...)

during its execution on a processor P where the distance between two consecutive

states is one instruction. Now, assume that we can generate another program RT ,

the instruction level reverse program of T , such that when a specific portion of RT
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is executed in place of T when the current state of T is Si, the state of T can be

brought to a previous state Sj (0 ≤ j < i). In other words, RT recovers a

previously destroyed state. If RT contains an executable portion for changing the

state of P from any state Si ∈ S to any other previous state Sj ∈ S (j < i) for

any possible state sequence S during execution of T , then the execution of T can be

reversed by executing RT in place of T .

To build a complete reverse program, the RCG algorithm uses pure static infor-

mation. However, in order to reverse execute a program, dynamic information may

be required as well. This dynamic information mainly consists of the values that

cannot be recovered by state regeneration and thus are saved dynamically. The stati-

cally generated instructions inside the reverse program use this dynamic information

to undo the original instructions. Therefore, in case of state restoration, RT simply

issues memory load instructions that restore the values already saved by state saving

instructions inserted into T . In the case of state regeneration, RT recovers a state

without any state saving code in T .

However, in practice, it might be hard to implement such a program RT which

recovers 100% of the program state either by state regeneration or by state restoration.

This is due to the following reasons.

1. Typically, processors include auxiliary hardware usually not accessible by the

instructions directly. The processors usually manipulate this kind of hardware

implicitly. Therefore, it is typically hard to recover indirectly modified state

in this kind of hardware. As an example, consider the overflow register of

a processor. The overflow register is written indirectly by an operation such

as “c = a + b” if an overflow occurs during such an operation. However,

many processors do not specify an instruction to directly write to the overflow

register, which makes it hard to recover the overflow register. For a more

detailed discussion of indirectly modified state in an Instruction Set Architecture
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(ISA) with a specific focus on PowerPC as a target example ISA, please see

Appendix A.

2. Generally, writing a value to the program counter either by a branch instruction

or by direct modification causes an immediate jump to the address location des-

ignated by the value written to the program counter. Therefore, as soon as RT

were to recover the program counter, the execution of RT would immediately

be broken. This suggests that the program counter should be recovered only

at the end of the execution of a specific portion of RT and just before the user

switches back to forward execution. However, since it is not known a priori

what program part the user will reverse execute (i.e., which portion of RT the

user will run), it is impractical to recover the program counter inside RT .

3. If an instruction modifies a memory location, the instruction encoding only tells

us the modified address but not the physical location actually being modified

in the memory hierarchy (i.e., L1 cache, L2 cache or main memory). Without

the knowledge of the physical location actually being modified, it is typically

hard to recover the exact physical memory state (including exact cache state).

Therefore, regarding item (1) above, we define a program state S ′ = (M ′,R′)

that includes only directly modified memory (M ′) and directly modified register (R′)

values (i.e., M ′ and R′ only include the memory locations and registers that appear as

operands of the instructions of T ). Assuming that we can generate an instruction level

reverse program RT for a program T (an assumption which is true since we can always

resort to state saving if necessary), we can recover all memory and register values

that are directly modified by T . Note that some indirectly modified memory/register

values that have an effect on T ’s state may cause incorrect computation in rare

cases if those values are not recovered properly. We propose two techniques that

can be used to ensure correct computation in such cases. Therefore, by the help

24



of the two techniques we propose, we can even reverse any program that includes

any combination of instructions that indirectly modify program state. For a detailed

discussion of these two techniques, please refer to Appendix A.

Regarding item (2) above, since the program counter value carries important

debugging information, we must provide a means for restoring the program counter

value. We solve this problem by leaving the recovery of the program counter value

to the debugger tool. We associate the address of each instruction in T with the

beginning address of the corresponding portion in RT that reverses the effect of that

instruction. In this way, when a part of T is reverse executed by executing the

corresponding portion in RT , the debugger tool restores the value of the program

counter by using the connection between the addresses in T and RT .

Finally, regarding item (3) above, we treat memory as a unified abstract entity

which keeps the values of high-level program variables. In other words, as long as the

destroyed values of a variable can be retrieved, we do not distinguish between whether

the variable is actually kept in processor cache or main memory. Consequently, un-

doing a memory store operation on a program variable only comprises recovering

the previous value of the program variable but not the exact previous state of the

processor cache or main memory. For instance, a variable may originally reside in

main memory but not in the L1 cache; however, after the variable is destroyed and

subsequently recovered, the variable might be brought into the L1 cache. Therefore,

this process recovers the value of the variable, but does not restore the original state

of the L1 cache.

In addition to the three items above, there are also two other assumptions we

make. First, we assume that in case of an exception, the exception handler saves the

program context such as the program counter and the register state just before the

exception. Therefore, exceptions can be reversed by recovering the saved program
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context. Second, we assume that the external inputs/outputs to/from a program

(such as file I/O) are recovered by state saving.

Having discussed some of our initial assumptions and goals, we next illustrate the

highlights of the three main RCG steps.

3.2 Program Partitioning

Many programming language related algorithms require a certain analysis which is

used to extract information from the subject program. The same is true for the RCG

algorithm. The control flow analysis and the reaching definitions analysis constitute

the main analyses of the RCG algorithm.

When analyzing a program, it is essential to first select the program level at which

to perform the analysis. Is the analysis to be carried out on the whole program at

once or on individual functions separately or on even smaller regions such as basic

blocks one at a time?

It is usually difficult to perform control flow analysis across indirect calls because

an indirect call may be made to a statically unknown address. Therefore, in order to

simplify the RCG algorithm, we prefer to restrict the control flow analysis to inside

certain regions of code in which control flow can be statically determined. We name

these regions program partitions (PPs). Across PPs, on the other hand, control flow

information is dynamically recorded via a state saving technique that will be explained

in Section 4.3.3.2.

For most instruction sets (e.g., PowerPC, x86 and ARM), PPs are delimited by

indirect branches or “function call” instructions that may exist in the code. An

indirect branch delimits a PP because an indirect branch instruction may direct

the control to a statically unknown address. A function call instruction, on the

other hand, delimits a PP because the control may return from the called function

whose address may be statically unknown to the address following the function call
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void main() { 
    int z; 
    z = foo(5); 
    z = z + 1; 
} 
 

int foo(x) { 
    int a, b, c = 3; 
    b = x | 15; 
    a = x / c; 
    if (a > 100) { 
      b = a + 1; 
      c = b - x; 
    } else 
      c = x - b; 
    b = c * a; 
    return (b);     
} 

 main: 
  li       r3,0x5   
  bl       foo 
  addi     r12, r12, 1 
  blr  
 

 foo: 
 li  r11, 3  

 ori  r12, r3, 15  
 divw r10, r3, r11  

 cmpwi r10, 100 
 bgt  L1 
 sub r11, r3, r12  
 b  L2 
 L1:  addi r12, r10, 1  
 sub r11, r12, r3  
 L2:  mullw r12, r11, r10  

       blr 

(b) (a)  

first partition of main 

second partition of main 

single partition of foo 

Figure 5: (a) An example program T in C. (b) Assembly of T showing the PPs.

instruction. In the PowerPC instruction set, “bl” (branch with link register update)

and “blr” (branch to link register) instructions are examples for function call and

indirect branch instructions, respectively.

Figure 5 shows an example program T . In Figure 5(b), the portion of main that

starts from the first instruction of main and extends until the function call instruction

in main is a PP inside main. Similarly, the remaining portion of main is another PP.

On the other hand, since foo does not contain any function call instructions inside,

the whole body of foo is a PP by itself.

3.3 Reversing an Assembly Instruction

In Section 3.1, we stated that the reverse program recovers only directly modified

program state. Therefore, under this assumption, reversing an assembly instruction

is equivalent to recovering the register and/or the memory value(s) being directly

overwritten by that instruction. In this section, we outline how the RCG algorithm

recovers a directly modified value.
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After the PPs are determined, the RCG algorithm goes over every instruction

within all PPs in program order and checks whether each instruction directly modifies

a register or a memory location. If an instruction directly modifies a register or a

memory location, the RCG algorithm generates a group of one or more instructions

which recovers the overwritten value in that register or memory location. We call

such a group of instructions a reverse instruction group (RIG).

A value destroyed by an instruction can be recovered in three ways: (i) the value

can be recalculated during instruction level reverse execution, which we call the rede-

fine technique; (ii) the value can be extracted from a previous use during instruction

level reverse execution, which we call the extract-from-use technique; and (iii) the

value can be saved during forward execution and then restored during instruction

level reverse execution, which we call the state saving technique.

Figure 6 shows T (from Figure 5) and T ’s reverse RT . An instruction ix in T and

the generated RIG, RIGx, for that instruction are marked with the same index x in

Figures 6(a) and 6(b), respectively. Note that the instructions that are shown in bold

are extra instructions that are inserted to the original program for state saving; thus,

these instructions do not have associated RIGs. In addition, as will be explained in

the next section, control flow is reversed by control flow predicates inserted into the

reverse code; therefore, the control flow instructions also do not have associated RIGs

in the generated reverse program. Consequently, in Figure 6, we assigned indices

neither to the control flow instructions in the original program nor to the state saving

instructions inserted in the original program to enable reverse execution. Now, let us

have a closer look at some generated RIGs.

Example 1 Consider in Figure 6 the RIG for i8 which subtracts r3 from r12 and writes the

result into r11. Since the only value that is being directly changed by i8 is r11, the generated

RIG for i8, RIG8, should recover r11. First of all, the RCG algorithm finds the value of r11

that needs to be recovered. For this purpose, the RCG algorithm performs reaching definitions
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   main:  
  save r3  
    i1  li       r3,0x5 (r3)  
  bl       foo 
    i2  addi     r12, r12, 1 (r12) 
  blr 
 

   foo:  
  save r11 

    i3  li r11, 3 (r11) 
  save r12 

    i4  ori r12, r3, 15 (r12) 
  save r10 

    i5  divw r10, r3, r11 (r10) 
  cmpwi r10, 100 
  bgt L1 
    i6  sub r11, r3, r12 (r11) 
  b L2 
    i7  L1: addi r12, r10, 1 (r12) 
    i8  sub r11, r12, r3 (r11) 
    i9  L2: mullw  r12, r11, r10 (r12) 
 blr 

(b) (a) 

  
    foo_rev: 
  RIG9  cmpwi  r10, 100 
  ble L1 
  addi r12, r10, 1 

 b L2 
 L1:  ori r12, r3, 15 
 L2:  cmpwi r12, 100 
  ble L3 
  RIG8  li r11, 3 
  RIG7  ori r12, r3, 15 

  b L4 
  RIG6 L3:  li r11, 3 
  RIG5 L4:  restore r10 
  RIG4  restore r12 
  RIG3  restore r11 

  b L5 
     main_rev: 
  RIG2  subi r12, r12, 1 
  b foo_rev 
  RIG1 L5:  restore r3 
  

Figure 6: (a) Assembly of T shown in Figure 5(a). (b) Reverse of T , RT .

analysis within the PP under consideration. The definition that reaches the point just above i8

is r11 = 3 which comes from i3. Therefore, the value of r11 to be recovered is 3. This value is

used within the division operation at i5 before being destroyed. However, the division operation

does not allow the extraction of the destroyed value due to a possible loss of precision. Thus,

the extract-from-use technique is inapplicable in this case. However, the redefine technique is

applicable. Therefore, the RCG algorithm simply places the found reaching definition into RIG8

which redefines the destroyed value and thus recovers it. 2

Note that the regeneration of a value may require the regeneration of other values.

For example, this would happen if the value of a register were to be regenerated using

the value of another register that is also overwritten. Therefore, the redefine and

extract-from-use techniques are usually applied recursively (see Section 4.2).

On the other hand, if there are multiple definitions reaching at a point along dif-

ferent control flow paths, then the definition to be recovered depends on the dynamic

control flow of the program. In this case, the RCG algorithm generates instructions
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that recover each statically reaching definition. Then, the RCG algorithm gates these

instructions using conditional branches which determine (according to the dynamic

control flow of the program) which definition should actually be recovered in a par-

ticular instruction level reverse execution instance. The following example illustrates

this case.

Example 2 Consider RIG9 in Figure 6. In RIG9, the conditional branch instruction chooses

the correct definition of r12 to be recovered based on the specific control flow path taken in

forward execution of the program (see Section 4.2 for a detailed explanation). 2

Finally, if a value can be recovered neither by the redefine technique nor by the

extract-from-use technique, the RCG algorithm applies the state saving technique.

Consider the following example.

Example 3 In Figure 6, the value of r3 that is being destroyed by i1 comes from outside

of the PP in which i1 resides. Thus, this value cannot be redefined within the RIG to be

generated. Moreover, this value is not used within the PP before being destroyed. Therefore,

in this case, the RCG algorithm recovers r3 by state saving which is performed by the inserted

save instruction before i1. Then, the generated RIG, RIG1, simply restores i1’s value from the

saved record. 2

From what we outlined above, we can state that the RCG algorithm tries to apply

state regeneration by using the redefine and the extract-from-use techniques as much

as possible. The RCG algorithm applies the redefine and extract-from-use techniques

in combination to produce the smallest RIG. In case neither of these techniques are

applicable, a RIG is generated by employing state restoration. Generally, state saving

is applied if (i) the reaching definitions analysis cannot accurately find the value that

is being destroyed as in the case of memory aliasing (see Section 5.1) or (ii) the

value to be recovered comes from outside of the PP under consideration and thus the

extraction of the value from a previous use within the PP is not possible.
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We next explain the third and final main step of the RCG algorithm.

3.4 Combining the Reverse Instruction Groups

In order to keep the state consistent, the instructions that are executed in a certain

order during forward execution are supposed to be reversed in the opposite order

during instruction level reverse execution. This is similar to reversing a sequence of

movie frames where the frames during fast backwarding are shown in the opposite

order they are shown during forward play of a movie. In this section, we outline how

we combine the RIGs in order to establish a control flow that is exactly opposite to

the control flow of the original program.

From the control flow analysis point of view, we represent each PP by a control

flow graph which we call a partitioned control flow graph (PCFG). A PCFG is no

different than an ordinary control flow graph except that a PCFG is not necessarily

constructed for a complete function or a whole program. Figure 7 (a) shows the

PCFGs for the three PPs of T defined previously in Section 3.2. As seen in the

figure, each PCFG is further divided into basic blocks (BBs). Therefore, we represent

a program in a hierarchical structure. PPs form the highest level of hierarchy, then

come the BBs and finally come the individual instructions.

The RIGs are combined in accordance with our hierarchical representation of

a program. From the lowest level of program hierarchy to the highest level, this

combination process can be outlined as follows:

1. Combine the RIGs generated for a BB to construct the reverse of that BB which

we designate as RBB for short.

2. Combine the RBBs generated for a PP to construct the reverse of that PP

which we designate as RPP for short.

3. Combine the RPPs to construct the reverse program.
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r11 = 3 
r12 = r3 | 15 r11 = 3 

restore r10 
restore r12 
restore r11 

 

r10 ≤ 100 

r12 = r3 | 15 r12 = r10 + 1 

r10 ≤ 100 

true false 

RBB1 

RBB3 RBB2 

RBB4 
start 

true false 

exit 

restore r3  RBB1 

start 

exit 

r12 = r12 - 1 RBB1 

start 

exit 

reverse of first  
partition of main 

reverse of second 
partition of main 

reverse partition of foo 

r11 = 3 
r12 = r3 | 15 
r10 = r3 / r11 

r10 > 100 

r12 = r10 + 1 
r11 = r12 – r3 

r11 = r3 – r12 

r12 = r11 * r10 

true false 

BB1 

BB3 BB2 

BB4 

start 

exit 

r3 = 5 BB1 

start 

exit 

r12 = r12 + 1 BB1 

start 

exit 

first partition  
of main 

second partition  
of main 

single partition of foo 

(b) (a) 

Figure 7: (a) PCFGs of T . (b) PCFGs of RT .

Within basic blocks of a PP, control follows a linear path. Since we want the

instructions to be reversed in the opposite order they are executed in the forward

direction, linear execution within basic blocks can be reversed by simply placing the

RIGs in the reverse order the original instructions are placed. We call this placement

order the bottom-up placement order. For instance, as seen in Figure 7, the RIG gen-

erated for the first instruction of foo in BB1 is placed at the end of the corresponding

RBB, RBB1; the RIG generated for the second instruction is placed on top of the

previously generated RIG and so on.

We next consider the second level of hierarchy above where RBBs are to be com-

bined into RPPs. In this case, we insert conditional branch instructions into the

reverse code to provide a link between non-consecutive RBBs. Much like a railroad
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track changer, conditional branch instruction(s) inserted after an RBB select the cor-

rect path to be taken following that RBB. This selection is automatically performed

by the predicates of the inserted conditional branch instructions. For instance, after

RBB4 in Figure 7, a conditional branch is inserted which determines which RBB

(RBB2 or RBB3) to execute next.

Finally, at the highest level of hierarchy, we combine the RPPs by using branch

instructions, which is similar to the combination of the RBBs. However, unlike the

branch instructions used to combine the RBBs, the target addresses of the branch

instructions used to combine the RPPs might be statically determined (in case a PP

is immediately reachable from a unique source address) or might also be dynamically

determined (in case a PP is immediately reachable from multiple source addresses).

For instance, for T , we statically know that foo can immediately be reached from the

first PP of main only. Similarly, the second PP of main can immediately be reached

from foo only. Therefore, the reverse of foo is linked to the reverse of the first PP of

main by using a branch instruction of which target address is hard-coded. Similarly,

the reverse of the second PP of main is linked to the reverse of foo by a branch with

a hard-coded target address (see Figure 6(b)). On the other hand, the technique we

use for dynamically determining the branch targets is fairly detailed; therefore, we

leave the rest of this discussion to Section 4.3.

