
Bounded Model Generation for Isabelle/HOL

Tjark Weber1 ,2

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

Abstract

A translation from higher-order logic (on top of the simply typed λ-calculus) to propositional logic
is presented, such that the resulting propositional formula is satisfiable iff the HOL formula has
a model of a given finite size. A standard SAT solver can then be used to search for a satisfying
assignment, and such an assignment can be transformed back into a model for the HOL formula.
The algorithm has been implemented in the interactive theorem prover Isabelle/HOL, where it is
used to automatically generate countermodels for non-theorems.

Keywords: Higher-Order Logic, Finite Model Generation, Interactive Theorem Proving

1 Introduction

Interactive theorem provers have been enhanced with numerous automatic
proof procedures for different application domains. However, when an auto-
matic proof attempt fails, the user usually gets little information about the
reasons. It may be that an additional lemma needs to be proved, that an
induction hypothesis needs to be generalized, or that the formula one is try-
ing to prove is not valid. In such cases an automatic tool that can refute
non-theorems would be useful.

This paper presents a translation from higher-order logic to propositional
logic (quantifier-free Boolean formulae) such that the propositional formula is
satisfiable if and only if the HOL formula has a model of a given finite size,

1 This work was supported by the PhD program Logic in Computer Science of the German
Research Foundation.
2 Email: webertj@in.tum.de

Electronic Notes in Theoretical Computer Science 125 (2005) 103–116

1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.027

mailto:webertj@in.tum.de
http://www.elsevier.com/locate/entcs

i.e. involving no more than a given number of elements. A standard SAT
solver can then be used to search for a satisfying assignment, and if such an
assignment is found, it can easily be transformed back into a model for the
HOL formula.

An algorithm that uses this translation to generate (counter-)models for
HOL formulae has been implemented in the interactive theorem prover Is-
abelle/HOL [15]. This algorithm is not a (semi-)decision procedure: if a for-
mula does not have a model of a given size, it may still have larger or infinite
models. The algorithm’s applicability is also limited by its complexity, which
is non-elementary for higher-order logic. Nevertheless, formulae that occur in
practice often have small models, and the usefulness of an approach similar to
the one described in this paper has been confirmed in [10].

Section 2 introduces the syntax and semantics of the logic considered in this
paper, a version of higher-order logic on top of the simply typed λ-calculus.
The model generation algorithm, and in particular the translation into propo-
sitional logic are described in Section 3. We conclude with some final remarks
in Section 4.

2 The HOL Logic

Our translation can handle a large fragment of the logic that is underlying the
HOL [9] and Isabelle/HOL theorem provers. The logic is originally based on
Church’s simple theory of types [3]. In this section we present the syntax and
set-theoretic semantics of the relevant fragment. A complete account of the
HOL logic, including a proof system, can be found in [8].

We distinguish types and terms, intended to denote certain sets and ele-
ments of sets respectively. Types σ are given by the following grammar, where
α ranges over a countably infinite set TV of type variables:

σ ::= o |α | σ → σ.

Type variables stand for arbitrary non-empty sets. The type o denotes a
distinguished two-element set {�,⊥}. If σ1 and σ2 are types, then σ1 → σ2

is the function type with domain σ1 and range σ2. It denotes the set of all
total functions from the set denoted by its domain to the set denoted by its
range. As usual, → associates to the right, i.e. σ1 → σ2 → σ3 is short for
σ1 → (σ2 → σ3).

We assume a countably infinite set V of variables. A term tσ of type
σ is either an (explicitly typed) variable, logical constant, application, or λ-

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116104

abstraction. Hence terms are given by the following grammar:

tσ ::= xσ | cσ | (tσ′→σ tσ′)σ | (λxσ1
. tσ2

)σ1→σ2
,

where xσ ranges over variables, and cσ is either =⇒ o→o→o (implication)
or =σ′→σ′→o (equality on σ′), usually written in infix notation. Other logical
constants, including ∨o→o→o, ∧o→o→o, ¬o→o, and quantifiers of arbitrary order,
can be defined as λ-terms [1]. Terms of type o are called formulae.

