
Solving Non-clausal Formulas with DPLL search�

Christian Thiffault1, Fahiem Bacchus1��, and Toby Walsh2� � �

1 Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada

[cat|fbacchus]@cs.toronto.edu
2 Cork Constraint Computation Center,

University College Cork, Ireland.
tw@4c.ucc.ie

Abstract. Great progress has been made on DPLL based SAT solvers operating
on CNF encoded SAT theories. However, for most problems CNF is not a very
natural representation. Typically these problems are more easily expressed using
unrestricted propositional formulae and hence must be converted to CNF before
modern SAT solvers can be applied. This conversion entails a considerable loss
of information about the problem’s structure. In this work we demonstrate that
conversion to CNF is both unnecessary and undesirable. In particular, we demon-
strate that a SAT solver which operates directly on a propositional formula, can
achieve the same efficiency as a highly optimized modern CNF SAT solver. Fur-
thermore, since the original formula remains intact, such a solver can exploit the
original problem structure to improve over CNF solvers. We present empirical
evidence showing that exploiting the original structure can yield considerable
benefits.

1 Introduction
State of the art SAT solvers typically solve CNF encoded SAT theories using DPLL
based algorithms [1]. However, many problems are more naturally expressed by ar-
bitrary propositional formulas or Boolean circuits. Hence in order to use modern SAT
solvers these problems must be converted into CNF. Converting to a simple and uniform
representation like CNF provides conceptual and implementational simplicity. Indeed,
a number of key techniques for improving the effectiveness and efficiency of DPLL
solvers were originally designed to exploit the simple structure of CNF. However, such
a conversion also entails considerable loss of information about the problem’s structure,
information that could be exploited to improve search efficiency.

In this paper, we argue that conversion to CNF is both unnecessary and undesir-
able. In particular, we have implemented NOCLAUSE, a non-CNF DPLL like solver
that achieves a raw efficiency very similar to modern highly optimized CNF solvers by
employing techniques very similar to those used in modern CNF solvers. Furthermore,
we demonstrate how the additional structure present in the original propositional for-
mula can be exploited to achieve significant gains in solving power, to the point where
on various benchmarks NOCLAUSE outperforms the CNF solver it was based on.

� An extended abstract on this topic was presented at the SAT-2004 conference.
�� Supported by Natural Science and Engineering Research Council of Canada.

� � � Supported by Science Foundation Ireland.



The performance of our non-CNF solver is particularly encouraging for two other
reasons. First, our implementation, although carefully constructed, does not employ
any cache level optimizations. Nevertheless its raw performance is still close to that of
the highly optimized CNF solver ZCHAFF [2]. Hence, there does not seem to be any
intrinsic reason why a non-CNF solver cannot be as efficient as a CNF solver given
equal engineering effort. Second, there are many other potential ways of exploiting
the structure of the original propositional formula that we have not yet experimented
with. It seems likely that some of these possibilities could yield additional performance
improvements.

We begin by discussing CNF based SAT solvers, the way in which CNF encod-
ings are generated, and the inherent disadvantages of CNF encodings. Then we present
a method for performing DPLL search with a non-clausal encoding, and discuss the
implementation techniques we utilized to obtain efficient inference on the non-clausal
encoding. To go beyond mimicking current levels of performance we then present two
techniques for exploiting the extra structure present in the non-clausal encoding. Em-
pirical evidence shows that these techniques yield significant increases in performance.
There has been some earlier work in the verification and theorem proving communi-
ties on formula based (or circuit based) solvers. We discuss this previous work pointing
out the differences and similarities with our approach in various sections of the paper.
Finally we close with some concluding remarks.

2 SAT solving using CNF

Many problems are more naturally described using arbitrary propositional formulas
rather than clausal form. For example, hardware verification problems are often initially
expressed in non-clausal form. To check the satisfiability of such formulas, the standard
technique is to convert them to CNF and utilize a CNF SAT solver. Conversion to CNF
is typically achieved using Tseitin encodings [3]. It is useful to review this encoding to
better understand the correspondence between a non-clausal solver and a CNF solver.