3.5 Summary

So far, we have introduced the basics of the three RCG steps. In the following chapter,

we will present each RCG step in more detail.
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CHAPTER IV

IMPLEMENTATION OF THE RCG

ALGORITHM

This chapter explains the implementation of the three RCG steps that were briefly

mentioned in the previous chapter. The first step is program partitioning which

divides the subject program to smaller program regions for the ease of analysis. The

second step is the generation of RIGs for the instructions of the subject program.

Finally, the last step is the combination of RIGs to build a complete reverse program.

4.1 RCG Step 1: Program Partitioning

In Section 3.2, we noted that the RCG algorithm divides the program under con-

sideration into smaller program regions. In this way, the RCG algorithm can carry

out control flow analysis easily. In this section, we explain the details about how we

generate PPs given a program at the assembly instruction level.

To extract a PP from a program, the RCG algorithm builds a partitioned control

flow graph, PCFG=(N ,E,start,exit). A PCFG is built for every PP in a program.

N is the set of nodes, E is the set of edges representing the flow of control between

the nodes, and start and exit are the unique entry and exit nodes of the PCFG,

respectively. Each node in a PCFG represents a basic block (BB). Since most modern

processors support only two-way branches, we assume that a BB in a PCFG may have

at most two outgoing edges, one for the target path and the other for the fall-through

path of a conditional branch instruction ending that BB (i.e., a multi-way branch in

a high-level programming construct, such as a C “switch” statement, is expressed by

a combination of two-way branches at the assembly level).
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Listing 1 Construct PCFG(): Construct Program Partitions
Input: A program T
Output: The PCFGs for the program partitions in T
begin

1 i = 0
2 repeat

3 PCFGi = φ /*initialize PCFGi to be empty*/
4 PCFGi += start block
5 repeat

6 α = Read the next instruction()
7 if end of current BB is reached then

8 Add current BB to PCFGi

9 end if

10 until (α = “function call”) or (α = “indirect branch”)
11 PCFGi += exit block
12 i = i+1
13 until end of the program is reached

end

Listing 1 shows the pseudo code for program partitioning. Construct PCFG()

builds a PCFG for each PP in the program under consideration by reading the in-

structions of the program in a loop (lines 5 to 10 of Listing 1). Construct PCFG()

starts the construction of a PCFG by inserting a start block at the beginning of that

PCFG (line 4). Then, in the loop, Construct PCFG() adds BBs to the PCFG until a

function call instruction (e.g., the PowerPC “bl” – branch with link register update

– instruction) or an indirect branch instruction (e.g., the PowerPC “blr” – branch

to link register – instruction) is encountered in the program being analyzed. When

Construct PCFG() encounters a function call or an indirect branch instruction, Con-

struct PCFG() ends the construction of the PCFG by adding an exit block to the

end of the PCFG (line 11). The instruction just after the function call or the indirect

branch instruction, on the other hand, starts a new PP and thus a new PCFG.

After BBs in a program are distributed into individual PCFGs for each PP in

the program, there may still be a control flow edge eij from BBi in PCFGm to BBj

in PCFGn. We call this kind of edge an interpartitional edge. Since there exists

a path between BBi and BBj along eij, the definitions made in or before PCFGm

may reach BBj through eij. If we ignore eij, reaching definitions analysis performed
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within PCFGn cannot determine such definitions that reach PCFGn through eij.

Thus, the reverse code generated by reaching definitions analysis within PCFGn may

be incorrect. Therefore, to be able to carry out a correct reaching definitions analysis

locally, we need to find a way to represent interpartitional edges inside PCFGs. This

representation is achieved as follows.

An interpartitional edge coming to BBj in PCFGn is represented by an edge from

the start block of PCFGn to BBj in PCFGn. Similarly, an interpartitional edge

going out from BBi in PCFGm is represented by an edge from BBi to the exit block

of PCFGm in PCFGm. In other words, the start block of a PP represents all the

BBs that transfer the control to that PP, and the exit block of a PP represents all

the BBs to which control is transferred from that PP.

Note that, however, the above representation of interpartitional edges inside PPs

does not imply that the program input to the RCG algorithm is modified. The

branches corresponding to the interpartitional edges in the original program (e.g.,

a direct unconditional or conditional branch from one PP to another PP) are kept

intact. These branches are represented by a separate call graph which will be explained

in Section 4.3.3.1. Note that such a direct unconditional branch could, for example,

correspond to a “goto” in the original source code.

The following example covers PP generation but does not address control flow

among PPs (e.g., from PPi to PPj or PPk).

Example 4 Figure 8(a) shows a sample program portion T . The original control flow graph

and the partitioned control flow graphs for T are also shown in Figures 8(b) and 8(c), respectively.

Note that in Figure 8(a), the symbolic information foo1 and foo2 are shown for explanation

purposes (as stated in Section 3.1.1, our actual input is only the assembly code, nothing else).

In a compiled code, foo1 and foo2 are replaced by actual addresses. In Figure 8, the solid

edges indicate the intrapartitional edges while the dotted edges indicate the interpartitional
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(a) (b) (c) 

  li       r3,0x5  
  cmp r3, r2 

  bge L1 
  bl      foo1 
L1: bl      foo2 
  addi   r12, r3, 1 
  blr  
foo1: subi r3, r3, 1 
  blr 
  

foo2: addi r3, r3, 1 
  blr 

 

 PCFG of PP1  

  li       r3,0x5 
  cmp  r3, r2 

  bge  L1 

   

  bl       foo1 

  addi    r12, r3, 1 
  blr  
 

  li       r3,0x5 
  cmp  r3, r2 

  bge  L1 

   

start 

exit 

  bl       foo1 

start 

  addi    r12, r3, 1 
  blr  

exit 

BB1 

BB2 

BB6 

BB1 

BB6 

BB2 

(3) 

(1) 

(1) 

(2) 

(5) 

  L1: bl     foo2 BB4 

(4) 

  bl       foo2 

BB4 
(1), (3) 

(5) 

(2) 

start 

exit 
(4) 

  foo1: subi r3, r3, 1 
    blr  
 

  foo2: addi r3, r3, 1 
    blr  
 

BB3 

BB5 

start 

exit 

(2) 

  foo1: subi r3, r3, 1 
    blr  
 

BB3 

start 

exit 

(4) 

  foo2: addi r3, r3, 1 
    blr  
 

BB5 

(5) (3) 

 PCFG of PP2   PCFG of PP3  

 PCFG of PP4   PCFG of PP5  

Figure 8: (a) A sample program portion T . (b) Corresponding control flow graph.
(c) Corresponding PCFGs.

edges. Also, in Figure 8, the solid rectangles indicate BB boundaries while the dotted rectangles

indicated the PP boundaries.

In Figure 8(c), the original control flow graph shown in Figure 8(b) is divided into five PPs

(i.e., PP1, PP2, PP3, PP4 and PP5) at points of “bl” (branch with link register update) and

“blr” (branch to link register) PowerPC instructions (line 10 of Listing 1). Each partitioned

control flow graph is delimited with a start and an exit block (lines 4 and 11 of Listing 1).

Note that the interpartitional edge indicated by (1) that leaves BB1 in the original control flow

graph is represented by an edge from BB1 to the exit block in the PCFG of PP1. Similarly,

the interpartitional edge indicated by (2) that leaves BB2 in the original control flow graph is

represented by an edge from BB2 to the exit block in the PCFG of PP1. We will address later

in Section 4.3.3.1 and Example 10 how an interpartitional edge in the original control flow graph
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(e.g., the edge from BB2 in Figure 8(b) to foo1) is represented in a call graph to perform an

interpartitional control flow analysis (e.g., in order to be able to direct the control from foo1

back to BB2 during reverse execution.)

The representation of interpartitional edges inside the PCFGs can be seen in the rest of the

PPs of T as well. For instance, the interpartitional edges indicated by (1) and (3) that come

to BB4 in the original control flow graph are represented by an edge from the start block to

BB4 in the PCFG of PP2. Similarly, the interpartitional edge indicated by (5) that comes to

BB6 in the original control flow graph is represented by an edge from the start block to BB6

in the PCFG of PP3. 2

4.2 RCG Step 2: RIG Generation

A RIG reverses the effect of an instruction that directly modifies a register or a

memory location. This section presents a detailed description of RIG generation.

Suppose that a definition δdestroy destroys the value D of a variable V (a directly

modified register or memory location) at a program point as shown in Figure 9. Let

us name the program point just before δdestroy as P.

Each statically reaching definition δi of V at point P might correspond to the

instance where D is actually assigned to V (Figure 9). The definition that corresponds

to the actual assignment instance is the definition that dynamically reaches point P.

Therefore, recovering D means recovering the definition of V that dynamically reaches

point P.

The definition of V that dynamically reaches point P depends on the dynamically

taken path to P. However, the path that will actually be taken is typically not known

prior to program execution. Therefore, we use the following technique to recover D:

we generate sets, each of one or more instructions, where each set recovers one or more

definitions of V statically reaching P along at least one path. For instance, referring
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P 

δ1 δ3 

path 4 

δ2 

path 3 

path 2 

path 1 

δdestroy 

µ 

D ε {D1, D2, D3} 
Re-executing δ1 recovers D for path 1 
Re-executing δ2 recovers D for paths 2 and 3 
Re-executing δ3 recovers D for path 4 
Extracting V out of µ recovers D for paths 3 and 4 

V = D1 
V = D2 

V = D3 

…= V… 

V = … 

Figure 9: Recovering a destroyed variable V .

to Figure 9, we can generate a set that recovers δ1. This set indeed recovers D if

path 1 is dynamically taken. Similarly, we can generate another set that recovers

δ2. This second set indeed recovers D if either path 2 or path 3 is dynamically

taken. We generate as many sets as necessary to cover all possible paths to δdestroy

from the definitions of V reaching P. If more than one set is generated, we tie the sets

together via conditional branch instructions. The predicates of the conditional branch

instructions carry the dynamic control flow information of the program. Therefore,

the correct set to be executed during reverse execution is automatically selected by

these predicates. If a predicate is also destroyed before δdestroy, then, in the same way,

we generate the sets which recover that predicate. The sets that recover the reaching

definitions of V , the conditional branch instructions (if any) that are used to gate

these sets and the instructions (if any) that are generated to recover the predicates

all together constitute a RIG for δdestroy.
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Let us now describe how a set of instructions which we will denote by ζ can be

generated to recover at least one definition of V reaching P. As briefly mentioned in

Section 3.3, there are three techniques that are followed to generate a ζ: the redefine

technique, the extract-from-use technique and the state saving technique.

4.2.1 The Redefine Technique

The redefine technique places into ζ the instruction αi that computes Di at the

definition δi statically reaching point P (Figure 9). If any one of the variables, say xi,

that is used for computing Di is also destroyed, then the instruction that recovers xi

must be inserted before αi in ζ; this must be applied recursively for all other modified

variables in the dependency chain. For instance, assume that a register ri depends on

another register rj, rj depends on rk and rk does not depend on any other variable in

the program. Therefore, there is a dependency chain from ri to rk. Also, assume that

both ri and rj are destroyed, while rk is available. Then, using the redefine technique

recursively, the RCG algorithm first recovers rj using rk and then recovers ri using rj.

The redefine technique can potentially recover only one definition δi of V reaching

P: namely, the definition δi which is redefined. Therefore, if a variable has more than

one statically reaching definition (e.g., δi and δj) at a point in a program, the redefine

technique has to be applied, if applicable, to each statically reaching definition (e.g.,

both δi and δj) separately. Note that, however, the external value of an input variable

(e.g., a global variable or an input argument) of a PP is certainly not defined within

the PP but comes from outside of the PP. Therefore, the external values of variables

of a PP cannot be recovered by the redefine technique.

The following example illustrates how the redefine technique works.

Example 5 The redefine technique: Consider the instruction that overwrites the value of reg-

ister r12 in BB4 in Figure 10 (we need the overwritten value of r12 because the overwritten value

is used both in BB2 and BB3). Let us name this instruction as α (i.e., α = “r12 = r11 ∗ r10”)
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and the analysis points just before α as P and just after α as P′. There are two different

definitions of r12 reaching P on two different paths: “r12 = r10 + 1” and “r12 = r3 | 15”.

Therefore, the value of r12 at point P is either “r10 + 1” or “r3 | 15”. Moreover, neither r10

nor r3 is modified after being used to define r12 and before point P′. Therefore, r12 can be

recovered on one path by executing the set ζ1 = {(r12 = r10 + 1)}, and r12 can be recovered

on the other path by executing the set ζ2 = {(r12 = r3 | 15)}. 2

 

r11 = 3 
r12 = r3 | 15 
r10 = r3 / r11 

r10 > 100 

r12 = r10 + 1 
r11 = r12 – r3 

r10 = r11 + 1 
r11 = r3 – r12 

r12 = r11 * r10 

true false 

BB1 

BB3 BB2 

BB4 P 

P ' 

start 

exit 

α 

Figure 10: An example PCFG of a program partition PPx.

4.2.2 The Extract-from-use Technique

The extract-from-use technique places into ζ an instruction β that extracts the de-

stroyed value of V out of a use µ (including a possible use of V by δdestroy itself) on

the path(s) between δdestroy and any definition of V reaching P (Figure 9). However,

again, if any other variable xi in β that is used for extracting V is also destroyed, then

an instruction that recovers xi must be inserted before β in ζ; this must be applied

recursively for all other modified variables in the dependency chain.
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As opposed to the redefine technique, the extract-from-use technique can recover

multiple definitions (e.g., both δ2 and δ3 in Figure 9) of V reaching P. Moreover, since

the external value of an input variable of a PP may be used within the PP, the input

values to a PP may be recoverable by use of the extract-from-use technique. How-

ever, the extract-from-use technique is less likely to be applicable than the redefine

technique because there might not always be a use µ on a path to δdestroy, and, even

if a use is available, µ’s operation might not always allow such an extraction of the

value of V . For example, the instruction “r3 = r1 / r2” might prevent the extraction

of r1 or r2 since the result of the division operation might be truncated due to the

limited precision r3 can represent.

In general, operations such as “integer add”, “integer subtract”, “integer multiply”

and “shift” allow extraction of values provided that the information that will allow

such an extraction is not lost due to an overflow/underflow or a shift-out during these

operations (note that as mentioned in Section 3.1, we assume the programmer notifies

RCG if such overflow/underflow or shift-out is possible; if overflow/underflow or shift-

out is possible, RCG disables any use whatsoever of the extract-from-use technique).

On the other hand, operations such as “integer divide” and floating point calculations

do not typically allow extraction of values due to a possible loss of precision on the

result.

The following example illustrates how the extract-from-use technique works.

Example 6 The extract-from-use technique: Consider again the instruction named α in

Figure 10. After the two definitions of r12 reaching P, there are two uses of r12 on each path:

“r11 = r12 − r3” and “r11 = r3 − r12”. Moreover, neither r11 nor r3 is modified between

the points of uses and point P′. These subtractions are performed as integer operations and

thus they are reversible provided that their results are not truncated. Thus, if the point P ′

is reached passing through the use “r11 = r12 − r3”, the destroyed value of r12 can be
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obtained by executing the set ζ3 = {(r12 = r11 + r3)}; if P′ is reached passing through the

use “r11 = r3 − r12”, then the destroyed value of r12 can be obtained by executing the set

ζ4 = {(r12 = r3 − r11)}. 2

4.2.3 The State Saving Technique

The RCG algorithm applies the redefine and the extract-from-use techniques in a

combination to come up with the smallest RIG. However, due to the limitations of

these techniques described in the previous subsections, we may not be able to generate

all of the sets necessary to cover all paths to δdestroy (Figure 9). Even worse, as in the

case of memory aliasing which will be described in Section 5.1, we may not be able

to find the statically reaching definitions of V at all. In such circumstances, the RCG

algorithm resorts to the state saving technique.

In general, we save a state by inserting a push-like instruction into the original

code just before δdestroy. The inserted instruction saves the state (e.g., r9 in Figure 11)

that is being modified by δdestroy into a free memory location that is pointed to by

a memory pointer (usually a register) and moves the memory pointer to the next

free location. Then, in the reverse program, a pop-like instruction is generated that

moves the memory pointer to the next value to be restored and restores the saved

value from memory.

 

add r9, r3, r4 

…
 

save r9 
restore r9 

…
 

…
 

Original program Reverse program 

Stack-like memory 

…
 

memory 
pointer 

δdestroy 

Figure 11: A diagram illustrating the state saving method of the RCG algorithm.
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A push-/pop-like instruction refers to an instruction that works in the same way as

an ordinary push/pop instruction; however, a push-/pop-like instruction can work on

any memory pointer, while a push/pop instruction can work only on the stack pointer.

For instance, the PowerPC 860 provides store-update and load-update instructions

that can be used as push-like and pop-like instructions, respectively. Ordinary push

and pop instructions are not considered for state saving in order to not possibly

corrupt the stack. If the target architecture does not support pop-like/push-like

instructions that automatically increment/decrement a memory pointer, save and

restore operations are handled by using ordinary store and load instructions with

explicit increment/decrement of a dedicated memory pointer.

4.2.4 An Example of RIG Generation

In the previous three subsections, we explained the three methods (redefine, extract-

from-use and state saving) we use to generate a set that recovers at least one definition

of the variable under consideration. We also stated that a RIG is nothing but a

combination of those sets which cover all possible paths to the destruction point. In

this section, we give an example of a complete RIG generation by using the PCFG

shown in Figure 12.