We now define the semantics of terms. Let tσ be a term of type σ, and
let tv(tσ) ⊆ TV be the set of all type variables that occur in tσ. tv can be
defined inductively with the help of an auxiliary function tv′ that collects the
type variables occuring in a type:

tv′(o)= ∅,

tv′(α)= {α},

tv′(σ1 → σ2)= tv′(σ1) ∪ tv′(σ2),

and

tv(xσ) = tv′(σ),

tv(cσ) = tv′(σ),

tv((tσ′→σ t′σ′)σ) = tv(tσ′→σ) ∪ tv(t′σ′),

tv((λxσ1
. tσ2

)σ1→σ2
) = tv′(σ1) ∪ tv(tσ2

).

Note that tv(tσ) is not necessarily contained in tv′(σ). Types σ with tv′(σ)
= ∅
and terms tσ with tv(tσ)
= ∅ are called polymorphic.

Furthermore, let fv(tσ) ⊆ V be the set of all free variables that occur in
tσ, defined as usual:

fv(xσ)= {xσ},

fv(cσ)= ∅,

fv((tσ′→σ t′σ′)σ)= fv(tσ′→σ) ∪ fv(t′σ′),

fv((λxσ1
. tσ2

)σ1→σ2
)= fv(tσ2

) \ {xσ1
}.

It is obvious that tv(tσ) and fv(tσ) are finite.

An environment D for tσ is a function that assigns to each type variable α ∈
tv(tσ) a non-empty set D(α). The semantics of types w.r.t. this environment
is formally given by

[[o]]D = {�,⊥},

[[α]]D = D(α),

[[σ1 → σ2]]D = [[σ2]]D
[[σ1]]

D .

A variable assignment A for tσ w.r.t. an environment D maps each variable
xσ′ ∈ fv(tσ) to an element A(xσ′) of the set denoted by the type σ′. Given a

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116 105

variable assignment A, a variable xσ′ ∈ V , and an element d of the set denoted
by σ′, let A[xσ′ �→ d] be the assignment that maps xσ′ to d, and v
= xσ′ to
A(v). Now the semantics of terms w.r.t. an environment D and an assignment
A is given by

[[xσ]]AD =A(xσ),

[[=⇒ o→o→o]]
A

D is the function that sends

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�,� to �

�,⊥ to ⊥

⊥,� to �

⊥,⊥ to �

,

[[=σ′→σ′→o]]AD is the function that sends x, y ∈ [[σ′]]D

to

⎧⎨
⎩� if x = y

⊥ otherwise
,

[[(tσ′→σ t′σ′)σ]]
A

D = [[tσ′→σ]]
A

D([[t′σ′]]
A

D) (function application),

[[(λxσ1
. tσ2

)σ1→σ2
]]AD is the function that sends each d ∈ [[σ1]]D

to [[tσ2
]]
A[xσ1

�→d]

D .

Hence the semantics of a term tσ is an element of the set denoted by the type
σ, i.e. [[tσ]]AD ∈ [[σ]]D.

3 Bounded Model Generation

The model generation for a HOL formula φ = to proceeds in several steps.
We first fix the size of the model by choosing an environment D for φ that
contains only finite sets. Note that environments are determined uniquely up
to isomorphism by the size of the sets that they assign to type variables; the
names of elements are irrelevant. With a fixed finite size for every set denoted
by a type variable, every type then denotes a finite set: clearly |o| = 2, and
|σ1 → σ2| = |σ2|

|σ1|. Our task now is to find a variable assignment A with
[[φ]]AD = �. (To generate a countermodel, we can either consider ¬φ, or –

equivalently – search for a variable assignment A with [[φ]]AD = ⊥.) At this
point one can already view bounded model generation as a generalization of
satisfiability checking, where the search tree is not necessarily binary, but still
finite.

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116106

3.1 Translation into Propositional Logic

The input formula φ is translated into a propositional formula that is satisfi-
able if and only if such a variable assignment exists. Propositional formulae
are given by the following grammar:

ϕ ::= True |False | p | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ,

where p ranges over a countably infinite set of Boolean variables. The trans-
lation is by induction over terms. Although our aim is to translate a term of
type o into a single propositional formula, a more complex intermediate data
structure is needed to translate subterms (which may be of arbitrary type):
we use trees whose leafs are labelled with propositional formulae. The con-
struction of these trees is described in detail in the remainder of this section.
A tree of height 1 and width m corresponds to a term whose type is a type
variable (denoting a set of size m) or o (for m = 2), while an n-ary function
or predicate is given by a tree of height n + 1. We will show how application
and λ-abstraction can be “lifted” from the term level to this intermediate data
structure.