Tseitin encodings work by adding new variables to the CNF formula, one new vari-
able for every subformula of the original propositional formula, along with clauses to
capture the dependence between these new variables and the subformulas. This is best
illustrated by an example. Consider the propositional formula

(
A ⇒ (C ∧D)

)∨(
B ⇒

(C ∧ E)
)
. The Tseitin encoding would introduce the new variable F 1 to represent the

subformula C ∧D and the new clauses (¬F1, C), (¬F1, D), and (¬C,¬D, F1) to cap-
ture the relation F1 ≡ (C∧D). Similarly we would have F2 ≡ (C∧E) and the clauses
(¬F2, C), (¬F2, E), and (¬C,¬E, F2). With these new variables we would now have
A ⇒ (C ∧ D) ≡ A ⇒ F1 ≡ ¬A ∨ F1, and B ⇒ (C ∧ E) ≡ ¬B ∨ F2. Now two
more new variables would be introduced F3 ≡ ¬A ∨ F1 and F4 ≡ ¬B ∨ F2 with
the clauses (¬F3,¬A ∨ F1), (A ∨ F3), (¬F1, F3), (¬F4,¬B ∨ F2), (B ∨ F4), and
(¬F2, F4). Finally, we introduce one more new variable F5 ≡ F3 ∨F4 with the clauses
(¬F5, F3, F4), (¬F3, F5), and (¬F4, F5).3

Tseitin CNF encodings are linear in the size of the original formula as long as the
Boolean operators that appear in the formula have linear clausal encodings. For ex-

3 It is possible to build a more optimal encoding that only imposes the condition F5 ⇒ F3 ∨F4

rather than equivalence as long as F5 is not the descendant of an equivalence operator [4].



ample, the operators and, or, not, nand, nor, and implies all have linear sized clausal
encodings. The k-ary and operator A = A1 ∧ · · · ∧Ak can be represented with a set of
clauses of length O(k) over the propositional variables A i. Operators that do not have
linear clausal encodings include k-ary biconditionals, k-ary counting operators (e.g.,
exactly 3 of the k inputs are true), and k-ary parity operators. The CNF encoding also
retains some of the structure of the original formula. For example, any truth assignment
to the variables of the original formula generates a truth assignment to every subfor-
mula; i.e., every subformula evaluates to TRUE or FALSE under this truth assignment. It
is not difficult to see that a setting of the original variables will force a corresponding
setting of the “subformula” variables in the CNF encoding.

The CNF encoding has two main disadvantages. The first, and most fundamental
problem is that a great deal of structural information is lost: the clauses no longer di-
rectly reflect the structure of the original circuit. For example, it is not immediately
obvious that the Fi variables represent derived signals rather than input signals, that F4

is upstream of F2 in the original circuit, or that F4 encodes an or gate while F1 encodes
an and gate. In this simple example, some of this information can be computed from
the clausal encoding. In general, however, whilst some of this information can be com-
puted from the clausal encoding, some of it is intractable to compute. For example, it is
intractable to determine which variables represent derived signals and which represent
the original variables in an arbitrary CNF encoded formula [5].

The second problem is that the CNF theory contains more variables, which means
that the space of truth assignments from which a solution must be found has been en-
larged by an exponential sized factor. This does not necessarily mean that in practice
the search for a solution is any harder. Nevertheless, as we shall explain, the difficulty
of searching this larger space is exacerbated by the first problem, the lack of structural
information.

Loss of Structural Information. A number of works show that the structural informa-
tion lost in a CNF encoding can be used to give significant performance improvement.
For example, the EqSATZ solver [6] achieves significant gains by extracting and ex-
ploiting biconditionals from the CNF theory. Until very recently, it was the only solver
able to complete the par32 family of problems which contain many biconditionals.
More recently, the Lsat solver [7] has shown that extracting even more extensive struc-
tural information can allow some problems, that are very hard for clausal solvers, to be
solved quite easily. Given that these solvers have to utilize specialized (and incomplete)
methods to extract the structural information they need, and given that many problems
start off with a structure rich non-clausal encoding, it is natural to see if we can solve
the problem more efficiently and effectively in its original non-clausal encoding. In
addition to this empirical evidence, recent theoretical results show that on some prob-
lems structure can be exploited to derive branching decisions that reduce the size of the
search space exponentially [8].

The Added Variables. The second problem, that of additional variables in the CNF en-
coding, is an issue that has been the subject of some previous work. The main approach
taken, e.g., [9, 10, 7], has been to annotate the CNF theory to distinguish between the
original variables (the primary inputs) and the derived variables (the internal signals).



It is assumed that either the annotation is supplied with the CNF encoding (thus a small
amount of additional structural information is preserved) or is approximated by examin-
ing the CNF encoding [7]. Given this annotation, the recommendation is then to restrict
the DPLL search from branching on any derived variable: once all of the primary in-
puts have been set all of the derived signals can be determined by unit propagation. The
benefit of this technique is that now the CNF encoding can be solved by searching in
the same sized state space: the set of assignments to the original proositional variables.