Example 7 RIG generation: In Examples 5 and 6, we gave four different sets ζ1, ζ2, ζ3 and

ζ4 each of which recover the value of r12 along a particular path to point P in Figure 12. Let us

now pick some of these sets to cover all the paths to point P and combine the selected sets to

generate a complete RIG for recovering the value of r12. Let us pick ζ1 = {(r12 = r10 + 1)}

to recover r12 along the left path to point P and ζ4 = {(r12 = r3 −r11)} to recover r12 along

the right path to point P in Figure 12 (note that the RCG algorithm always chooses minimum

size sets to produce a smallest possible RIG). Since all paths to point P are covered, ζ1 and ζ4

are enough to generate a RIG.
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r11 = 3 
r12 = r3 | 15 
r10 = r3 / r11 

r10 > 100 

r12 = r10 + 1 
r11 = r12 – r3 

r10 = r11 + 1 
r11 = r3 – r12 

r12 = r11 * r10 

true false 

BB1 

BB3 BB2 

BB4 P 

P ' 

start 

exit 

α 

Figure 12: PCFG from Figure 10.

We should now combine ζ1 and ζ4 by using a conditional branch instruction that determines

along which path P is reached. The predicate of this conditional branch instruction is r10 > 100.

However, we cannot use this predicate directly because the value of r10 is destroyed in BB2.

Therefore, we should first recover r10. We can recover r10 by two successive applications of

the redefine technique: we first redefine “r11 = 3” and then redefine “r10 = r3/r11” (r11 is

redefined because it is destroyed as well). Note, however, that since our aim is to recover r12

only, we should use a temporary register rt instead of r11 and r10 in order not to destroy the

values of r11 and r10 at point P. Therefore, a RIG for recovering r12 in PowerPC assembly can

be generated as follows:

li rt, 3

divw rt, r3, rt

cmpwi rt, 100

bgt L1

sub r12, r3, r11
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b L2

L1: addi r12, r10, 1

L2: ...

2

Listing 2 shows the pseudo code for the generation of a RIG corresponding to

an instruction α. To find the minimum sized RIG, Gen RIG() first finds all reach-

ing definitions δ of the register/memory location t modified by α (line 3). Then,

Gen RIG() creates an empty set ζδ (line 4) and sends ζδ together with the definitions

to be recovered to function Recover(). Recover() applies the extract-from-use tech-

nique and the redefine technique recursively to recover δ and fills in the set passed

by Gen RIG() (the pseudo code for Recover() will be shown in Section 5.1.3). Note

that an instruction may directly modify more than one physical location (e.g., the

store-update instruction “stwu r2, 4(r1)” on the PowerPC 860 modifies the memory

location at address r1 + 4 and then increments r1 by four, modifying both a memory

location and a register location with a single instruction). Therefore, as the “for all”

statement at line 2 indicates, Gen RIG() repeats the main loop between line 2 and

line 11 adding to the final RIG the instructions that recover each modified location

(line 10).

To recover a value, Recover() searches many different uses (with reversible oper-

ators) and/or definitions on different paths, where each use/definition covers a set

of one or more paths. If ζδ returned from Recover() has a cost of infinity (line 7),

this means that neither the extract-from-use technique nor the redefine technique can

recover t; thus, Gen RIG() applies the state saving technique to recover t (line 8).
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Listing 2 Gen RIG(): Generate a RIG
Input: An instruction α
Output: A RIG, RIGα, for α
begin

1 RIGα = φ
2 for all t = a register/memory location directly modified by α do

3 δ = Find Reaching Def(t, α)
4 ζδ = φ
5 ζδ .Cost = ∞
6 Recover(δ, ζδ)
7 if ζδ.Cost == ∞ then

8 ζδ = State save(t)
9 end if

10 RIGα += ζδ

11 end for

end

4.3 RCG Step 3: Combining the RIGs

The last step to build a reverse program is to combine the RIGs together. As men-

tioned in Section 3.3, RIG combination is a hierarchical process. In the lowest level,

RIGs are combined into RBBs. Then, in the next higher level, RBBs are combined

into RPPs. Finally, at the highest level, RPPs are merged to form the reverse pro-

gram. The following three subsections present each level of hierarchy in detail.

4.3.1 Constructing the RBBs

The first step to combine the RIGs is to build the reverse of each basic block in the

original program. The instructions within a BB complete in lexical order; thus, to

keep the state consistent during instruction level reverse execution, the RIGs should

execute in an order exactly opposite of the order of execution of the instructions in

the original program’s BB. Therefore, placing the RIGs in the order opposite to the

lexical order of a BB is sufficient to generate the reverse of that BB. In other words,

if a basic block BBi in the PP under consideration has a sequence of instructions

IBBi
= (α1, α2, α3, . . . αn), and if the corresponding RIGs generated for BBi are

RIGBBi
= {RIG1, RIG2, RIG3, . . . RIGn}, then the reverse of BBi, designated

as RBBi, consists of the sequence IRBBi
= (RIGn, RIGn−1, RIGn−2, . . . RIG1).
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Note that since a generated RIG, RIGk (1 ≤ k ≤ n) in IRBBi
, may contain branch

instructions (see Example 7), an RBB may not necessarily be a single basic block,

but instead may be a combination of multiple basic blocks. The following example

shows how the RBBs are constructed from the BBs of a PP.

 

RBB2 r11 = 3 
r12 = r3 | 15 

r11 = 3 
r10 = r3 / r11 

 

restore r10 
restore r12  
restore r11 

rt = 3 
rt = r3 / rt 
rt > 100 

r12 = r3 – r11 r12 = r10 + 1 

false true 

RBB1 

RBB3 

RBB4 
r11 = 3 

r12 = r3 | 15 
r10 = r3 / r11 

r10 > 100 

r12 = r10 + 1 
r11 = r12 – r3 

r10 = r11 + 1 
r11 = r3 – r12 

r12 = r11 * r10 

true false 

BB1 

BB3 BB2 

BB4 

start 

exit 

(b) (a) 

Figure 13: (a) PCFG of PPx from Figure 10. (b) RBBs of reverse program partition
RPPx.

Example 8 Constructing the RBBs: Figure 13(a) shows the PCFG of PPx previously shown

in Figure 10, and Figure 13(b) shows the RBBs generated for the reverse of PP , RPPx. The

RCG algorithm generates the reverse of each BB in PPx by combining the generated RIGs

in bottom-up placement order in RPPx. While the reverse of BB1, BB2 and BB3 (namely,

RBB1, RBB2 and RBB3) are constructed each as a single BB, the reverse of BB4, RBB4,

consists of three separate BBs. RBB4 is separated into three BBs because the reverse of the

instruction “r12 = r11 * r10” in BB4 consists of multiple instructions two of which are branches

(as given in the assembly listing in Example 7). 2
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BBy 

BB1 BB2 BBn … 

… 

RBB1 RBB2 RBBn … 

RBBy 

e 

fall-through path 

… 

n-1 conditional branch 
instructions here 

original PCFG reverse PCFG 

Co 

Fr 

Figure 14: Combination of RBBs at a fork point.

4.3.2 Constructing the RPPs

To generate the reverse of a PP, the RBBs generated for that PP should be combined

in an appropriate way. Once again, this combination should satisfy our argument

that the RIGs should execute in the order opposite to the execution order of the

instructions in the original program. Since edges in a PCFG designate the control

flow between the BBs, we reverse the control flow simply by combining the RBBs via

the inverted versions of the edges in the PCFG of the original PP.

Inverting the edges implies two facts. First, the RBBs are placed in an order

opposite to the order of BBs in a program. This is same as the bottom-up placement

order of RIGs within an RBB. Second, a confluence point of incoming edges in a

PCFG typically becomes a fork point of outgoing edges in the reverse version of that

PCFG, and vice versa. Consequently, one or more conditional branch instructions

are needed at the generated fork points in the reverse program.

Suppose that a confluence point Co in a PCFG becomes a fork point Fr in the

reverse PCFG as seen in Figure 14. Depending on the number of incoming edges to Co

(or outgoing edges from Fr), the RCG algorithm inserts at Fr one or more conditional

branch instructions that decide on which edge to take at Fr during instruction level

reverse execution (Figure 14).
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RBBy 

RBB1 RBB2 

BB1 BB2 

BBy 

fall-through path 

original PCFG reverse PCFG 

Cr 

Fo an unconditional 
branch to RBBy here target path 

Figure 15: Combination of RBBs at a confluence point.

Due to linear orientation of code in memory, typically the target of one of the n

outgoing edges from Fr immediately follows Fr in address space. Let us name this

outgoing edge as e (Figure 14). Since it is inefficient to generate a conditional branch

whose target address is the next address in memory, the RCG algorithm omits the

generation of a conditional branch instruction for e. A conditional branch instruction

is generated for all other edges leaving Fr. Therefore, due to our prior assumption that

the target processor architecture supports only two-way branches (see Section 4.1),

the number of conditional branches to be inserted at a fork point with n targets is

n − 1.

The decision on which edge to take at Fr is automatically performed during in-

struction level reverse execution by the predicates of the conditional branch instruc-

tions inserted at Fr. This approach is similar to the use of predicates for choosing

the correct set to execute inside a RIG (see Section 4.2). Since Fr corresponds to

Co, the predicates to be chosen at Fr are essentially the same as the predicates that

determine along which edge Co is dynamically reached during forward execution.

On the other hand, suppose that a fork point Fo in a PCFG becomes a confluence

point Cr in the reverse PCFG (recall from Section 4.1 that a fork point in a PCFG

can have at most two outgoing edges at the assembly level). This scenario is depicted

in Figure 15. In this case, it is necessary to establish a link between Cr and each RBB

that is the source of one of the joining edges at Cr (RBB1 and RBB2 in Figure 15).
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Again, due to linear orientation of code in memory, the RBB that corresponds to the

BB on the fall-through path of Fo (e.g., RBB1 in Figure 15) will always immediately

precede Cr in the reverse code. Hence, a link between RBB1 and Cr is already

established. Therefore, the remaining part is to provide the link between Cr and

RBB2 that corresponds to the BB on the target path of Fo. This link is established

by inserting an unconditional branch at the end of RBB2 as shown in Figure 15.

The following example illustrates how the RBBs are combined to generate an

RPP.

Example 9 Constructing the RPPs: Figure 16 shows the PCFG of PPx and the PCFG of the

corresponding RPP, RPPx. Also seen in the figure are the assembly listings of the instrumented

PPx (i.e., instrumented with state saving instructions) and RPPx. As seen by the assembly

listings, the RBBs are placed in bottom-up placement order in memory. Since the RBBs are

combined with the inverted versions of the edges in the PCFG of PPx, the confluence point

designated as Co in the PCFG of PPx becomes a fork point designated as Fr in the PCFG of

RPPx, and the fork point designated as Fo in the PCFG of PPx becomes a confluence point

designated as Cr in the PCFG of RPPx. Consequently, a conditional branch instruction is

inserted at point Fr and an unconditional branch instruction is inserted at the head of one of

the joining edges at Cr.

The predicate of the conditional branch inserted at point Fr in RPPx is r10 > 100. Since

r10 is not available at point Co which corresponds to point Fr in RPPx, this predicate is first

recovered just like it is recovered in RBB4 (see Example 7). Also, as seen in Figure 16, instead

of using r10 > 100, the RCG algorithm uses the complementary predicate r10 ≤ 100 at point

Fr. This can be explained as follows: In PPx, BB2 immediately follows the conditional branch

at point Fo. However, due to the bottom-up placement order of RBBs, the situation is opposite

in the reverse code. Namely, instead of RBB2, RBB3 immediately follows the conditional
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RPPx
 instrumented PPx 

target path 

r11 = 3 
r12 = r3 | 15 

r11 = 3 
r10 = r3 / r11 

restore r10 
restore r12 
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rt = 3 
rt = r3 / rt 

rt > 100 

r12 = r3 – r11 r12 = r10 + 1 
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RBB1 

RBB3 RBB2 

RBB4 

conditional 
branch 

unconditional 
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li rt, 3 
divw rt, r3, rt 

cmpwi  rt, 100 
bgt L1 

 sub r12, r3, r11 
b L2 

L1:  addi r12, r10, 1 
L2:  li rt, 3 

divw rt, r3, rt 

 cmpwi rt, 100 
ble L3 
li r11, 3 
ori r12, r3, 15 
b L4 

L3:  li r11, 3 
divw r10, r3, r11 

L4:  lwzu r10, -4(r9) 
lwzu r12, -4(r9) 
lwzu r11, -4(r9) 

 

conditional 
branch 
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RBB2 

RBB3 

RBB1 

RBB4 
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start 

exit 

fall-through 
path 

BB1 r11 = 3 
r12 = r3 | 15 
r10 = r3 / r11 

r10 > 100 

start 

li r9, 0x0   
stwu r11, 4(r9) 
li r11, 3 
stwu r12, 4(r9) 
ori r12, r3, 15 
stwu r10, 4(r9) 
divw r10, r3, r11 
cmpwi r10, 100 
bgt L1 
sub r11, r3, r12 
b L2 

L1:  addi r12, r10, 1 
sub r11, r12, r3 

L2:  mullw r12, r11, r10 

            blr 

r12 = r11 * r10 

exit 

r10 = r11 + 1 
r11 = r3 – r12 

r12 = r10 + 1 
r11 = r12 – r3 

BB4 

BB2 BB3 

The PowerPC 860 instructions “ stwu”  and “ lwzu”  are used as push-like and pop-like 
instructions with r9 being used as a memory pointer for state saving 
 

BB3 

BB2 

BB4 

BB1 

PCFG of  PPx PCFG of RPPx
 

Co 

Fr 

Cr 

rt = 3 
rt = r3 / rt 

rt ≤ 100 

target path 

Figure 16: A diagram illustrating the combination of the RBBs.
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branch inserted at point Fr (see assembly listing of RPPx). Therefore, the predicate is inverted

in the reverse code.

Note that an unconditional branch instruction is placed only at the end of RBB3 that

corresponds to the BB on the fall-through path of the fork in PPx (the other RBB, RBB2,

simply precedes RBB1 in address space). 2

4.3.3 Combining the RPPs

After generating an RPP, the RCG algorithm combines that RPP with the other

RPPs that have already been generated (the overall flow was explained in Chapter 3,

Figure 3). In order to achieve this, the RCG algorithm must know the control flow

information between the PPs in the program under consideration.

4.3.3.1 Determining the Control Flow Information Between PPs

Since PCFG construction is performed for each PP separately, each PCFG designates

the control flow within a particular PP only. In other words, a PCFG does not contain

any edges that show the flow of control between the PPs. Therefore, the control flow

information between the PPs is determined by another graph, G=(N ,E,s,t), which

is a call graph (CG).

In G=(N ,E,s,t), the set N is the set of nodes designating the PPs in a program

and the set E is the set of edges designating the flow of control between those PPs.

The notations s and t designate the unique entry and exit nodes of a CG. Note that

an indirect branch whose target PP is statically unknown may potentially invoke any

PP. Therefore, if a PP, PPi, makes an indirect call whose target PP is statically

unknown, the RCG algorithm inserts an edge from PPi to every other PP.

To learn from which address(es) a PP can be immediately reached and thus to be

able to move the control backwards to a source address, the RCG algorithm annotates
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Listing 3 Grow CG(): The CG construction algorithm
Input: A program partition PPj for which a PCFG has been generated
Output: A node nj in the CG with a set of edges connected to nj

begin

1 Add a node nj to CG for PPj

2 for all PPk immediately reached from PPj do

3 if (nk = node of(PPk)) 6= NULL then

4 Add to the CG an edge ejk from nj to nk

5 Annotate ejk

6 else

7 Set ejk as pending
8 end if

9 end for

10 if nj has a pending incoming edge then

11 for all eij from ni to nj do

12 Add to the CG an edge eij from ni to nj

13 Annotate eij

14 end for

15 end if

end

an edge eij ∈ E from a PP, PPi, to another PP, PPj, with the address of the

instruction in PPi that transfers control from PPi to PPj.

Listing 3 shows the pseudo code for call graph construction. Grow CG() adds

a new node to the CG for a PP when a PCFG is built for that PP. After a new

node nj is generated for a PP, PPj, Grow CG() checks the PPs that are immediately

reachable from PPj. For every PP, PPk, that is immediately reachable from PPj

and for which a PCFG (and thus a node in the CG) has already been generated,

Grow CG() adds an edge ejk from the node of PPj to the node of PPk and annotates

ejk with the address of the instruction transferring control from PPj to PPk (lines 2

to 5 of Listing 3). For every other PP that is immediately reachable from PPj but

for which a node has not yet been generated, Grow CG() sets a pending edge (lines

6 and 7). Then, Grow CG() checks whether PPj has pending incoming edges set for

it. If PPj has pending incoming edges, Grow CG() adds to the CG all the pending

incoming edges that are set for PPj and annotates those edges appropriately (lines

10 to 15).
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Figure 17: (a) The example program portion from Figure 8. (b) Corresponding
control flow graph. (c) Corresponding call graph (CG).