To define the translation more precisely, several auxiliary functions are
needed. The create function is invoked once for each free variable in φ, and
returns a tree whose leafs are labelled with Boolean variables. (p) is a place-
holder for a fresh Boolean variable, i.e. different occurrences of (p) are replaced
by different Boolean variables. The height and width of the tree only depend
on the type of the free variable in φ. Multiple occurrences of a free variable
in φ are replaced by identical trees.

create(o) = [(p), (p)],

create(α) = [(p), . . . , (p)] of length |α|,

create(σ1 → σ2) = [create(σ2), . . . , create(σ2)] of length |σ1|.

As can be seen from these rules, we use Boolean variables in a unary, rather
than in a binary fashion. This means that we need n variables to represent an
element of a type of size n, rather than
log2 n� variables. However, exactly
one of these variables must later be set to True (which keeps the search space
for the SAT solver small due to unit propagation [21]), and our encoding allows
for a relatively simple translation of application. To ensure that exactly one
of the Boolean variables p1, . . . , pn is set to True, a propositional formula

wf [p1,...,pn] =

(
n∨

i=1

pi

)
∧

n∧
i,j=1

i�=j

(¬pi ∨ ¬pj)

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116 107

is constructed for each tree of the form [p1, . . . , pn] that is returned by a call
to create(o) or create(α). This formula is later conjoined with the result of
the translation.

TT and FF are trees corresponding to � and ⊥, respectively.

TT = [True, False],

FF = [False, True].

The k-th unit vector of length n with entries True and False is given by
uvn

k , and likewise UVn
k is the k-th unit vector of length n with entries TT and

FF.

δn
k =

⎧⎨
⎩ True if n = k

False otherwise
,

uvn
k = [δk

1 , . . . , δ
k
n],

∆n
k =

⎧⎨
⎩ TT if n = k

FF otherwise
,

UVn
k = [∆k

1, . . . , ∆
k
n].

These unit vectors are used to build trees whose leafs are labelled with
propositional constants (True/False) only, representing specific (i.e. the first,
second, . . .) elements of the domains under consideration. Also note that
TT = uv2

1, and FF = uv2
2.

consts(σ) returns a list of length |σ|, containing one representing tree for
every element in [[σ]]D. pick([x1, . . . , xn]) – where each xi is again a list – is
an auxiliary function that returns a list containing all possible choices of one
element from each list xi. For the special case x1 = . . . = xn, this corresponds
to all functions from an n-element set to elements of x1.

consts(o)= [TT, FF],

consts(α)= [uv
|α|
1 , . . . , uv

|α|
|α|],

consts(σ1 → σ2)= pick([consts(σ2), . . . , consts(σ2)︸ ︷︷ ︸
|σ1|

]).

The functions described so far are sufficient to define the translation for
terms without application. The translation of application, however, requires
further helper functions. all returns the conjunction of a list of propositional
formulae. map(f, l) applies the unary function f to every element in a list
l. Likewise, treemap(f, t) applies f to every leaf in a tree t. merge(g, t1, t2)
merges two trees t1 and t2 by applying a binary function g to corresponding
leafs in t1 and t2. Both trees must have the same “structure”, i.e. differ at

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116108

most in the formulae that they contain (but not in their height or width).

all([ϕ1, . . . , ϕn])= ϕ1 ∧ . . . ∧ ϕn,

map(f, [ϕ1, . . . , ϕn])= [f(ϕ1), . . . , f(ϕn)],

treemap(f, [ϕ1, . . . , ϕn])= [f(ϕ1), . . . , f(ϕn)],

treemap(f, [t1, . . . , tn])= [treemap(f, t1), . . . , treemap(f, tn)],

merge(g, [ϕ1
1, . . . , ϕ

1
n], [ϕ

2
1, . . . , ϕ

2
n])= [g(ϕ1

1, ϕ
2
1), . . . , g(ϕ1

n, ϕ
2
n)],

merge(g, [t11, . . . , t
1
n], [t

2
1, . . . , t

2
n])= [merge(g, t11, t

2
1), . . . , merge(g, t1n, t

2
n)].