Unfortunately, there is compelling empirical and theoretical evidence that this sim-
ple technique is not robust. For example, the Lsat solver uses this technique of branching
only on input variables. It displays impressive performance on a number of problems,
but very disappointing performance on an even wider range of problems. The most ro-
bust and powerful SAT solvers do not restrict their branching decisions in this manner.
From a theoretical point of view it can be shown that restricting the solver to branching
only on the input variables entails a reduction in the power of the proof system it im-
plements. A number of results of this form have been given in [11]. These results show
that there exist families of Boolean circuits on which a DPLL solver that branches only
on the input variables (in the clausal encoding) will always explore an exponentially
sized search tree (irrespective of how it chooses which of the input variables it wants to
branch on), while a DPLL solver that is allowed to branch on the derived variables can
construct a constant sized refutation tree.

Theorem 1. [11] There exists families of Boolean circuits such that a short resolution
proof of unsatisfiability exists if and only if branching on derived variables is allowed.

This result shows that we want to branch on the derived variables, so as not to
suffer a loss in power of the proof system. Hence, it is useful to analyze more carefully
possible sources of inefficiency that such branching can produce. First, it should be
noted that it is not necessarily the case that a DPLL procedure will search a larger space
when additional variables are introduced. For example, if we add the new variables
Y1, . . . , Yn to a theory containing the variables X1, . . . , Xn, but also include the clauses
(¬Xi, Yi) and (¬Yi, Xi) making each Yi equivalent to its corresponding Xi, then there
will be no effect on the size of the DPLL search tree: each time Y i or Xi is set the other
variable will be set by unit propagation.

A major source of inefficiency introduced when branching on derived variables
arises from subsequent branching on variables that have become don’t care due to pre-
vious decisions. Consider for example a formula of the form PHP n ∨ (q ∧ p), where
PHPn is an unsatisfiable formula requiring an exponentially sized resolution refutation
(e.g., the pigeon hole problem with n pigeons), and q and p are propositional vari-
ables. The clausal encoding of this formula contains the added variables B 1 ≡ PHPn,
B2 ≡ (q ∧ p), B3 ≡ (B1 ∨ B2), and other variables added by the clausal encoding
of PHPn. If the solver first assigns B3 = TRUE, then B2 = TRUE both q and p will
be unit propagated to TRUE. This set of assignments satisfies the formula. However, the
clausal theory will still contain the clauses encoding the subformula B1 ≡ PHPn so the
solver’s job will not yet be completed. If the solver was then to set the input variables
of PHPn, any such setting would force the setting B1 = FALSE and the solver would
be finished. Similarly, if the solver was to set B1 = FALSE then it could find a setting
of the variables in PHPn that falsifies PHPn and again it would be finished. However,



if it made the wrong decision of first setting B1 = TRUE, then it would be faced with
having to produce an exponentially size refutation of PHP n in order to backtrack to
reset B1 = FALSE. All of this work is unnecessary, but in the clausal encoding it is
difficult to detect that the work is not needed.

In this example, we do not need to branch on any of the variables encoding PHP n.
This part of the formula and the variables in it have become don’t care variables: their
values do not affect the value of the formula. How often CNF DPLL solvers branch
unnecessarily on don’t care variables, and how much search is wasted by doing so is an
empirical question. We present empirical results which along with previous evidence
[12, 13] indicates that the amount of wasted time is significant.

3 DPLL without conversions
Our approach is designed to check whether or not an arbitrary propositional formula
is satisfiable. A propositional formula can be represented as an operator tree, where
each internal node is a Boolean operator and its children are subtrees representing its
operands. After inputing the formula we first compress it by converting the tree repre-
sentation into a directed acyclic graph (DAG) in which all duplicates of a sub-formulas
are merged. For example, in the formula

(
A ⇒ (C ∧ D)

) ∨ (
B ⇒ (C ∧D)

)
the DAG

would contain only one instance of the subformula (C ∧ D). Propositional formulas
represented as DAGS are often called Boolean circuits. The conversion to a Boolean
circuit can be done bottom up using hashing to identify common sub-formulas.

Once the DAG representation is computed we store it in a contiguous section of
memory and associate with each node of the DAG (gate) the following data:

1. A unique identifier.
2. A list of parent nodes (in a DAG a node might have many parents).
3. A list of children nodes.
4. The type of the node (e.g., the node might be a propositional variable, an and gate,

an or gate, etc.).
5. A truth value (TRUE, FALSE, don’t care, or unknown.)
6. The decision level at which the node’s truth value changed from unknown.
7. The reason that a node’s truth value changed from unknown (either the trigger of a

propagation rule or a conflict clause).