Example 10 Call graph construction: Figure 17(a) shows the sample program portion T

from Example 4. Figure 17(b) shows the control flow graph for T , and Figure 17(c) shows the

CG for T . As previously described in Example 4, T consists of five PPs: PP1, PP2, PP3, PP4

and PP5. The edges in the CG show the transfer of control between the PPs and are annotated

with the addresses of the instructions transferring the control between PPs. For example, at

address A1, control may be directed from PP1 to PP2 if the conditional branch “bge L1” is

taken. Therefore, in the CG, there exists an edge with annotation A1 from PP1 to PP2. As

another example, at the end of PP4 the “blr” (branch to link register) instruction directs the

control to the address following the function call instruction “bl” in PP1 which is used to call

PP4 from PP1. The address following the “bl” instruction in PP1 is the beginning address of

PP2; thus, there exists an edge with annotation A5 (the address of “blr” instruction in PP4)
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Figure 18: An abstract view of two PPs.

from PP4 to PP2 in the CG. As seen in Figure 17(c), the CG captures similar other control

flow information between the PPs. 2

4.3.3.2 Using the CG to Combine the RPPs

Equipped with the control flow information between PPs, the final step in the RCG

algorithm is to invert that control flow to combine the RPPs into a complete reverse

program. In this section, we describe how we use a CG to achieve this task.

Figure 18 shows an abstract view of two PPs, PPi and PPj, the reverses of these

PPs, RPPi and RPPj, and a sample call graph. As seen in the figure, there is an

edge from PPi to PPj in the CG. This means that PPj is immediately reachable

from PPi. If, indeed, PPj is reached from PPi during a specific execution, then after

reverse executing PPj, the control must be returned to PPi. Therefore, in this case,

we must provide a link from the reverse of PPj to the reverse of PPi in the reverse

program.

If a program partition PPi is immediately reachable from a single static location

whose address is A in the program under consideration (i.e., there is a single edge

coming to the node of PPi in the CG and that edge has an annotation A), then in the

reverse code, the address RA corresponding to A is the unique address to which the

control has to be directed after the reverse of PPi, RPPi, is executed. This is easily

handled by inserting at the end of RPPi an unconditional branch instruction whose
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target address is RA. However, if a program partition PPi is immediately reachable

from multiple static locations (i.e., there are multiple edges coming into the node

of PPi in the CG), the location from which PPi is immediately reached during a

specific execution of the program and thus the corresponding location in the reverse

code to which the control should be directed after executing RPPi, the reverse of

PPi, cannot be obtained statically. Therefore, in such a case, the RCG algorithm

applies a dynamic technique, called the stack-tracing technique, to find the location

to which the control should be directed after executing RPPi. We next describe the

stack-tracing technique.

The stack-tracing technique

The stack-tracing technique can simply be described as saving the statically unknown

return addresses of RPPs into a stack at runtime. During reverse execution, the saved

addresses are popped back from the stack to provide return from an RPP. There are

similar well-known forms of the stack-tracing technique in the literature that are

usually applied for obtaining call traces of procedures. In the context of reverse code

generation, we apply the state-tracing technique to learn in which order the PPs are

visited in a specific forward execution and thus to be able to reverse that order during

reverse execution.

Let us assume that a subset ΦPP of the PPs in the program under consideration

contains all PPs which are immediately reachable from multiple static locations. We

will designate the set of the reverses of these PPs as ΦRPP . Thus, the remaining

PPs in the program, but not in ΦPP , are immediately reachable from a single static

location each. Also, assume that there are a total of n locations from which control

reaches the PPs in ΦPP . We will designate the addresses of these n locations as

ΦA = {A1, A2, . . . An}. We will also designate the corresponding n addresses in the

reverse code as ΦRA = {RA1, RA2, . . . RAn}. Therefore, after executing the reverse

of a program partition PPi ∈ ΦPP during instruction level reverse execution, control
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Listing 4 Stack Trace(): The stack-tracing algorithm
Input: A call graph CG
begin

1 for all node PPi ∈ CG do

2 if |incoming edges(PPi)| > 1 then

3 for all program partitions PPj corresponding to parents of PPi in CG do

4 RA = Beginning Address(reverse(PPj))
5 insert ‘push RA’ at the end of PPj

6 end for

7 insert ‘pop RA’ and ‘branch to RA’ at the end of RPPi (reverse of PPi)
8 end if

9 end for

end

should be directed to an address RAi if and only if the control has reached PPi from

the corresponding address Ai during forward execution (Ai ∈ ΦA, RAi ∈ ΦRA).

The addresses to which control should be transferred from an RPP in ΦRPP during

a specific reverse execution of the program under consideration can be found by saving

the addresses in ΦRA into a runtime stack during forward execution. In other words,

whenever a transfer from an address Ai in ΦA to a program partition PPj in ΦPP

occurs during forward execution, we save the corresponding reverse address RAi in

ΦRA to a runtime stack in order to provide a return from the reverse of PPj, RPPj,

to address RAi during reverse execution.

Listing 4 shows pseudo code for the stack-tracing technique. The stack-tracing

technique inserts instructions both into the original and the reverse code to invert

the control flow between the program partitions that are immediately reachable from

multiple static locations (lines 5 and 7). The instructions inserted into the original

code handle the return address bookkeeping task by saving into a runtime stack

the addresses in ΦRA that correspond to the addresses on the dynamically taken

edges in the CG. The instructions inserted into the reverse code, on the other hand,

dynamically retrieve the saved addresses from the stack and transfer the control to

the retrieved addresses.
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Example 11 Combining the reverse program partitions: An example CG of a program is

shown in Figure 19(a). Figure 19(b) shows a sample PP visit order for a specific execution

instance of the program as well as the RPP visit order for the corresponding reverse execution.

According to Figure 19(b), the program under consideration is forward executed starting from

the beginning of PP1 traversing several PPs (some twice) until ending after PP2. Then, this

execution is reversed by executing the corresponding reverse program starting from the beginning

of RPP2 (the reverse of PP2) traversing several RPPs until finishing reverse execution at the

end of RPP1 (the reverse of PP1). The RPP sequence is marked with timestamps (encircled

numbers in Figures 19(b) and 19(d)) which indicate the instances when during reverse execution

control is transferred between the RPPs. Note that for simplicity in this example, we assume

the PPs are entered from the beginning and exited from the end (i.e., control does not leave or

enter to a PP from a midpoint of the PP). Thus, the addresses on the edges of the call graph

correspond to the end addresses of the PPs.

Since PP2, PP3 and PP4 are immediately reachable from multiple static locations within the

program as seen in Figure 19(a), the RCG algorithm, as seen in Figure 19(d), inserts indirect

branch (“blr” – branch to link register) instructions to the end of the corresponding reverse

program partitions RPP2, RPP3 and RPP4 where the target addresses of these indirect branch

instructions are determined dynamically during reverse execution. On the other hand, since

PP5 is immediately reachable from a single static location (from PP3), an unconditional branch

instruction with the hard-coded target address RA3 (which is the reverse of the unique call

location A3 – the end of PP3) is inserted to the end of the corresponding RPP, RPP5 as seen

in Figure 19(d).

Figure 19(d) also shows a table which indicates the dynamically determined target addresses

of “blr” instructions inserted at the end of RPP2, RPP3 and RPP4 and at what timestamp
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Figure 19: An example of combining the RPPs.

instances these addresses are determined. The second column of the table corresponds to RPP2,

the third column corresponds to RPP3, and the fourth column corresponds to RPP4.

The final state of the runtime stack M at the end of forward execution of the program is

shown in Figure 19(c). When a call is to be made to PP3 from PP1, the address RA1, which

corresponds to call location A1 indicated by the address annotation on the edge from PP1 to

PP3 in Figure 19(a), is entered into M . Then, a recursive call is made to PP3 from PP3 itself,

and address RA3 (which corresponds to call location A3) is entered over the previous entry in

M . When address A3 at the end of PP3 is reached again, PP3 this time makes a call to PP5

and the corresponding address RA3 is entered into M again. Similar steps are followed to enter

the rest of the addresses into M .
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During instruction level reverse execution, the stack-tracing technique determines the target

addresses of the “blr” instructions that are placed at the end of RPPs by popping the entries from

M starting from the top. For instance, at the end of RPP2, the top entry in M of Figure 19(c)

is popped. The popped address is RA4; therefore, the target address of the indirect branch at

the end of RPP2 is dynamically set to RA4 and a jump is made to RA4 which is the beginning

address of RPP4. When the end of RPP4 is reached during reverse execution, the current top

entry in M is popped once more. The popped address is RA4; therefore, the control is directed

to RPP4 again. Similar steps are followed during the rest of reverse execution, which results in

the correct ordering of the visits to the RPPs as seen in Figure 19(b). 2

4.4 Summary

In this chapter, we described the implementation of the three RCG steps: program

partitioning, RIG generation and RIG combination. The RCG algorithm first divides

the input program into smaller regions called program partitions (PPs) by generating

a partitioned control flow graph (PCFG) for each PP. Then, the RCG algorithm

generates the reverses of the individual instructions (RIGs) within each PP separately.

After each RIG is generated, the RIG is combined with the other RIGs generated so

far. This combination process is performed hierarchically in three steps. First, the

RIGs are combined into reverses of basic blocks (RBBs) by placing the RIGs in the

bottom-up placement order. Next, the RBBs are combined into reverse program

partitions (RPPs) by inverting the edges of the original PCFGs. Finally, the RPPs

are combined into a complete reverse program by using the stack tracing technique.

In the next chapter, we describe the special implementation details of the RCG

algorithm. Specifically, we describe the data structures used to generate a RIG and
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explain how we treat pointer and array based memory operations. The next chapter

also provides a complexity analysis of RIG generation.
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CHAPTER V

SPECIAL RCG DETAILS

In the previous chapter, we covered the major steps of the RCG algorithm and de-

scribed how a reverse program is built by analyzing and reversing the effects of in-

dividual instructions of a program. In this chapter, we explain the implementation

details of reverse code generation by means of the main data structures used for

redefine and extract-from-use techniques.

5.1 Details of RIG generation

We explained in Section 4.2 that in order to recover a value V , the redefine technique

re-executes the instruction that originally computes V provided that the inputs to

the computation are still available. Similarly, the extract-from-use technique extracts

V from the instruction in which V is used given that the other values used in the

computation are still available. Therefore, the data structures to be used in these two

techniques should provide us with the following information:

1. Since we seek the recovery of individual values, the program analysis for re-

verse code generation should be value based instead of variable based. That is,

the data structures should differentiate between different values that variables

attain.

2. The data structures should indicate how values flow between variables so that

one can know which values are needed to recover a destroyed value.

To differentiate between values, we use the value renaming technique that is widely

employed in static single assignment (SSA) form. To represent value flow between
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variables, on the other hand, we use a modified version of a value graph [6] which we

name a modified value graph (MVG). An MVG is different than a standard value graph

because an MVG includes extra edges (pseudo definition-predicate variable edges

and definition-recovering edges, explained in Sections 5.1.2 and 7.4, respectively) in

addition to data dependency edges of a standard value graph. The following sections

discuss the details of value renaming and MVG usage.

5.1.1 Value Renaming

Value renaming is the assignment of a different name to every definition of a vari-

able (i.e., a directly modified register or memory location) or to the combination of

definitions at confluence points in a PCFG (please see value renaming for combined

definitions below). Since value renaming assigns a unique name to each definition,

the RCG algorithm can easily distinguish between definitions of a particular variable

made at different points in a program.

5.1.1.1 Value Renaming for Registers

In our approach, different renamed values for registers are designated by rj
i . Here, i

(i = 0, 1, 2, . . . ) indicates the register number, and j (j = 0, 1, 2, . . . ) indicates the

unique index given to a particular renamed value (renamed during program analysis)

of a register. Index j = 0 is always used to refer to the initial value of a register. Let

us give an example of how register values are renamed.

Example 12 Value renaming for registers: Consider the following instruction sequence:

addi r2, r1, 8 //r2 = r1 + 8

addi r2, r2, 4 //r2 = r2 + 4

64



The initial values of the registers are given the names r0
1 and r0

2 for r1 and r2, respectively.

Then, the first instruction generates a new value designated by r1
2 by using the values r0

1 and

‘8’. After that, the second instruction generates another value designated by r2
2 using the values

r1
2 and ‘4’. 2

5.1.1.2 Value Renaming for Memory Locations

Similar to value renaming of registers, we designate different renamed values for

memory locations by mj
i . Here, i (i = 0, 1, 2, . . . ) indicates the memory location

being accessed, and j (j = 0, 1, 2, . . . ) indicates the unique index of a particular

renamed value residing in that memory location. Again, index j = 0 is always used

to refer to the initial value of a memory location.

However, renaming memory values is not as easy as renaming register values.

This is because the memory location being written by an instruction is not always

apparent within the instruction encoding. Consequently, it might be difficult to de-

termine whether two memory stores made by two different instructions are to the

same location or not.

In case of indirect addressing, two specific values often help determine the location

where an indirect store is made. These are the base and the offset. The target address

of each indirect store instruction can be expressed as the summation of the base

value with the offset value. If the base and offset values of a store instruction can be

determined statically, then the store operation is unambiguous (e.g., a store operation

for an ordinary variable, a pointer with a statically known target and an array with

a statically known index).

On the other hand, if the base and/or the offset value of an indirect store instruc-

tion cannot be determined statically, then the store operation is ambiguous (e.g., a

store operation for a pointer aliased to a statically unknown variable or an array with

a statically unknown index).
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In case of direct addressing, the target address being written by the store is appar-

ent in the instruction encoding. Therefore, a direct store operation is unambiguous.

In the following paragraphs, we first explain how unambiguous memory stores can

be distinguished, and then we explain how ambiguous memory stores are treated.

�

Saved�registers��
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Return�arguments�

Return�address�

Globals�

Frame�pointer�

Stack�pointer�
A�function�

frame�

Base�address�

Low�addresses�
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Input�parameters�

Figure 20: A typical memory organization made by a compiler.

Figure 20 shows a memory organization made by a typical compiler. In a typical

compiler, all unambiguous indirect local stores within a PP use the frame pointer (or

the stack pointer if the frame pointer is not available as a dedicated register) as the

base and a statically known value (usually a constant) as the offset. All unambiguous

indirect global stores in a program use the beginning address of the global data section

as the base and a statically known value (again, usually a constant) as the offset [5].

Since an indirect branch instruction such as a “return from a function” both

delimits a high-level program function and a PP, and since a PP is also delimited by

a function call instruction that may reside inside a high-level program function, a PP

is always equivalent to or a subset of a high-level program function. The important

point here is that for a typical compiler, the beginning address of the global data
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section is fixed throughout the execution of a program, and the value of the frame

pointer is fixed during the execution of a high-level program function. Therefore,

both the the frame pointer and the beginning address of the global data section are

fixed throughout the execution of a PP as well. Thus, within a PP, an unambiguous

indirect store can be distinguished from other unambiguous indirect memory stores

by finding the fixed base address and the statically known offset being used by the

store.

On the other hand, all unambiguous direct memory stores can trivially be distin-

guished from all other unambiguous memory stores by checking the target address in

the encoding of the direct store instruction.

Example 13 Value renaming for unambiguous memory stores: Consider the following in-

struction sequence:

li r1, 0x7000 //r1 = 0x7000

li r2, 0x5000 //r2 = 0x5000

. . .

stw r2, 4(r1) //mem[r1 + 4] = r2

stw r5, 8(r2) //mem[r2 + 8] = r5

The first store instruction writes the contents of r2 into the memory location at address

r1 + 4. The second store instruction writes the contents of r5 into the memory location at

address r2 + 8. As seen from the first two instructions of the assembly listing above, registers

r1 and r2 are loaded with two distinct base addresses. One of these base addresses corresponds

to the stack and the other corresponds to the global data section (note that it is not essential

to know which register corresponds to which base address, although the stack address is usually
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loaded to the register being used as the frame/stack pointer – r1 for the PowerPC assembly

listing above). Therefore, the first store is made into address 0x7004 and the second store is

made into address 0x5008. Since these addresses are distinct, the two memory definitions are

renamed as m1
0 and m1

1, respectively. 2

Ambiguous memory stores, on the other hand, are treated conservatively. Namely,

the RCG algorithm still assigns a distinct name to an ambiguous memory definition

being made by an ambiguous memory store instruction as if that definition were made

into a physical memory location that had never been accessed before. However, to

be conservative, the RCG algorithm also assumes that the ambiguous memory store

is capable of changing the value of any other physical memory location. Therefore,

all subsequent memory definitions in a PCFG that are reachable from an ambiguous

memory definition are treated as destroyed. The following example illustrates how

value renaming is performed for ambiguous memory stores.

Example 14 Value renaming for ambiguous memory stores: Consider the following in-

struction sequence:

li r2, 0x5000 //r2 = 0x5000

lwz r3, 4(r2) //r3 = mem[r2 + 4]

lwz r4, 8(r2) //r4 = mem[r2 + 8]

stw r6, 0(r3) //mem[r3] = r6

stw r6, 0(r4) //mem[r4] = r6

The first store instruction writes the contents of r6 into the memory location pointed to by

r3 and the second instruction writes the contents of r6 into the memory location pointed to by
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r4. However, neither the value of r3 nor the value of r4 can be determined statically as these

values are loaded from some distinct memory locations by the second and the third instructions

above. Therefore, the RCG algorithm renames the memory definitions made by the two store

instructions as m1
0 and m1

1 (i.e., the definitions are assumed to be made into distinct memory

locations) and the physical locations indexed as m0 and m1 behave as if they might coincide

with any physical memory location. 2

5.1.1.3 Value Renaming for Combined Definitions

We described in Section 4.2 that the RCG algorithm generates one or more sets

where each set recovers one or more statically reaching definitions of a variable at a

particular point. Moreover, we explained that these generated sets are combined via

conditional branch instructions that select one of the sets according to the control flow

path taken in the program. However, a typical PCFG may contain edges that join or

fork at many different locations. For this reason, values defined at distinct locations in

a PCFG may reach a particular point in the PCFG through multiple different paths.