enum(t), for t a tree representing an element of [[σ]]D, computes a list of
propositional formulae [ϕ1, . . . , ϕ|σ|] expressing that t represents the first, . . . ,
|σ|-th element of [[σ]]D.

enum([ϕ1, . . . , ϕn])= [ϕ1, . . . , ϕn],

enum([t1, . . . , tn])= map(all, pick([enum(t1), . . . , enum(tn)])).

Functions are represented by trees of height greater than 1. Intuitively,
when a function is applied to the i-th element of its domain, the result is given
by the i-th subtree of the tree representing the function. apply(t, [ϕ1, . . . , ϕn]),
where t is a tree representing a function, and ϕi is true iff the function’s
argument is equal to the i-th element of the function’s domain, builds a tree
whose leafs are labelled with propositional formulae that simulate the selection
of the correct subtree of t.

apply([t1], [ϕ1]) = treemap((λϕ. ϕ ∧ ϕ1), t1),

apply([t1, t2, . . . , tn], [ϕ1, ϕ2, . . . , ϕn]) =merge((λϕ ϕ′. ϕ ∨ ϕ′),

apply([t1], [ϕ1]), apply([t2, . . . , tn], [ϕ2, . . . , ϕn])).

Above λ is a meta-symbol used to denote a function (as opposed to the λ

that is part of the term syntax), while ∨ and ∧ are constructors of propositional
formulae.

We are now ready to define the translation TD from terms to trees of propo-
sitional formulae. The translation is parameterized by a partial assignment B

of trees to bound variables. Initially this partial assignment is empty, and it is
extended whenever the translation descends into the body of a λ-abstraction.
The translation is given by the following rules:

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116 109

T B
D (xσ)=

⎧⎨
⎩B(xσ) if xσ ∈ dom B

create(σ) otherwise
,

T B
D (=⇒ o→o→o)= [[TT, FF], [TT, TT]],

T B
D (=σ′→σ′→o)= [UV

|σ′|
1 , . . . , UV

|σ′|
|σ′|],

T B
D ((tσ′→σ t′σ′)σ)= apply(T B

D (tσ′→σ), enum(T B
D (t′σ′))),

T B
D ((λxσ1

. tσ2
)σ1→σ2

)= [T
B[xσ1

�→d1]

D (tσ2
), . . . , T

B[xσ1
�→d|σ1|

]

D (tσ2
)],

where [d1, . . . , d|σ1|] = consts(σ1).

Since φ is a term of type o, the result T ∅
D(φ) of the translation must be a tree

of the form [T ∅
D(φ)�, T ∅

D(φ)⊥] for some propositional formulae T ∅
D(φ)�, T ∅

D(φ)⊥.

Proposition 3.1 Soundness, Completeness. Let ∗ ∈ {�,⊥}, and let WF be

the conjunction of all wf-formulae constructed during the translation. Then

[[φ]]AD = ∗ for some variable assignment A if and only if WF ∧ T ∅
D(φ)∗ is

satisfiable.

The theorem can be proved by generalization from formulae to terms of
arbitrary type, followed by induction over the term. We omit the details.

3.2 Finding a Satisfying Assignment

Satisfiability can be tested with an off-the-shelf SAT solver. To this end trans-
lations into DIMACS SAT and DIMACS CNF format [6] have been imple-
mented. The translation into SAT format is trivial, whereas CNF format
(supported by zChaff [14], BerkMin [7] and other state-of-the-art solvers) re-
quires the Boolean formula to be in conjunctive normal form. We translate
into definitional CNF [19] to avoid an exponential blowup at this stage, in-
troducing auxiliary Boolean variables where necessary. A more sophisticated
CNF conversion might further enhance the performance of our approach [11].

Isabelle/HOL runs on a number of different platforms, and installation
should be as simple as possible. Therefore we have also implemented a naive
DPLL-based [5,21] SAT solver in Isabelle. This solver is not meant to replace
the external solver for serious applications, but it has proved to be efficient
enough for small examples. Hence it allows users to experiment with the
countermodel generation without them having to worry about the installation
of an additional tool.