Therefore, in such a PCFG with a complex structure, it might be hard to track from

where and under which condition(s) a definition reaches a particular point.

To ease the tracking of statically reaching definitions, the RCG algorithm, much

like in the SSA form, merges different definitions reaching a confluence point under

a pseudo definition and assigns a new name to the generated pseudo definition. This

ensures that a unique definition of a variable reaches any point in a program. A pseudo

definition generated at a confluence point selects (or dynamically represents) one of

the combined definitions depending on the predicate which determines on which path

the confluence point is dynamically reached. Consider the following example.

Example 15 Figure 21 shows a portion of a PCFG. There are five different definitions of

register r1 reaching point P3: r1
1 to r5

1. As seen in the figure, merging of definitions at
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Figure 21: Value renaming at confluence points in a PCFG.

confluence points provides a hierarchical grouping of definitions that reach a particular point

(P1, P2 or P3 in Figure 21) from several different places in the code. The definitions r1
1, r2

1, r3
1

are merged under a new name r7
1 at confluence point P1, and definitions r4

1 and r5
1 are merged

under a new name r6
1 at point P2. Finally, r6

1 and r7
1 are merged under the name r8

1 at point

P3. Therefore, for example, at point P3 it is sufficient to check what definitions are combined

under pseudo definition r8
1 to be able to determine all the reaching definitions of r1 at point

P3. 2

5.1.2 The Modified Value Graph (MVG)

The modified value graph provides us with the data and the control dependency

information between variables. If, for instance, a register r1 uses the value of register

r2, the value of register r1 might be recoverable from r2. Therefore, during the RCG

analysis, the MVG answers a question such as, “Which other register still keeps the

destroyed value of register r1?” Another question the MVG answers is “What memory

locations’ and/or registers’ values are needed to reconstruct the destroyed value of

memory location m0?” The MVG answers many additional such questions.
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More formally, the modified value graph is a directed graph G = (N ,E) where N is

the set of nodes and E is the set of edges between those nodes. Each node in an MVG

corresponds to a definition of a register or a memory location (renamed by a value

renaming operation) including the pseudo definitions as mentioned in the previous

section. In an MVG, we designate with µ the pseudo definitions that are generated

at loop entrances (at points in a PCFG where at least one forward edge and at least

one backward edge join) and with φ the pseudo definitions that are generated at any

other confluence point.

Example 16 Nodes in an MVG: Figure 22(a) shows an example PP. The PCFG and the MVG

for this PP are shown in Figures 22(b) and 22(c), respectively. Figure 22(c) indicates (via arrows)

at which point in the PP each definition is made. For example, instruction “lwz r2, 0(r1)”

writes a value into register r2 and thus defines r1
2. Note that the definitions m0

0, r0
1, r0

4 and r0
5

are the initial definitions of the corresponding locations and are defined prior to the PP shown

in Figure 22 (the location m0 is the memory location at the address value contained in r1).

Therefore, the nodes for these initial definitions in the MVG shown in Figure 22(b) do not

correspond to any instruction in the PP shown in Figure 22(a).

The node indicated with φ in Figure 22(b) corresponds to the pseudo definition r3
3 generated

at the confluence point of edges of the PCFG shown in Figure 22(c). Similar to SSA form, we say

r3
3 = φ(r1

3 , r2
3) meaning that r3

3 is a pseudo φ-definition which selects either r1
3 or r2

3 (depending

on the predicate r1
2 ≥ 0). Note that since each definition is represented by a single node in an

MVG, the size of an MVG is bounded by the number of definitions in a program. 2

The edges of an MVG, on the other hand, represent the data and the control de-

pendency relationships between variables in a program. Therefore, the edges indicate

on which other registers and/or memory locations a register or a memory location is
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  andi r4, r3, 0 // r4 = r3 & 0 
  blr 
 

Figure 22: (a) An example PP. (b) Corresponding MVG. (c) Corresponding PCFG.

data or control dependent. There are three kinds of edges in an MVG. While the first

two kinds of edges are mainly used during reverse code generation, the third kind of

edge is used in program slicing. Therefore, we will explain only the first two kinds of

edges for now. The third kind will be explained in Chapter 7 when dynamic slicing

support is described and will be called a definition-recovering edge.

1. Use-definition edge: This type of edge extends from a node ni to another nj

that is used by ni. A node ni can use another node nj in three different ways:

(1) ni and nj are the values for target and source operands of an instruction

α, respectively (i.e., the computation of ni uses the value in nj); (2) ni is a

memory value and nj is a register value determining the memory address of ni;

or (3) ni is a pseudo definition node and nj is one of the definitions that is being

combined under that pseudo definition.
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2. Pseudo definition-predicate variable edge: A pseudo definition-predicate variable

edge extends from a µ node or a φ node to the nodes of definition(s) used in

the controlling predicate expression for the µ node or the φ node (as explained

above, the µ nodes and the φ nodes select one of their combined definitions

according to a predicate). Therefore, this type of edge indicates which other

register or memory location controls which definition a µ node or a φ node

selects. Thus, a pseudo definition-predicate variable edge is used for extracting

the control dependency information between the nodes.

Example 17 Edges in an MVG: Figure 22(b) shows use-definition edges as solid lines. For

instance, the edge from m1
0 to r3

3 in Figure 22(b) indicates that m1
0 uses the definition r3

3

(actually, r3
3 is stored into m1

0). This edge is an example of case (1) in the above definition of

a use-definition edge. Similarly, the edge from m1
0 to r0

1 indicates the memory address of m1
0 is

determined by r0
1
. This edge is an example of case (2) in the definition of a use-definition edge.

Finally, the edges from phi node r3
3 (i.e., r3

3 = φ(r1
3, r2

3)) to the combined definitions under

r3
3, namely the definitions r1

3 and r2
3, are examples of case (3) in the definition of use-definition

edge.

On the other hand, a pseudo definition-predicate variable edge is shown as the dotted line

in Figure 22(b). This pseudo definition-predicate variable edge connects the pseudo definition

r3
3 to the definition r1

2. This is because which combined definition r3
3 selects (i.e., r1

3 or r2
3) is

controlled by the predicate expression r1
2 ≥ 0 which contains r1

2 as the only predicate variable.

2

An MVG is constructed in the same way as a standard value graph described

in [39]. Therefore, we will not go into details of MVG construction in this thesis.

Having described the nodes and the edges in an MVG, we next explain how an

MVG is used in the redefine and the extract-from-use techniques.
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5.1.3 Recovery of a Destroyed Definition Using an MVG

Each register or memory definition made in a program is represented by a node in

an MVG, and the dependency information between the definitions in a program is

represented by the MVG edges. Therefore, using this dependency information, the

RCG algorithm traverses an MVG and tries to locate the nodes that might be used

to reconstruct or extract a destroyed value by the redefine and the extract-from-use

techniques, respectively.

A node ni in an MVG can have at most one of the following attributes at a point

P in a program: killed, available or partially-available. Node ni is killed at P if

the definition ni represents does not reach P ; ni is available at P if the definition ni

represents reaches P along all paths; and ni is partially available at P if the definition

ni represents reaches P along a proper subset of all paths (e.g., along a path controlled

by a predicate expression), i.e, ni represents one of the definitions combined under a

pseudo definition.

As seen in Figure 23, suppose that an instruction α destroys the value of a vari-

able V at a particular point in a PP. Let us name the point just before and after

α as P and P′, respectively. As explained in Section 4.2, in order to recover the

value of V , Gen RIG() finds the reaching definition(s) δ of V at point P by calling

Find Reaching Def() at line 3 of Listing 2 (remember that in case there are multiple

reaching definitions of V at point P , these definitions are represented by a unique

pseudo definition due to the merging operation as shown by definition δ in Figure 23).

Then, Gen RIG() finds in the MVG the node that corresponds to the found pseudo

or reaching definition. Suppose that the found node is ni (i.e., ni is the node that

represents the reaching definition(s) δ of V at point P). Since δ is destroyed by α,

node ni is killed at point P′. Now, if one or both of the following are true at P′,

Gen RIG() can recover ni (i.e., the definition(s) δ) by generating the appropriate
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Figure 23: An instruction modifying a variable V at a point in a PP.

instructions (note that in the rest of this section, we interchangeably use the term

“node” to refer to a node n in an MVG and to the definition n represents).

(a) Each nj, where there exists a use-definition edge from ni to nj (i.e., nj is a child

of ni), is available, and an instruction β defines ni (see Figure 24(a)). Please

note that β needs each nj in order to be potentially re-executed.

(b) An nk, for which there exists a use-definition edge from nk to ni (i.e. nk is

a parent of ni), is available, and each ns, ns 6= ni, for which there exists a

 
 
 
 
 
 
 
 
 

…  

defined by β 

nk 

ni
 …  

defined by γ 

(a) 

children of ni children of nk, excluding ni 

(b) 

1j
n  

2j
n  

3j
n  

1s
n  

3sn  
2sn  

ni 

Figure 24: (a) Recovering a node from its children. (b) Recovering a node from one
of its parents and corresponding siblings.
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use-definition edge from nk to ns (i.e., ns is a sibling of ni for parent nk), is

available as well. Moreover, an instruction γ defines nk by using ni as a source

operand, and the opcode of γ allows extraction of ni out of γ (see Figure 24(b)).

Please note that γ needs each ns in order to potentially extract ni.

If (a) holds, ni can be recovered at P′ by executing β without any change (i.e.,

by the redefine technique). On the other hand, if (b) holds, ni can be recovered at

P′ by extracting ni out of γ (i.e., by the extract-from-use technique).

There are also two special conditions that enable the recovery of ni even if neither

case (a) nor case (b) holds.

(c) In case (b) above, at least one node nm among nk and the nodes ns that are

required to recover ni is partially-available controlled by a predicate expres-

sion Υm, and the rest of the nodes among nk and the nodes ns are available.

Moreover, the variables in Υm are also available.

(d) ni is a node that represents a pseudo definition (e.g., δ in Figure 23) where (a)

holds for each definition combined under ni (e.g., δ1, δ2 and δ3 in Figure 23)

and each node np where there exists a pseudo definition-predicate variable edge

from ni to np is available.

If (c) holds, then ni is recoverable by extracting ni from γ only if Υm evaluates to

true (i.e., only if the program reaches P′ via the control flow path(s) along which Υm

is true). Since the recovery of ni depends on a predicate expression to become true,

we state that ni is partially-recoverable by γ at point P′. To recover ni fully, ni must

be partially-recoverable by other such instructions γq for all other possible paths to

P′. If this is the case, ni is recovered by combining the instructions γq each of which

partially recovers ni on a particular set of paths to P′.

On the other hand, if (d) holds, then ni can be recovered by recovering each

definition combined under ni (e.g., δ1, δ2 and δ3 in Figure 23).
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lwz r2, 0(r1)  
cmpwi r2, 0 
bge L1 
  

add   r3, r5, r4 
b       L2  

 

sub   r3, r5, r4 

 

stw   r3, 0(r1) 
 

andi  r4, r3, 0 
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start 

 

exit 

 r4 
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r4 
1 
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α 

 lwz r2, 0(r1) // r2 = mem(r1) 
      cmpwi r2, 0 // if r2 � 0 
 bge L1 // goto L1 
    add r3, r5, r4 // r3 = r5 + r4 

 b L2 // goto L2 
 L1:  sub r3, r5, r4 // r3 = r5 – r4 

 L2:  stw r3, 0(r1) // mem(r1) = r2 

  andi r4, r3, 0 // r4 = r3 & 0 
  blr 
 

Figure 25: (a) An example PP. (b) Corresponding MVG. (c) Corresponding PCFG.

Finally, the above actions can be applied recursively, that is, if a node that is

required to recover ni is killed, then ni might still be recovered by recovering the

killed node first. If the recovery of a node requires the knowledge of the value of an

external input of the program partition under consideration, Gen RIG() generates a

state saving instruction to recover the killed node.

Example 18 Figure 25 shows the example PP, the corresponding MVG and the corresponding

PCFG previously shown in Figure 22. In Figure 25(b), available nodes at point P ′ are encircled

with solid thick lines, partially-available nodes at point P′ are encircled with dotted thick lines,

and killed nodes at point P′ are encircled with dotted thin lines. Suppose that we would like

to generate a RIG for the instruction α = addi r4, r3, 0. This instruction α modifies register

r4; thus, the RIG for α should recover r4. The reaching definition of register r4 at point P is

r0
4. Since r0

4 does not have any children, case (a) explained above does not hold. Since neither

of the parents of r0
4 are available, case (b) does not hold, either. However, case (c) holds for
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both parents of r0
4. Therefore, the definition r0

4 can be partially recovered by using the parent

node r1
3

and and the available sibling node r0
5

for the predicate expression r1
2

≥ 0. The same

node (r0
4) can also be partially recovered by using the other partially-available parent node r2

3

and the available sibling node r0
5 for the complementary predicate expression r1

2 < 0 (note

that we assume the computation of neither r1
3 nor r0

3 results in an overflow/underflow). Since

r0
4 is partially recoverable for all possible control flow paths reaching P′, r0

4 is fully recoverable.

In this case, the RIG for α will be as follows:

cmpwi r2, 0

bge L1

sub r4, r3, r5

b L2

L1: sub r4, r5, r3

L2: ...

2

Listing 5 shows the code snippet for recovering a definition δ using an MVG. The

Recover() function shown in Listing 5 starts from the MVG node ni of δ that is to

be recovered and traverses the MVG by recursively calling itself at various places.

Note that each recursion of Recover() is provided with a set ζδ which includes the

instructions to recover δ on a particular set of paths reaching to the point where δ

is destroyed (see Section 4.2 for a detailed description of such a set ζδ). At the end

of each recursion of Recover(), ζδ is appended with a new set of reverse instructions

ζsel which recovers δ on a new set of paths. As explained in Section 4.2, Recover() is

called recursively as many times as necessary to cover all paths to the point where δ

is destroyed.
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Listing 5 Recover(): Recovering a definition
Input: An MVG, a definition δ to be recovered in the MVG and a set of reverse instruction ζδ from
the previous recursion of Recover()
Output: ζδ appended with reverse instructions from the current recursion
begin

1 ni = node of(δ)
2 if ni == available then

3 RIGδ .Cost = 0
4 return
5 end if

6 Candidate parent sets = φ
7 Candidate child sets = φ
8 for all nk ∈ Parents(ni) do

9 Recover(definition of(nk), ζk
p )

10 if ζk
p .Cost != ∞ then

11 for all ns ∈ Siblings(ni, nk) do

12 Recover(definition of(ns), ζk
p )

13 if ζk
p .Cost == ∞ then

14 break
15 end if

16 end for

17 if ζk
p .Cost != ∞ then

18 Candidate parent sets += ζk
p

19 end if

20 end if

21 end for

22 for all nj ∈ Children(ni) do

23 Recover(definition of(nj), ζj
c )

24 if ζj
c .Cost = ∞ then

25 break
26 end if

27 if ζj
c .Cost != ∞ then

28 Candidate child sets += ζj
c

29 end if

30 end for

31 ζf
p = Extract from use(Candidate parent sets, ni)

32 ζf
c = Redefine(Candidate child sets, ni)

33 ζsel = Min size(ζf
c , ζf

p )
34 ζδ += ζsel

35 ζδ .Cost += ζsel.Cost

end
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First, to be able to recover ni from a parent node nk using the extract-from-use

technique, Recover() recovers nk (line 9) and all sibling nodes of ns used by parent

nk (line 12). These sibling nodes correspond to the definitions nk uses other than ni

and are needed to extract ni from nk. This process is repeated for each parent node

of nk (lines 7 to 20). Second, Recover() recovers each child node nj of ni to redefine

ni using its children (lines 22 to 30).

Next, the sets of instructions (denoted by Candidate parent sets) obtained by

recovering each parent nk and the corresponding siblings ns of ni are combined into

a final set, ζf
p using predicate expressions if needed (line 31). Similarly, the sets of

instructions (denoted by Candidate child sets) obtained by recovering each child nj

of ni are combined into another final set, ζf
c again by using predicate expressions if

needed (line 32). Finally, Recover() selects among ζf
c and ζf

p the minimum sized set

to be appended to the return set, ζδ (line 34), and adds to the cost of ζδ the cost of

the selected set (line 35).

5.2 Complexity of RIG Generation

This section makes a complexity analysis of RIG generation using an MVG. Let us

designate with N the number of nodes in the MVGs generated for all the PPs in a

program and with M the average degree of a node in an MVG (i.e., how many neigh-

bors a node has). Also, let us designate with K the maximum number of repetitive

applications of the redefine and the extract-from-use techniques allowed. As shown

in Listing 5, to recover a node ni, the RCG algorithm traverses the neighbors of ni

searching for available or partially-available nodes (defined in Section 5.1.3) until all

dependencies of ni are resolved. Moreover, this search is recursively repeated for all

other killed neighbors of ni. Therefore, in the worst case, if we assume that all nodes

to which there exists a path from a node ni in an MVG are killed, the RCG algorithm

has to visit at most MK nodes to recover ni. Assuming that this process is repeated
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to recover each node in an MVG, the complexity of RCG turns out to be proportional

with N × MK .

Since an MVG is constructed from the nodes within a PP only, M is dependent

only on the size of a PP but not on the size of a complete program. Therefore, in

a typical program with a fixed PP size, M is also fixed. Therefore, the complexity

typically grows linearly with N . (Note that N typically grows linearly with code

size.)