If the SAT solver cannot find a satisfying assignment, the translation is
repeated for a larger environment. The user can specify several termination
conditions: a maximal size for sets in the environment, a limit on the number
of Boolean variables to be used, a runtime limit. The order in which we

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116110

enumerate environments guarantees that if the SAT solver is complete, a model
will be found that is minimal w.r.t. the total size of its domains. Of course
this is not necessarily true for incomplete (e.g. stochastic) SAT solvers.

3.3 Example Translation

Consider the formula φ = ((λxα. xα)α→α =(α→α)→(α→α)→o yα→α)o. Its only
type variable is α, and its only free variable is yα→α. In an environment D

with |α| = 2 (and hence |α → α| = 22 = 4), the subterms of φ are translated
into the following trees:

T ∅
D((λxα. xα)α→α) = [[True, False], [False, True]],

T ∅
D(=(α→α)→(α→α)→o) = [UV4

1, UV4
2, UV4

3, UV4
4],

T ∅
D(yα→α) = [[y0, y1], [y2, y3]]

with four Boolean variables y0, y1, y2, y3. Additionally two wf-formulae are
constructed, namely

wf [y0,y1] = (y0 ∨ y1) ∧ (¬y0 ∨ ¬y1)

and
wf [y2,y3] = (y2 ∨ y3) ∧ (¬y2 ∨ ¬y3).

Using the translation rule for application, we then obtain (Boolean formulae
equivalent to)

T ∅
D(φ)� = y0 ∧ y3

and
T ∅

D(φ)⊥ = (y0 ∧ y2) ∨ (y1 ∧ y2) ∨ (y1 ∧ y3).

Hence a possible satisfying assignment for T ∅
D(φ)⊥∧wf [y0,y1]∧wf [y2,y3] is given by

{y0 �→ True, y1 �→ False, y2 �→ True, y3 �→ False}. Assuming [[α]]D = {a0, a1},
this assignment corresponds to an interpretation of yα→α as the function that
maps both a0 and a1 to a0.

3.4 Some Extensions: Sets, Hilbert’s Choice, and Datatypes

Several extensions to the logic described in Section 2 can straightforwardly be
integrated into our framework. The type σ set of sets with elements from σ is
isomorphic to σ → o. Set membership x ∈ P becomes predicate application
P x, and set comprehension {x. P} can be translated simply as P .

Hilbert’s choice operator, ε, is a polymorphic constant of type (σ → o) →
σ, satisfying the axiom

φε : (∃x. P x) =⇒ P (εP).

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116 111

Similarly, The, also a constant of type (σ → o) → σ, satisfies

φThe : (The x. x = a) = a,

and arbitrary is a completely unspecified polymorphic constant. For the pur-
pose of our translation TD, we can treat these logical constants just like free
variables, and introduce Boolean variables that determine their interpretation.
For ε and The, we then translate the conjunction of the original formula φ

with the relevant axiom (i.e. φε ∧ φ or φThe ∧ φ, respectively, or φε ∧ φThe ∧ φ

if both ε and The occur in φ). Type variables in φε (or φThe) are instantiated
to match the type of ε (or The) in φ.

Isabelle/HOL allows the definition of inductive datatypes [2]. In general,
inductive datatypes with free constructors require an infinite model. We treat
these datatypes by only considering a finite fragment (e.g. natural numbers
up to an upper bound, or lists up to a certain length). A detailed description
of the translation of inductive datatypes will be given elsewhere. We remark
that if the inductive datatype occurs only positively in the input formula, then
a model found for a fragment can always be extended to an infinite model for
the full datatype.

However, many important datatypes are non-recursive, and for these, the
situation is simpler. Examples are the type σ option, which augments a given
type σ by a new element, product types σ1 × σ2, and sum types σ1 + σ2. The
general syntax of a non-recursive datatype definition is given by

(α1, . . . , αn)σ ::= C1 σ1
1 . . . σ1

m1
| . . . |Ck σk

1 . . . σk
mk

,

where the Ci are the datatype’s constructors, the σi
j specify their argument

types, and all σi
j only refer to previously defined types and type variables

from α1, . . . , αn. Such a datatype can be interpreted in a finite model; its size
is equal to S :=

∑k

i=1

∏mi

j=1 |σ
i
j |. Hence an element of this datatype can be

represented by a tree of height 1 and width S, and a datatype constructor Ci

is a function of type σi
1 → . . . → σi

mi
→ (α1, . . . , αn)σ, representable by a tree

of height mi + 1.

3.5 Some Optimizations

We briefly describe some optimizations in the implementation of the transla-
tion TD. None of them affect soundness or completeness of the algorithm.

The Boolean formulae that are constructed during the translation process
are simplified on the fly, using basic algebraic laws of ¬, ∨, ∧, True and False.
Closed HOL formulae simply become True or False. The SAT solver is used
only to search for an interpretation of free variables.

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116112

Variables of a type with size 1 can be represented by [True], using no
Boolean variable at all (instead of one Boolean variable x together with a
wf [x]-formula x). While this has little effect at the SAT solver level due to
unit propagation, it allows a more extensive simplification of the constructed
Boolean formulae. Similarly variables of a type with size 2, including variables
of type o, can be represented by a tree of the form [x,¬x], rather than by a
tree [x0, x1] and a wf [x0,x1]-formula (x0 ∨ x1) ∧ (¬x0 ∨ ¬x1).

More importantly, we avoid unfolding the definition of logical constants
(i.e. Trueo, Falseo, ¬o→o, ∧o→o→o, ∨o→o→o, ∀(σ→o)→o, ∃(σ→o)→o) as λ-terms as
far as possible. Instead these constants are replaced directly by their counter-
parts in propositional logic. Since every type is finite, quantifiers of arbitrary
order can be replaced by a finite conjunction or disjunction.

The latter leads to a more general optimization technique, applicable also
to other functions and predicates (including e.g. equality): namely special-
ization of the rule for function application to particular functions. While
any given function can be represented by a tree, it is often more efficient to
implement a particular function’s action on its arguments, assuming these ar-
guments are given as trees already, than to use the general translation rule
and apply it to the tree representing the function. For =σ→σ→o this avoids
creating a tree whose size is proportional to |σ|2, and instead uses a function
that operates on trees representing elements of [[σ]]D, their size proportional
to |σ| (or possibly to log |σ|) only.

3.6 Examples

Table 1 shows some examples of formulae for which our algorithm can auto-
matically find a countermodel. Type annotations are suppressed, and func-
tions in the countermodel are given by their graphs. “∃!” denotes unique
existence, defined as usual:

∃!x. P x ≡ ∃x. P x ∧ (∀y. P y =⇒ y = x).

The countermodels are rather small, and were all found within a few mil-
liseconds. The main purpose of these examples is to illustrate the expressive
power of the underlying logic.

4 Conclusions and Future Work

We have presented a translation from higher-order logic to propositional for-
mulae, such that the resulting propositional formula is satisfiable if and only if
the HOL formula has a model of a given finite size. A working implementation

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116 113

Property/Formula Countermodel

”Every function that is onto is invertible.“ D(α) = {a0, a1}, D(β) = {b0}

(∀y.∃x. f x = y) =⇒ (∃g.∀x. g (f x) = x) f = {(a0, b0), (a1, b0)}

”There exists a unique choice function.“ D(α) = {a0}, D(β) = {b0, b1}

(∀x.∃y.P x y) =⇒ (∃!f.∀x. P x (f x)) P = {(a0, {(b0, True), (b1, True)})}

”The transitive closure of A ∩ B is equal to D(α) = {a0, a1}

the intersection of the transitive closures of A = {(a0, a1), (a1, a0), (a1, a1)}

A and B.“ B = {(a0, a0), (a1, a0), (a1, a1)}

Table 1
Examples

of this translation, consisting of roughly 2,800 lines of code written in Stan-
dard ML [13], is available in the Isabelle/HOL theorem prover. A standard
SAT solver can be used to search for a satisfying assignment for the proposi-
tional formula, and if such an assignment is found, it can be transformed into
a model for the HOL formula. This allows for the automatic generation of
finite countermodels for non-theorems in Isabelle/HOL. A similar translation
has been discussed before [10]; the main contributions of this paper are its
extension to higher-order logic and the seamless integration with a popular
interactive theorem prover.