Example 19 Assume that a program T is composed of one million instructions; therefore,

N , the number of nodes in T , will be approximately one million. Also, assume that M is 10.

This means that a node has 10 neighbors in average. If K is taken to be 3, the number of

iterations to recover each node will be 1, 000, 000 × 103 = 109. Assuming that a processor

can execute 109 iterations per second, the total execution time will be 1 second. 2

5.3 Summary

In this Chapter, we explained the implementation details of the RCG algorithm by

explaining the main data structures used for generating a RIG. We also provided a

complexity analysis of RIG generation using an MVG. In the next chapter, we provide

a summary of the overall RCG algorithm.
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CHAPTER VI

SUMMARY OF THE OVERALL RCG

ALGORITHM

We presented the three main steps of the RCG algorithm and explained the details

behind our reverse code generation technique. Before going into the explanation of

the extensions we made to enrich the RCG algorithm with dynamic slicing support,

it would be better to briefly go over the main points that have been explained so far.

In this chapter, we give a summary of the overall RCG algorithm by the help of the

flowchart shown in Figure 26.

Given a program at the assembly instruction level, the RCG algorithm first divides

the program into program partitions (by building the PCFGs) and constructs a CG

of the program (Box 1 in Figure 26 – note that the algorithmic details implementing

Box 1 have been described previously in Listing 1 shown in Section 4.1 and in Listing 3

shown in Section 4.3.3.1). Then, the RCG algorithm enters a main loop where the

instructions of each program partition are read one after another and the reverse

program partitions are built.

After an instruction is read, the RCG algorithm checks whether the instruction

directly modifies a register or a memory value. If yes, the RCG algorithm generates

a RIG for the read instruction (Box 3). The algorithm for Box 3 has been given in

Listing 2 in Section 4.2.

After the RCG algorithm generates a RIG for an analyzed instruction in a BB, the

RCG algorithm places that RIG into the corresponding RBB in bottom-up placement

order as described in Section 4.3.1 (Box 4).
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Figure 26: A high-level flowchart of the RCG algorithm.
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When the RCG algorithm reaches the end of a basic block, the RCG algorithm

connects the reverse of that basic block to rest of the reverse program as explained in

Section 4.3.2 (Box 5). Similarly, when the RCG algorithm completes the construction

of the current reverse program partition, the RCG algorithm connects the constructed

reverse program partition to the rest of the reverse program (Box 6) and moves on to

the construction of the next reverse program partition (the implementation of Box 6

has been described in Listing 4 in Section 4.3.3). This process is repeated until the

end of the program is reached.

Example 20 Reverse Code Generation: Consider the Huffman encoder application shown in

Figure 27(a). This application is composed of six high-level functions: main, build huffman tree,

find huffman codes, build huffman table and write huffman header, write output data. When

the RCG algorithm executes Box 1 in Figure 26, the Huffman encoder application is divided into

ten PPs as shown in Figure 27(a) and a call graph shown in Figure 27(b) is constructed. Then,

the RCG algorithm enters a loop where it builds an MVG for each PP of Huffman encoder by

executing Box 2 in Figure 26 and generates the RPP for that PP. The number in parentheses

next to PPi indicates the number of nodes in the MVG generated for PPi. The reverse of a PP

is generated by reading the instructions in the PP one by one and by constructing (Box 3) and

combining (Box 4 and Box 5) the corresponding RIGs. Within the RPP generation loop, Box 3

and Box 4 are executed 314 times, while Box 5 is executed 44 times. Finally, the RCG algorithm

combines the RPPs generated for each PP to generate the reverse of Huffman encoder. 2
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Figure 27: (a) Huffman encoder block diagram showing PPs for each function and
MVG node count for each PP (b) Corresponding call graph.
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CHAPTER VII

DYNAMIC SLICING SUPPORT

7.1 Background

In order to understand the benefits of dynamic slicing for assembly level reverse

execution, we need to first understand what program slicing performs. This section

gives an overview of program slicing.

Definition 7.1.1 Static slice: A static slice of a program is a set of program statements

which may influence the value of a variable V at a statement S. Variable V and statement S

comprise the slicing criterion which we designate as C = (V ,S). 2

Definition 7.1.2 Dynamic slice: A dynamic slice of a program is a set of program state-

ments which affect the value of a variable V at a specific execution instance q of a statement S

given a set of program inputs X. We designate a dynamic slicing criterion as C = (X, V , S q).

2

Since we are interested in assembly level reverse execution, a dynamic slice of a

program should be at the assembly level as well. Thus, for the first time ever (to

the best of this author’s knowledge), we can define a dynamic slice to apply to an

assembly level program as follows.

Definition 7.1.3 Assembly level dynamic slice: An assembly level dynamic slice of a pro-

gram is a set of assembly instructions which affect the value of a register or a memory location
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(L) at a specific execution instance q of an instruction I given a set of program inputs X. We

show an assembly level dynamic slicing criterion as C = (X, L, I q). 2

An instruction influences the value of a register or a memory location another

instruction modifies if there is a direct or an indirect (i.e., transitive) dependency

between those two instructions. A direct dependency between two instructions can

be either a data dependency or a control dependency. If an instruction Ik uses a

register or a memory location L that is defined by another instruction Ik and L is not

subsequently overwritten before being used by Ik, then Ik is data dependent on Ij. If

the execution of Ik depends on the boolean outcome of Ij, then Ik is control dependent

on Ij. On the other hand, an indirect dependency between two instructions Ik and

Ij happens if Ik is directly dependent on another instruction Im and Im is directly

dependent on Ij. Therefore, the transitive closure of dependencies of an instruction

Ik gives all the instructions that may influence the value of L and thus constitutes a

static slice with respect to L [29, 41, 47].

Although any static slice of a program can be extracted by a pure static analysis,

the extraction of a dynamic slice requires runtime information of a program. This

information captures what control flow path the program follows to reach the specific

instance of the instruction in the slicing criterion. It may very well be the case that

some instructions, although part of the static slice with respect to a static slicing

criterion C = (L, I), cannot influence the value in L due to a lack of a dynamically

taken path between those instructions and I. Therefore, dynamic slicing removes

such instructions from a static slice producing a more compact and precise slice.

7.2 Overview of Slicing Approach

Assembly level reverse execution along a dynamic slice can be defined as a partial re-

verse execution method which visits only the instructions that are in the dynamic slice
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and which recovers only those values that are relevant to the dynamic slice instruc-

tions (i.e., the values that are used or generated by the dynamic slice instructions).

In this section, we give an overview of our methodology to achieve such a partial and

potentially faster reverse execution.

While trying to implement assembly level reverse execution along a dynamic slice,

one could ask the following question: “If the RCG algorithm gives us the reverse

of any code that is input to it and if we want to reverse execute along a dynamic

slice only, why not just extract the desired dynamic slice from a program first and

then use the RCG algorithm to generate the reverse of that slice?” Although, at

first sight, this approach seems to provide a trivial solution to our problem, it does

not serve our purpose. This is because some values that are relevant to the slice

instructions can only be recovered by undoing the instructions that are out of the

slice. Therefore, reversing the instructions within a slice only is not sufficient to

provide reverse execution along that slice. Consider the following example.

Example 21 Figure 28 shows a PowerPC assembly code piece with five instructions. The in-

structions in the dynamic slice that is calculated according to the slicing criterion

C = (r1 = 0, r3, (addi r3, r3, 1)1) are enclosed in rectangles. In other words, the enclosed

instructions are the instructions that influence the value of r3 at the first instance of instruc-

tion “addi r3, r3, 1” when r1 initially contains value ‘0’. Suppose that the program counter is

currently at position P5 and we would like to reverse execute the program back to point P1

by following the dynamic slice under consideration. This implies we first need to jump to P2

and then jump to P1 bypassing points P3 and P4. These points are bypassed because the

third and the fourth instructions are not within the dynamic slice. While reverse executing the

program through this path, we expect to retrieve the values relevant to the instructions on the

path. For instance, when we reach point P1, we should have retrieved the values of r2 and r1
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addi  r2, r1, 2 // r2 = r1 + 2 

mulli r3, r2, 4 // r3 = r2 × 4 

addi r4, r1, 1 // r4 = r1 + 1 

divw r2, r1, r4 // r2 = r1 / r4 

addi r3, r3, 1 // r3 = r3 + 1 

P1 

P2 

P3 

P4 

P5 

Figure 28: A code piece and a dynamic slice.

because both of these values are relevant to the first instruction in the dynamic slice. On the

other hand, at point P1 we do not care about the value of r4 because this value is neither used

nor generated by the instructions in the dynamic slice.

However, if we were to reverse execute only the instructions within the dynamic slice, we

would not have retrieved the value of r2 at point P1 because r2 is overwritten by the fourth

instruction which is outside the slice. Therefore, while trying to obtain the values relevant to

the instructions within the slice, we might have to undo instructions that are outside the slice.

2

As Example 21 illustrates, we should extend the RCG algorithm to take into

account all the instructions in a program in order to determine which instructions

to undo and which instructions to skip. In doing so, we choose to remove from a

complete reverse program the instructions that are unnecessary for reverse execution

along a particular dynamic slice. Hereafter, we refer to the RCG algorithm with

dynamic slicing support as RCG with Slicing or RCGS.

Figure 29 shows a high level view of our methodology. Given an input program

compiled to assembly, we first generate the corresponding complete reverse program

using the RCG algorithm we presented in Chapter 4. Then, the programmer can

start debugging the program with full-scale reverse execution support. When the
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programmer decides to obtain a dynamic slice to investigate the roots of a bug in the

program, the RCGS algorithm performs its extended static analysis. This static anal-

ysis, when combined with the runtime debugger support, enables the user to reverse

execute the program along the desired dynamic slice. Therefore, reverse execution

along a dynamic slice can be achieved without having to restart the program under

consideration.

The next section presents the extensions we made to the RCG algorithm following

the instruction removal approach explained above.

7.3 The Extensions to the RCG Algorithm

As explained in the previous section and also shown in Figure 29, the extensions to the

RCG algorithm for dynamic slicing support are composed of two parts. The first part

is the static analysis part. The second part is debugger support which incorporates

dynamic information. We describe each part in the following subsections.

 

Reverse execution 
along a dynamic 

slice 

Global MVG 
Reduced 
reverse 
program 

Input 
program 

Reverse 
program 

Black arrows indicate the actions performed by the debugger 

Gray arrows indicate the base static analysis performed only once per program 
White arrows indicate the extended static analysis performed for each dynamic slice 

Full-scale 
reverse 
execution 

Forward 
execution 

Dynamic 
slicing 
table 

MVGs for PPs 

Figure 29: A diagram of the RCGS algorithm.
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7.3.1 The Static Analysis Part

The extended static analysis is performed to generate a reduced reverse program and

a dynamic slicing table both of which provide reverse execution along a particular

dynamic slice (Figure 29). The reduced reverse program is a reverse program which

excludes the instructions that are definitely known to be unnecessary for reverse

execution along the dynamic slice under consideration. When executed, the reduced

reverse program recovers the program state relevant to the corresponding dynamic

slice.

The RCGS algorithm performs the extended static analysis over a global MVG

(see Section 5.1.2) which is obtained by combining the MVGs of individual PPs.

This combination process is performed by adding data dependency edges between

the nodes of individual MVGs using a standard global data-flow analysis [39].

A global MVG for a program is generated only once after the generation of a re-

verse program. Afterwards, the generated global MVG can be used for the generation

of different reduced reverse programs each of which enables reverse execution along

a different dynamic slice. Given a dynamic slicing criterion C = (X, L, I q), we first

use the global MVG to statically find the definitions which might influence L at I.

We call such definitions the potentially influencing definitions.

A reduced reverse program should be composed of only those instructions that

are required to recover the potentially influencing definitions. Ideally, these instruc-

tions are the RIGs that recover the potentially influencing definitions. However, as

explained in Section 4.2, to recover a definition, we might have to use some other

definitions as well. Therefore, the reduced reverse program also includes those RIGs

that recover these extra definitions. We collectively call the potentially influencing

definitions and their recovering definitions the essential definitions.

In the next section, we introduce the debugger support which is the second part

of the RCG extensions. The details of how a global MVG is used to determine the
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potentially influencing definitions and to extract a reduced reverse program will be

explained in Section 7.4.

7.3.2 Debugger Support

Debugger support reveals the control flow along the chosen dynamic slice in the input

program. The debugger uses the dynamic slicing table to map the position in the

reduced reverse program to the position in the input program at runtime. This is

achieved by using the correspondence between the input program and the reduced

reverse program. Since the reduced reverse program undoes only those instructions

that are actually executed during forward execution (the remaining instructions are

bypassed by the control flow predicates in the reverse code), the runtime information

required for building a dynamic slice is reconstructed during reverse execution rather

than being collected during forward execution.

7.4 Generating a Reduced Reverse Program Us-

ing a Global MVG

The information required to find the essential definitions in a program is obtained

from the edges of a global MVG. In this process, we also utilize a third type of edge

(in addition to use-definition and pseudo definition-predicate variable edges explained

in Section 5.1.2) whose definition was not included in Section 5.1.2.

3. Definition-recovering edge: As the name indicates, a definition-recovering edge

combines a killed definition δi with the definition δj that is used to recover δi.

The solid thick lines in Figure 30(b) are examples of this kind of edge. For

instance, as explained in Example 18, the node r0

4
is recovered using nodes r1

3
,

r2

3
and r0

5
. Therefore, three definition-recovering edges are placed from node

r0

4
to node r1

3
, node r1

3
and node r0

5
, respectively. This type of edge helps
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 lwz r2, 0(r1) // r2 = mem(r1) 
      cmpwi r2, 0 // if r2 � 0 
 bge L1 // goto L1 
    add r3, r5, r4 // r3 = r5 + r4 

 b L2 // goto L2 
 L1:  sub r3, r5, r4 // r3 = r5 – r4 

 L2:  stw r3, 0(r1) // mem(r1) = r2 

  andi r4, r3, 0 // r4 = r3 & 0 
  blr 
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Figure 30: (a) An example program. (b) Corresponding global MVG.

us determine the definitions which are required for recovering the potentially

influencing definitions.

Listing 6 shows the pseudo code for the generation of a reduced reverse pro-

gram. The notation outgoing dep edge(n,i) designates the ith outgoing use-definition

and/or pseudo definition-predicate variable edge of node n. Similarly, outgoing def-

recovering edge(k,j) designates the j th outgoing definition-recovering edge of node

k. The function follow edge(n, e) returns the node that is connected to node n via

edge e.

Given a dynamic slicing criterion C = (X, L, Iq), and a global MVG, the RCGS

algorithm first determines within the global MVG the node that corresponds to the

definition of location L at instruction I (i.e., the node with respect to which we would

like to take the slice) – line 1 of Listing 6. Let us designate the found node with n.
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Listing 6 Generate a Reduced Reverse Program
Inputs: A reverse program RT and a global MVG

A dynamic slicing criterion C =(X , L, Iq)

Output: A reduced reverse program
begin

1 In global MVG, find node n that corresponds to definition of L at I
2 worklist = {n}
3 repeat

4 n = head of(worklist)
5 for i = 1 to | outgoing dep edges(n) | do

6 k = follow edge(n, outgoing dep edge(n,i))
7 if k /∈ worklist then

8 worklist += k
9 end if

10 if k /∈ essential defs then

11 essential defs += k
12 end if

13 for j = 1 to | outgoing def-recovering edges(k) | do

14 m = follow edge(k, outgoing def-recovering edge(k,j))
15 if m /∈ essential defs then

16 essential defs += m
17 end if

18 end for

19 worklist -= n
20 end for

21 until worklist = φ
22 Pick from T the RIGs which recover essential defs
23 Update the target addresses of the remaining branches if necessary

end

As mentioned in Section 5.1.2, the use-definition edges and the pseudo definition-

predicate variable edges in an MVG designate the data and control dependencies, re-

spectively. Moreover, as explained in Section 7.1, the definitions that might influence

n are the definitions on which n is either directly or indirectly data and/or control

dependent. Therefore, the RCGS algorithm follows the use-definition and pseudo

definition-predicate variable edges starting from n and adds each newly visited node

k to the set of essential definitions as defined in Section 7.3 (lines 5, 6, 10 and 11). On

the other hand, when each such node k is added to the essential definitions set, the

RCGS algorithm also finds the nodes that are connected to k via definition-recovering

edges (lines 13 and 14). The found nodes correspond to the definitions that are re-

quired for recovering k. Therefore, these nodes, if not already added, are also added
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to the set of essential definitions (lines 15 and 16). After finding all essential defini-

tions, we pick from the reverse program the RIGs that recover the essential definitions

(line 22).

After the unnecessary RIGs are removed to generate the reduced reverse program,

some instructions may shift in the reverse program. Therefore, in such a case, we also

update the branch target addresses accordingly (line 23).

The following example illustrates how we generate a reduced reverse program by

using a global MVG.

Example 22 Figures 31(a) and 31(b) show an example program and the corresponding global

MVG, respectively. For clarity, we do not show definition-recovering edges in Figure 31(b).

Instead, definition-recovering relationships between the nodes are shown by the table in Fig-

ure 31(e). As in Figure 6, we use indices to refer to the instructions of the program under

consideration. Suppose that we would like to take the slice with respect to r5 at the instruction

marked with index 9 in Figure 31(a). This instruction defines the value r1
5. Therefore, we start

with the node r1
5 and follow the use-definition and pseudo definition-predicate variable edges

while adding each visited node and its recovering definitions to the essential definitions set. The

resulting nodes in the essential definitions set are shaded in Figure 31(b).

After the essential definitions and their corresponding RIGs are determined, the remaining

task is to remove the rest of the RIGs from the reverse program to generate the reduced reverse

program. The complete reverse program and the resulting reduced reverse program are shown

in Figures 31(c) and 31(d), respectively. An instruction in the original program and the RIG

which reverses that instruction are again marked with same index. For explanation purposes, we

annotated each destroyed definition in Figure 31(b) with the RIG that recovers it. For instance,

RIG9 restores the initial value of r5 which is named as r0
5. Therefore, in Figure 31(b), we
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  save  r2 
i1  addi  r2, r1, 1 // r2 = r1 + 1 
  save r3 
i2  mulli r3, r2, 5 // r3 = r2 / 5 
  save r4 
i3  mulli r4, r1, 4 // r4 = r1 × 4 
i4  lwzu r4, 0(r4) // r4 = mem(r4)  
 L4: cmpi r3, 64 // if r3 � 64 
  bge  L1 // goto L1 
i5  rlwinm r2, r3, -1 // r2 = r3 >> 1 
  cmpi r2, 0 // if r2 � 0 
  bne  L2 // goto L2 
i6  add  r1, r3, r1 // r1 = r3 + r1 

  b  L3 // goto L3 
i7 L2:  add  r4, r4, r3 // r4 = r4 + r3 
i8   L3: addi  r3, r3, 1 // r3 = r3 + 1 
  b  L4 // goto L4 
   save r5 
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  RIG9  restore r5  
  RIG8 L1: subi r3, r3, 1 // r3 = r3 - 1  
       cmpwi r2, 0 // if r2 � 0 
  beq L5 // goto L5 
  RIG7     subi r4, r4, r3 // r4 = r4 – r3 
  b L4 // goto L4 
  RIG6 L5: subi r1, r1, r3 // r1 = r1 – r3 
  RIG5 L4: cmpwi r3, 0 // if r3 � 0 
  bne L2 // goto L2 
  add r2, r1, 1 // r2 = r1 + 1 
  b L3 // goto L3 
  L2: subi rt, r3, 1 // rt = r3 - 1 
 rlwinm r2, rt, -1 // r2 = rt >> 1 
 L3: cmpwi r3, 0 // if r3 � 0 
  bne L1 // goto L1 
  RIG4  mulli r4, r1, 4 // r4 = r1 × 4 
  RIG3   restore r4   
  RIG2  restore r3   
  RIG1 restore r2  
 

 
RIG8   L1: subi r3, r3, 1 // r3 = r3 - 1  
       cmpwi r2, 0 // if r2 � 0 
  beq L5 // goto L4 
  b L4 
RIG6 L5: subi r1, r1, r3 // r1 = r1 – r3 
RIG5 L4: cmpwi r3, 0 // if r3 � 0 
  bne L2 // goto L2 
  add r2, r1, 1 // r2 = r1 + 1 
  b L3 // goto L3 
     L2: subi rt, r3, 1 // rt = r3 - 1 
 rlwinm r2, rt, -1 // r2 = rt >> 1 
  L3: cmpwi r3, 0 // if r3 � 0 
  bne L1 // goto L1 
 

Figure 31: (a) An example program. (b) Corresponding MVG. (c) The complete
reverse program. (d) The reduced reverse program. (e) Table showing definition-
recovering relationships.

annotated the node of r0
5 with “RIG9” (note that some nodes in Figure 31(b) do not have

associated RIGs because these nodes either are not destroyed at all or do not represent real

definitions but only pseudo definitions). As seen from Figures 31(c) and 31(d), the reduced

reverse program includes only those RIGs that correspond to the essential definitions. 2

7.5 Summary

Dynamic slicing support provides a programmer with the ability to reverse execute

a program along a designated dynamic slice. In this way, the programmer deals with

smaller portions of the whole program state to locate the bugs. In this chapter, we

described how dynamic slicing support is added on top of the reverse code generation
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algorithm. Basically, dynamic slicing is achieved by constructing a reduced reverse

program from a complete reverse program. The reduced reverse program generated

for a particular dynamic slice excludes the instructions that are not required to re-

cover the state relevant to that slice. Therefore, the reduced reverse program, when

executed, reveals the program state that is in the coverage of the chosen dynamic

slice only.

In the next chapter, we present various experiments we performed to show the

benefits of our instruction level reverse execution as well as our dynamic slicing tech-

nique.
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CHAPTER VIII

PERFORMANCE EVALUATION

In this chapter, we present the results obtained by applying the techniques described

in this thesis on a set of benchmark programs. We first describe the experimentation

platform used for the measurements and explain the benchmark programs. Then,

we show the results for full-scale reverse execution of the benchmarks. Finally, we

illustrate the results for reverse execution over different dynamic slices. Throughout

the experiments, our technique is quantitatively compared against the state-of-the-art

techniques.

8.1 The Experimentation Platform

The target platform we chose to carry out measurements is an MBX860 evaluation

board with a PowerPC (MPC860) processor and 4MB DRAM [38]. The reason we

specifically chose the MBX860 board is that we wanted to explore the advantages

of our technique in a real memory-restricted platform. However, our methodology

explained in this thesis is also applicable to other platforms such as large general

purpose computers.

In order to test instruction level reverse execution on a debugging session, we

implemented a low-level debugger tool with a graphical user interface (GUI) which

provides debugging capabilities such as breakpoint insertion, single stepping, register

dispay and memory display (Figure 32). The debugger runs on a PC with Windows

2000. The PC is connected to the MBX860 board via a Background Debug Mode

(BDM) interface [37]. We did not install any operating system on the MBX860 and
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Figure 32: The GUI of the debugger tool.

ran the benchmarks directly on the processor. Therefore, the measurement results

presented in this chapter do not include any operating system related overheads.

8.2 Benchmark Programs

The benchmark programs we used for our experimentation are selection sort (SSort),

matrix multiply (MMult), Adaptive Differential Pulse Code Modulation (ADPCM)

encoder from Media Bench [33] and Lempel Ziv Welch (LZW) code compression.

These benchmarks are all integer benchmarks. The primary reason for selecting

integer benchmarks is that the MPC860 processor does not have a floating point

unit. Moreover, our methodology performs better with integer benchmarks because,

as explained in Section 4.2, a floating point operation does not allow the use of the

extract-from-use technique due to a possible precision loss, reducing the applicability

of state regeneration.

SSort orders integer numbers which are input to SSort in an array. MMult multi-

plies two integer matrices which are input to MMult as arrays and writes the resulting

matrix into another array. Finally, ADPCM and LZW read their inputs starting from
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a location in memory and write the processed outputs back to another location in

memory. The input data is written to memory prior to execution of ADPCM and

LZW. SSort, MMult and ADPCM are implemented as a single function each, while

LZW is composed of three functions. The main function of LZW calls the other two

functions in a loop. One of the functions that is called from main includes a recursive

call to itself inside a loop. ADPCM also reads and processes its input in a loop.

On the other hand, SSort contains a two-level nested loop, and MMult contains a

three-level nested loop.

All of the benchmarks are written in the C programming language. In order

to compile the benchmarks for the PowerPC 860, we used a compiler from Tasking,

Inc. [45]. Note that since we do not enforce any structural constraints on the assembly

code that is input to the RCG algorithm, the input assembly code can be generated

in any way even by an optimizing compiler. In our experiments, we compiled each

benchmark using level-3 optimizations which include global common subexpression

elimination, constant propagation, constant folding, dead code elimination, strength

reduction, tail merging, spill-code reduction, loop memory-reference elimination and

global register allocation. Level-3 optimization is the highest possible for GCC [23].

Thus, our experiments were performed on assembly optimized at the highest (most

complex and aggressive) level possible for a typical compiler; thus, RCG and RCGS

seem to be compatible even with highly aggressive compiler optimizations.

8.3 Results for Full-scale Reverse Execution

This section presents several performance evaluations of the RCG algorithm and

compares the results against the results obtained from traditional reverse execution

methods.

As explained in Chapter 2, none of the previous techniques provides instruction

level reverse execution. Therefore, in order to compare the performance of the RCG
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algorithm against the previous techniques, we had to expand the previous techniques

to support instruction level reverse execution. Two of the best previous techniques

that are expandable to support instruction level reverse execution without any for-

ward execution are converted into either saving the modified processor state before

each instruction – incremental state saving (ISS) – or saving the modified processor

state before each destructive instruction (i.e., an instruction whose target operand is

different than the source operands) – incremental state saving for destructive instruc-

tions (ISSDI). We used GCC level-3 optimized assembly code for applying ISS and

ISSDI as well.

8.3.1 Comparison of Reverse Code Sizes

Table 1 shows the sizes of the compiled benchmarks and the reverses of the bench-

marks for ISS, ISSDI and RCG. Note that since ISS and ISSDI do not actually

generate a reverse program, the term “reverse code” as used in ISS and ISSDI refers

to the instructions that recover the saved state in ISS and ISSDI.

The reverse code sizes obtained with RCG are approximately 1.18X to 2.19X

larger than those that are obtained with ISS and ISSDI. This is because while ISS

and ISSDI usually use a simple load instruction to restore a value in a register or a

memory location, RCG uses a RIG that may be composed of multiple instructions.

Another interesting result is that for SSort, MMult and LZW it turns out that each

reverse code obtained by ISS has the same size as the equivalent reverse code obtained

by ISSDI. This is because ISSDI simply removes some of the state restoring load

instructions from the reverse code obtained by ISS and replaces them by equal number

of arithmetic instructions that undo constructive reversible instructions (as described

in Section 2.1.2). The rest of the instructions, on the other hand, are kept intact.
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Table 1: Sizes of the original and the reverse codes.

reverse code size (bytes) 
 code size  

(bytes) ISS ISSDI RCG 
Selection sort 152 180 180 284 

Matrix multiply 204 232 232 508 

ADPCM encoder 364 536 524 632 

LZW 432 572 572 712 
 

8.3.2 Comparison of Runtime Memory Usage

In this section, we illustrate the runtime memory usage results with ISS, ISSDI and

RCG. Our goal is to show that the RCG algorithm provides reverse execution with

much less runtime memory usage as compared to pure state saving approaches.

The tests are categorized according to various input data sizes to explore how

runtime memory requirements grow with the problem size. For SSort, the number of

elements to be sorted were chosen as 100, 1000 and 10000. For MMult, we used 4x4,

40x40 and 400x400 matrices. We fed ADPCM with 32KB, 64KB and 128KB input

data sizes. Finally, the input data sizes for LZW were varied between 1KB, 4KB and

16KB.

In this experiment, we ran each benchmark instrumented with state saving in-

structions according to ISS, ISSDI and RCG from the beginning forward until the

end. Then, we measured the total runtime memory used for state saving. State saving

was applied using circular buffers which never overflow so that we could measure total

memory usage even though the memory requirements with ISS and ISSDI in many

cases were above the available amount on the MBX860. The results are shown in Ta-

ble 2. As seen in the table, when data sizes are increased, the memory requirements

with ISS and ISSDI quickly exceed the 4MB of available memory on the MBX860,

while RCG still provides feasible memory usage except for the case when the input
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size of SSort is 10000. However, even in this case, the runtime memory requirement

with RCG is 82X and 55X smaller than the runtime memory requirements with ISS

and ISSDI, respectively. In general, RCG achieves from 2.5X to 2206X and from

2X to 1404X reduction in runtime memory usage as compared to ISS and ISSDI,

respectively.

Table 2: Runtime memory requirements for state saving.

 ISS    
(KB) 

ISSDI 
(KB) 

RCG 
(KB) 

ISS / 
   RCG 

ISSDI / 
   RCG 

Selection sort (100 inputs) 68.2 46.9 7.5 9X 6.3X 
Selection sort (1000 inputs) 6032 4065 151 40X 27X 
Selection sort (10000 inputs) 593389 397913 7237 82X 55X 
Matrix multiply (4x4) 3.6 2.35 0.17 21X 14X 
Matrix multiply (40x40) 2820 1801 12.6 224X 143X 
Matrix multiply (400x400) 2756883 1755006 1250 2206X 1404X 
ADPCM (32KB input data) 1544 1192 616 2.5X 2X 
ADPCM (64KB input data) 3088 2384 1232 2.5X 2X 
ADPCM (128KB input data) 6175 4767 2464 2.5X 2X 
LZW (1KB input data) 5630 3425 98.4 57X 35X 
LZW (4KB input data) 64970 39163 351 185X 112X 
LZW (16KB input data) 784336 471140 1331 589X 354X 

 

8.3.3 Comparison of Execution Times

In this section, we provide forward and reverse execution times of the benchmarks with

ISS, ISSDI and RCG. For the execution time measurements, we used the decrementer

counter of the PowerPC 860 processor (the PowerPC 860 provides a decrementer

counter which can be programmed to decrement at 2.5MHz on the MBX860; therefore,

one tick of the decrementer corresponds to 0.4 microseconds). We measured the

forward execution times both for the original benchmarks and for the benchmarks

that are instrumented with state saving instructions. In this way, we could also

measure the forward execution time overheads that are caused by ISS, ISSDI and

RCG. To measure the forward execution times, each benchmark was run from the
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Table 3: Forward execution time measurements of the original programs.

Benchmark Raw Execution Time 
(decrementer ticks) 

Raw Execution Time 
(seconds) 

Selection sort (100 inputs) 21187 0.008475 
Selection sort (1000 inputs) 2000202 0.800081 
Selection sort (10000 inputs) 198539130 79.41565 
Matrix multiply (4x4) 650 0.00026 
Matrix multiply (40x40) 472044 0.188818 
Matrix multiply (400x400) 457183831 182.8735 
ADPCM (32KB input data) 378294 0.151318 
ADPCM (64KB input data) 751280 0.300512 
ADPCM (128KB input data) 1496649 0.59866 
LZW (1KB input data) 1380413 0.552165 
LZW (4KB input data) 16063096 6.425238 
LZW (16KB input data) 194451339 77.78054 

 

Table 4: Execution time measurements of the instrumented and reverse programs.

 Benchmark ISS ISSDI RCG ISS/ 
RCG 

ISSDI/
RCG 

Selection sort (100 inputs) 42984 38496 31113 1.38X 1.24X 
Selection sort (1000 inputs) 3979802 3595213 2841029 1.40X 1.27X 
Selection sort (10000 inputs) 394063091 356208073 280677488 1.40X 1.27X 
Matrix multiply (4x4) 1432 1197 708 2.02X 1.70X 
Matrix multiply (40x40) 1092872 895703 476243 2.29X 1.88X 
Matrix multiply (400x400) 1064415269 870539981 458691637 2.32X 1.90X 
ADPCM (32KB input data) 805972 737720 616101 1.31X 1.20X 
ADPCM (64KB input data) 1611572 1475276 1232110 1.31X 1.20X 
ADPCM (128KB input data) 3223166 2950562 2464232 1.31X 1.20X 
LZW (1KB input data) 3126206 2699287 2054657 1.52X 1.31X 
LZW (4KB input data) 36319691 31942838 23813230 1.52X 1.34X In
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LZW (16KB input data) 439424024 378614957 288077045 1.53X 1.31X 
Selection sort (100 inputs) 28724 27137 36719 0.78X 0.74X 
Selection sort (1000 inputs) - - 3516414 - - 
Selection sort (10000 inputs) - - - - - 
Matrix multiply (4x4) 880 784 1325 0.66X 0.60X 
Matrix multiply (40x40) 660189 578556 1088827 0.61X 0.53X 
Matrix multiply (400x400) - - 1070219421 - - 
ADPCM (32KB input data) 656702 628958 765036 0.86X 0.82X 
ADPCM (64KB input data) - 1257770 1528807 - 0.82X 
ADPCM (128KB input data) - - 3057176 - - 
LZW (1KB input data) - - 2619106 - - 
LZW (4KB input data) - - 30596864 - - 
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LZW (16KB input data) - - 371045637 - - 
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beginning forward until the end, and to measure the reverse execution times, each

benchmark was run from the end backward until the beginning.

Table 3 depicts the forward execution time results of the original benchmarks (i.e.,

the benchmarks that are not instrumented by state saving instructions). Table 4, on

the other hand, shows the forward execution times of the instrumented benchmarks

and the corresponding reverse execution times. The dashes in Table 4 correspond to

measurements in which we ran out of memory on the MBX860. As shown in Table 4

(by a dash “-”), in most cases ISS and ISSDI do not let us reverse execute the whole

program because the limited memory on the MBX860 can hold only a small fraction

of the required state.

As seen in Tables 3 and 4, the execution times increase linearly for ADPCM, while

they increase exponentially for SSort, MMult and LZW. This is in accordance with

the loop structures in the benchmarks. Since instructions within the innermost loops

are the most frequently executed instructions, the execution times of the benchmarks

increase almost linearly with the increase in the number of times the innermost loops

are executed. Since SSort, MMult and LZW include nested loops, we observe ex-

ponential increase in the measured execution times when the input data sizes are

increased.

The slow down in reverse execution with RCG as compared to ISS and ISSDI is

between 1.16X and 1.89X. This slow down is a direct consequence of larger reverse

programs that are generated by RCG as compared to ISS and ISSDI. This is the

only penalty we have to pay as we gain much from runtime memory as illustrated in

Table 2.