So far we have applied the technique only to relatively small examples. The
applicability of the algorithm is limited by its non-elementary complexity. We
believe that the algorithm can still be useful for practical purposes, since many
formulae have small models. To substantiate this claim, and to further eval-
uate the performance of our approach, we plan to carry out some larger case
studies, possibly from the area of cryptographic protocol verification [16,17].

We also plan to incorporate further optimizations [4,18], and to extend the
translation to other Isabelle/HOL constructs: most notably the full language
of HOL, including type operators [8], but also axiomatic type classes [20],
inductively defined sets, and recursive functions.

An orthogonal approach that would be interesting to evaluate, both in
terms of performance and feasibility, is the use of an external (first-order)
model generator. The necessary translation from HOL to first-order logic
could be based on recent work by Meng and Paulson [12].

Acknowledgement

The author would like to thank Martin Strecker, Tobias Nipkow and the
anonymous referees for their valuable comments.

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116114

References

[1] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof, volume 27 of Applied Logic Series. Kluwer Academic Publishers, second edition, July
2002.

[2] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL - lessons learned in formal-
logic engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors,
Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs’99, volume
1690 of Lecture Notes in Computer Science, pages 19–36. Springer, 1999.

[3] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

[4] Koen Claessen and Niklas Sörensson. New techniques that improve MACE-style finite
model finding. In CADE-19, Workshop W4, Model Computation – Principles, Algorithms,
Applications, 2003.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

[6] DIMACS satisfiability suggested format, 1993. Available from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc.

[7] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In Design Automation
and Test in Europe (DATE), pages 142–149, 2002.

[8] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[9] M. J. C. Gordon and A. M. Pitts. The HOL logic and system. In J. Bowen, editor, Towards
Verified Systems, volume 2 of Real-Time Safety Critical Systems Series, pages 49–70. Elsevier,
1994.

[10] Daniel Jackson. Automating first-order relational logic. In Proc. ACM SIGSOFT Conf.
Foundations of Software Engineering, pages 130–139, San Diego, November 2000.

[11] Paul Jackson and Daniel Sheridan. The optimality of a fast CNF conversion and its use with
SAT. Technical Report APES-82-2004, APES Research Group, March 2004.

[12] Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive proof using
resolution. In David Basin and Michael Rusinowitch, editors, Automated Reasoning – Second
International Joint Conference, IJCAR 2004, volume 3097 of Lecture Notes in Artificial
Intelligence, pages 372–384. Springer, 2004.

[13] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML - Revised. MIT Press, May 1997.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. In Proc. of the 38th Design Automation Conference, Las Vegas, June 2001.

[15] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

[16] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6:85–128, 1998.

[17] Graham Steel, Alan Bundy, and Ewen Denney. Finding counterexamples to inductive
conjectures and discovering security protocol attacks. AISB Journal, 1(2), 2002.

[18] Tanel Tammet. Finite model building: improvements and comparisons. In CADE-19,
Workshop W4, Model Computation – Principles, Algorithms, Applications, 2003.

[19] G. Tseitin. On the complexity of derivation in propositional calculus. In A. Slisenko, editor,
Studies in Constructive Mathematics and Mathematical Logic, Part 2, pages 115–125, 1970.

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116 115

[20] Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L. Gunter and
Amy P. Felty, editors, Theorem Proving in Higher Order Logics, 10th International Conference,
TPHOLs’97, volume 1275 of Lecture Notes in Computer Science, pages 307–322. Springer, 1997.

[21] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In Andrei
Voronkov, editor, Proceedings of the 8th International Conference on Computer Aided
Deduction (CADE 2002), volume 2392 of Lecture Notes in Computer Science. Springer, 2002.

T. Weber / Electronic Notes in Theoretical Computer Science 125 (2005) 103–116116

	Introduction
	The HOL Logic
	Bounded Model Generation
	Translation into Propositional Logic
	Finding a Satisfying Assignment
	Example Translation
	Some Extensions: Sets, Hilbert's Choice, and Datatypes
	Some Optimizations
	Examples

	Conclusions and Future Work
	References