However, since reverse executions are usually followed by forward executions in

cyclic debugging, the time loss during reverse execution can typically be compen-

sated by the reduced forward execution times of the programs with RCG. Since ISS

and ISSDI instrument the programs with many more state saving instructions than
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Figure 33: Execution time overhead results of ISS, ISSDI and RCG.
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RCG, RCG achieves faster forward executions than those that are achieved by ISS

and ISSDI. The speedup in forward execution with RCG over ISS and ISSDI ranges

between 1.2X and 2.32X. This result is also seen by the forward execution time over-

heads shown in Figure 33. The forward execution time overhead indicates the percent

ratio of the increase in the forward execution time (due to code instrumentation) over

the execution time of the original (uninstrumented) code. RCG achieves from 1.5X to

403X reduction in forward execution time overheads as compared to ISS and ISSDI.

The last RCG measurement compares debugging via reverse execution with de-

bugging via program re-execution. In this measurement, we executed a 400x400

matrix multiply from the beginning (end) to various intermediate program points in

the forward (backward) direction and measured the elapsed times. The intermediate

program points correspond to the beginning of the outermost loop of matrix mul-

tiply at different iteration instances of this loop. For 400x400 input matrices, the

outermost loop executes 400 times in total.

The results are shown in Figure 34. Suppose just as the 400th outermost loop

(the right-hand-side of Figure 34) ends, a bug is noticed. Suppose further that the

bug source is suspected to be in the 300th loop iteration. Figure 34 shows that

while it would take 107 seconds to reverse execute back to iteration 300 using RCG

compiled code, it would take 137 seconds to forward execute uninstrumented code

(the original code) from loop iteration zero forward to loop iteration 300. In fact,

once at the 400th iteration of the outermost loop, for any loop iteration greater than

280 it is faster to reverse execute to the target loop iteration than to forward execute

from loop iteration zero to the target loop iteration. In short, Figure 34 empirically

demonstrates that for a fairly large set of potential bugs localized close to the current

iteration point (in the case of Figure 34, the iteration point is the 400th iteration of

the outermost loop), it is faster to use RCG to go to the bug than to re-execute the

original code from the beginning.
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Figure 34: The elapsed forward/reverse execution times versus various program
points in 400x400 matrix multiply.

One option to speed up the program re-execute approach might be to take pe-

riodic checkpoints of the whole program state so that the programmer can restart

the program from the nearest checkpoint instead of the beginning of the program.

Then, he/she can forward execute from that point on to reach the target point.

However, obviously, checkpointing of the whole program state requires more memory

than incremental state saving if it is performed frequently enough to provide fast

state restoration. For example, assume that we take periodic checkpoints of 400x400

matrix multiply every 100ms to provide a worst case reverse execution time of 100ms.

To take an absolute checkpoint, typically, we at least need to save the value of every

element in the result matrix. Since each element is a 4-byte integer, each checkpoint

requires at least 625KB of memory. With the total runtime of 183 seconds, 400x400

matrix multiply requires 1830 checkpoints and thus approximately 1.1GB of runtime

memory. However, RCG requires only 1250KB as shown in Table 2. Therefore, once

the target point is reached, a checkpointing approach cannot achieve the speed of our

technique without sacrificing large memory space.
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8.4 Results for Reverse Execution Along a Dy-

namic Slice

This section presents the measurements we performed to test our technique which

provides reverse execution along a dynamic slice. We first show the advantage of

dynamic slicing support in terms of speed improvement during reverse execution.

Then, we show the efficiency of the RCGS algorithm in terms of runtime memory

requirements.

8.4.1 Reverse Execution Time Measurement

We first compare the overall execution time of full-scale reverse execution against the

overall execution time of reverse execution over a dynamic slice. In this experiment,

matrix multiply was performed over two 4x4 matrices and selection sort was performed

over an array of 10 integers. ADPCM and LZW, on the other hand, were run over

128KB input data. We experimented over three different dynamic slices for each

benchmark. For matrix multiply and ADPCM, we took the slices for two different

registers, while for selection sort and LZW, each slice was taken for a single register.

The slices for LZW were taken before the midpoint in execution so that we did not

allow the whole memory on the MBX860 to be consumed by state saving. Again,

the execution time measurements were performed via the decrementer counter of the

PowerPC 860 processor in a nonintrusive way.

In this experiment, we reverse executed each benchmark from the end of each slice

until the beginning of each slice first by using RCG and then by using RCGS.

Figure 35(a) shows the results for the four benchmark programs. The average

speedups with RCGS compared to RCG for matrix multiply, selection sort, ADPCM

and LZW are 35X, 2X, 1.3X and 2.7X, respectively. The reason matrix multiply

gives much larger speedup than the other benchmarks is that RCGS can remove

many RIGs from the nested loop in reverse of matrix multiply, while it can remove
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fewer RIGs from the loops in the reverses of the other benchmarks. The average code

size reduction from the complete reverse program to the reduced reverse program is

the largest for matrix multiply with a factor of 6.6X, while the code size reduction

factors for selection sort, ADPCM and LZW are 3.1X, 1.4X and 1.5X, respectively.

In order to better evaluate the advantage of reverse execution along a dynamic

slice in terms of reverse execution time, we performed another set of measurements.

We increased the input data sizes for matrix multiply and selection sort to increase

the running time of these benchmarks. We experimented with the same three slices

for each benchmark and took the average of the reverse execution times. The results

are shown in Figures 35(b) and 35(c). For instance, with 400x400 matrix multiply, the

full-scale reverse execution takes 4.5 minutes on average, while the reverse execution

along a dynamic slice takes only 141 microseconds on average, a 1,928,500X reduction.

While the average reverse execution time of matrix multiply along a dynamic slice

is almost kept constant with increased input size, the average reverse execution time

of selection sort along a dynamic slice increases by a factor of y2 when the input size

is increased by y times. The reason for this behavior can be explained as follows.

First, note that the execution time of the reverse of the three-level nested loop

inside the full reverse matrix multiply code dominates the execution time of the rest

of the reverse matrix multiply code because the execution time of the rest of the

code does not grow with increasing input size. Second, when the dynamic slice is

extracted, many of the RIGs that are removed from the reverse matrix multiply code

are from within the three-level nested loop. Therefore, the remaining RIGs in the

reverse matrix multiply code execute in almost constant time.

On the other hand, most of the RIGs are kept within the inner loop of the reverse of

selection sort even after the dynamic slice is extracted. Since this inner loop executes

n2 times with n being the number of integers to be sorted, we see an increase in the
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Figure 35: (a) Reverse execution time comparison. (b) Reverse execution time
comparison of matrix multiply with different matrix sizes. (c) Reverse execution time
comparison of selection sort with different input array sizes. (d) Runtime memory
requirement comparison.
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reverse execution time of selection sort by a factor of y2 when n is increased by y

times.

8.4.2 Measurement of Runtime Memory Usage

The RCGS algorithm provides important debugging support by implementing reverse

execution along a dynamic slice with little runtime trace information. To show this,

we implemented a reverse execution method with dynamic slicing support by using

an incremental state saving technique (ISS) together with one of the best traditional

dynamic slicing techniques which uses an execution trajectory (ET) [4]. We compared

the runtime memory requirement of RCGS against the memory requirement of ISS

and ET.

Figure 35(d) shows the results for the four benchmark programs. In this exper-

iment, the input sizes of the benchmarks were chosen to be the same as the sizes

in our first dynamic slicing experiment explained in Section 8.4.1. The results indi-

cate that compared to ISS+ET, RCGS achieves approximately 15.2X, 3.4X, 3.8X and

548X reduction in memory overheads for matrix multiply, selection sort, ADPCM and

LZW, respectively. Due to the loop effects explained in Section 8.4.1, these figures

become even larger with increasing input data sizes. For instance, for 400x400 ma-

trix multiply, while ISS+ET requires 1.37GB of memory, RCGS requires only 626KB.

For selection sort with 1000 inputs, while ISS+ET requires 2.5MB of memory, the

memory requirement of RCGS is only 98KB.
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CHAPTER IX

CONCLUSION

Executing a program repeatedly is an effective debugging method applied by most

programmers. However, every time a program is restarted, parts of the program

that have already executed without error have to be re-executed unnecessarily. The

unnecessary re-execution of these program parts constitute a significant portion of

the debugging time. Even worse, restarting programs that run for very long time

periods is simply impractical.

Reverse execution cuts down the time spent for repetitive or cyclic debugging by

localizing program re-executions around the bugs in a program. When a bug location

is missed by executing a program too far, the program state at a point before the bug

location can be restored by reverse execution and the program can be re-executed

from that point on without having to restart the whole program.

Conventional techniques rely heavily on saving processor state before the state

is destroyed. However, state saving causes significant memory and time overheads

during execution of a program. In an effort to reduce memory and time overheads

caused by state saving, the state saving frequency can be reduced. However, reducing

the state saving frequency increases the distance between the point where the program

is stopped and the closest point from where the program can be restarted, which

effectively reduces the benefit of reverse execution.

In this thesis, a new reverse execution methodology for programs has been intro-

duced. To realize reverse execution, the methodology generates a reverse program

from an input program by a static analysis at the assembly level. The methodology is

new because state saving can be largely avoided even with programs including many
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destructive instructions. This cuts down memory and time overheads introduced by

state saving during forward execution of programs. Moreover, as a new feature, the

methodology provides instruction by instruction reverse execution at the assembly

instruction level without ever requiring any forward execution of the program un-

der consideration. In this way, a program can be run backwards to a state as close

as one assembly instruction before the current state, which is very useful for debug-

ging programs written in assembly or programs whose assembly has been aggressively

optimized by a compiler.

Since generation of the reverse program is performed from the assembly instruc-

tions of the original program, the methodology introduced in this thesis provides in-

struction level reverse execution for programs without source code. Also, since both

the forward code and the reverse code are executed in native machine instructions,

these executions can be performed at the full speed of the underlying hardware.

This thesis also introduced a new approach to reverse execution along a dynamic

slice. Specifically, the introduced RCGS approach provides an instruction level reverse

execution that visits only the dynamic slice instructions and that skips recovering pro-

gram state unrelated to the dynamic slice. This results in a fast reverse execution

at the assembly instruction level. Moreover, the approach does not require an exe-

cution trajectory to extract a dynamic slice from a program. Instead, the necessary

runtime information is mainly reconstructed during reverse execution by the control

flow predicates in the reverse program. This property coupled with the regeneration

of runtime values on the fly makes the techniques embodied in RCGS as presented in

this thesis very memory efficient.

In conclusion, this thesis achieves for the first time known to the author reverse

execution of an assembly program via execution of a “reverse program” generated

from the original assembly program input. Dramatic reductions (up to several orders

of magnitude) in runtime memory requirements are achieved compared to previous
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approaches, all of which end up relying heavily on state saving to memory since they

do not have access to any “reverse program.” In short, standard compiler techniques

– plus some new, novel techniques specific to reversing the effects of assembly instruc-

tions – are used to generate the reverse program. In addition, the reverse program

can be pruned to include only information related to a dynamic slice, resulting in up

to six orders of magnitude reduction in reverse execution time (as compared to the

time spent to reverse execute the entire program). Finally, as compared to one of the

best traditional dynamic slicing techniques, reverse execution along a dynamic slice

using a pruned reverse program results in up to two orders of magnitude reduction

in runtime memory overhead on candidate benchmarks.
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APPENDIX A

HANDLING EFFECTS OF INDIRECTLY

MODIFIED LOCATIONS

We have already stated in Section 3.1 that a reverse program RT generated for a

program T recovers only memory and register values that are directly modified by

the instructions of T . This appendix explains how the effects of indirectly modified

memory and register values can be handled to ensure correct operation during a

debugging session.

A value is indirectly modified if the underlying processor updates the value im-

plicitly as a result of an executed instruction. In other words, an indirectly modified

location does not appear as an operand in the encoding of an instruction. Indi-

rectly modified locations are usually status bits that flag certain conditions such as

overflows. Consider the following example.

Example 23 Many processors usually modify a condition bit in a specific register after exe-

cuting a “compare” instruction. This bit determines whether a subsequent conditional branch

instruction will be taken or not. A condition bit may not necessarily be apparent in the encoding

of a compare instruction but may be updated by the processor implicitly after a compare in-

struction executes. Thus, such a condition bit is an example of an indirectly modified location.

2

Let us designate by I the set of instructions of a processor P . We define a set, say

E (E ⊂ I), of instructions of P such that the outcome of an instruction in E does
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not depend on any indirectly modified memory location or register but only on that

instruction’s source operands which are directly modified by other instructions in I.

The set of instructions outside of E, designated as E ′ (E ′ ⊂ I and E ′ = I − E),

on the other hand, are affected by indirectly modified memory and/or register values.

Example 24 Consider an ordinary “add” instruction. The outcome of an ordinary “add”

instruction such as “add r1, r2, r3” in a program is only affected by the values of r1 and r2

both of which can only be modified in a direct fashion via other instructions in the program.

Therefore, an ordinary “add” instruction is an element of E. On the other hand, consider

an “extended add” instruction whose result is the sum of its source operands plus a carry bit

which might have been indirectly modified by a prior instruction. Therefore, an “extended add”

instruction is an element of E ′. 2

Table 5: Distribution of the instructions in E and E ′ for the MPC860.

Instructions in E' 
affected by Number Percentage Comments 

condition bit 4 2.80 determines if a branch will be taken or not 

carry bit 6 4.20 affects the result of extended 
addition/subtraction instructions 

overflow bit 4 2.80 branches can be taken based on an 
overflow bit 

status register 2 1.40 is indirectly modified and can affect a 
general purpose register by a direct copy 

timer 1 0.70 is indirectly modified and can affect a 
general purpose register by a direct copy 

reserve bit 1 
0.70 affects the outcome of a store conditional 

instruction which is used to implement a 
synchronization primitive 

total in E' 18 12.59  
total in E 125 87.41  
total in I 143 100.00  
 

Table 5 shows an estimated distribution of the instructions in E and E ′ for the

MPC860 processor. Also, Table 5 categorizes the instructions in E ′ according to which

indirectly modified location affects the instructions in E ′. As seen in the table, 87.41%

117



of the instructions in MPC860 instruction set are inside E and can be safely reversed

by the reverse code. On the other hand, 12.59% of the MPC860 instructions require

specific treatment by use of the re-execute approach or the state saving approach

described in this appendix.

Handling the Effects of Instruction in E ′

The only potential problem due to not recovering indirectly modified values via a

reverse program is that an instruction in E ′ may not execute consistently after reverse

execution. Thus, if we can always make the instructions in E ′ execute consistently

after reverse execution, the execution will be always correct.

Let us assume that the outcome of an instruction α ∈ E ′ depends on the

value V of an indirectly modified register or a memory location. Also, assume that

an instruction, say β, computes V indirectly. We propose two approaches that can

be used to provide consistent execution of α even though V is not recovered via a

reverse program. The first approach is to re-execute β just before every time α is

executed. Thus, even if V is not recovered during reverse execution, re-execution of

β will restore V before α executes. The second approach is to save the state (i.e.,

the state α modifies) before α is reverse executed and to restore the saved state after

α is forward executed subsequently. Thus, the restoration of the saved state ensures

that the state is kept consistent after execution of α. Note that this state saving is

repeated for every instruction that may be affected by an indirectly modified location.

Let us illustrate these two approaches by the following two examples.

Example 25 The re-execute approach: Consider the following instruction sequence (the

numbers in parentheses show the program points):

(1)

cmp r12, 100
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(2)

bg L1

. . .

(3)

The outcome of the conditional branch instruction depends on the value of the branch condi-

tion register which is indirectly modified by the compare instruction. Whenever the programmer

reverse executes the program from point (3) to point (2) (i.e., the conditional branch instruction

is reverse executed but the compare instruction is not), the debugger tool re-executes the com-

pare instruction in the background. This guarantees that when the program is forward executed

from point (2) on, the outcome of the conditional branch instruction will always be the same,

even if the value of the branch condition register has been modified prior to instruction level

reverse execution. 2

Example 26 The state saving approach: Consider the following instruction sequence (again,

the numbers in parentheses show the program points):

(1)

add r9, r2, r3

(2)

adde r12, r11, r10

(3)

add r13, r1, r6

(4)

. . .
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The outcome of the “extended add” instruction (indicated by mnemonic “adde”) depends

on the value of the carry bit set by the previous “add” instruction. Assume that during the

initial forward execution, the first “add” instruction sets the carry bit to ‘1’; thus, the “adde”

instruction uses the carry bit of value ‘1’. Also, assume that the “add” instruction after the

“adde” instruction clears the carry bit during the initial forward execution. Therefore, if the

programmer reverse executes the program from point (4) to point (2) and then forward executes

the program from point (2) back to point (3), the “adde” instruction will compute an incorrect

result into r12 because “adde” will use the carry bit of value ‘0’ this time.

To prevent the above situation, the debugger saves the value of r12 just before the pro-

grammer reverse executes the “adde” instruction. When the programmer forward executes the

program from point (2) to point (3) in the above scenario, the saved value of r12 is restored

ensuring the consistency of the value of r12. 2

The re-execute approach requires that the values on which β depends are not

overwritten at an intermediate point between β and α. This is to ensure that β

calculates V correctly when β is re-executed. Therefore, the re-execute approach

might be costly in terms of analysis time as the re-execute approach requires a separate

data-flow analysis. On the other hand, the state saving approach explained above

does not require a data-flow analysis and thus is potentially faster than the re-execute

approach. However, the state saving approach results in more runtime memory usage

to save the state before α is reverse executed. In summary, the re-execute approach

can always be applied (since the direct operands of the instruction(s) to be re-executed

can always be obtained, e.g., via state saving), and thus any and all indirectly modified

locations can always be properly restored.
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