Given this representation our task is to consistently label the nodes with truth values
such that the top level node (representing the entire formula) is labeled TRUE. A labeling
is consistent if it respects the logic of the node types. For example, if an and node is
labeled TRUE all of its children must be labeled TRUE, if a not node is labeled FALSE its
child must be labeled TRUE, etc. We try to find a consistent labeling, or prove that one
does not exist, using a backtracking tree search (i.e., a DPLL search) on the truth values
assigned to each node. This approach has been used in previous work on circuit-based
solvers, e.g., [14–16].

Our backtracking search procedure chooses an unlabeled node to label, labels it
TRUE or FALSE, propagates the consequences of that label, and then recursively tries
to label the remaining nodes. If that fails it backtracks and tries the opposite label.
Note that the search can choose to label (branch on) any unlabled node in the DAG.
Choosing an internal node corresponds to branching on the truth value of a subformula



of the input, while choosing a leaf node corresponds to branching on the truth value of
one of the inputs of the circuit.

Once a node is labeled with a truth value, the consequences of that truth value are
propagated through the DAG. Propagation utilizes the node’s data to propagate other
labels through the DAG, e.g., if a node is labeled FALSE then FALSE is propagated to all
of its parents that are and gates; if it is labeled TRUE and it is an and gate then TRUE is
propagated to all of its children, etc. Propagation of labels goes up and down the DAG
guided by a simple set of propagation rules. Similar propagation rules were used in the
works cited above.

A contradiction is detected when a node gets both a TRUE and a FALSE label. Once
we have a contradiction we must backtrack and try a different labeling. It is not difficult
to see that setting the truth value of a node corresponds precisely to setting the vari-
ables identified with the subformula headed by that node in the Tseitin CNF encoding.
Similarly, propagation of labels corresponds to unit propagation in the CNF theory.

Proposition 1. If assigning a variable v the truth value x in the Tseitin CNF encoding
of a circuit causes another variable v ′ to be assigned the truth value y by unit prop-
agation, then assigning the node corresponding to v the value x will cause the node
corresponding to v ′ to be assigned the value y by applying our propagation rules.

As in [15], for each propagated label we remember the set of node labels that caused
the propagation. For example, if we propagate TRUE to an and because all of its children
were set to TRUE we would associate the TRUE labels of all of the children as the
reason for the TRUE labeling of the and node. If the and node is subsequently labeled
FALSE because of propagation from one of its parents, we would have another set of
node labels as the reason for the FALSE label. We can combine these labels to obtain
a conflict set. The negation of the labels in the conflict set is a conflict clause just like
those constructed by CNF solvers. In fact, by successively replacing the most recently
propagated label by its reason until we have only one label at the current decision level,
we can implement precisely 1-UIP learning [17]. As in [15], we discover and then store
such conflicts in a clausal database. These conflict clauses are then unit propagated
using standard techniques (assigning two node labels as the watch labels). Thus nodes
in the DAG are labeled by unit propagation from the conflict clauses as well as by
propagation in the circuit DAG.

Efficient Propagation in the DAG The main difference in our implementation and the
previous circuit based SAT solvers cited above is that we adopt the watch literal tech-
nique from CNF solvers and apply it to our circuit representation. Watches are used
wherever they can make a propagation rule more efficient. Propagation through an and
gate provides a typical example. There are four rules for propagating and gates:

1. If the and becomes TRUE propagate TRUE to all of its children.
2. If a child becomes FALSE propagate FALSE to the and node.
3. If all of the children become TRUE propagate TRUE to the and node.
4. If the and node is FALSE and all but one of the children are TRUE then propagate

FALSE to the unlabeled child.

Watches do not help the first two rules. In fact in the clausal encoding the first two rules
would correspond to unit propagation through the binary clauses (¬A, C), where A is



literal corresponding to the and node and C is one of its children. Watches do not aid in
the efficiency of binary clauses either. To make the second rule efficient we divide the
parent list of a node into separate lists based on the parent’s type. So we would have a
separate list of and parents, another list of or parents, etc. Thus when a node is labeled
FALSE we can efficiently propagate FALSE to all of its and parents.

Watches offer significant improvement for the third and fourth rules. For every and
node we assign two children to be TRUE watches, and for every node we maintain a list
of parents it serves as a TRUE watch for (the node might also be a FALSE watch for some
or nodes). We maintain the invariant that neither watch should be assigned TRUE unless
we have no other choice, or the other watch is already FALSE. When a node is assigned
TRUE we examine each of the parents for which it is a TRUE watch. For each parent we
first look at the other watch child, if that child is already FALSE we do not need to do
anything. If it is TRUE then we know that every child of the parent is now true, and we
can activate the third rule propagating TRUE to the parent. Otherwise we look to see if
we can find another child of the parent that is currently unassigned or FALSE and make
that the new watch. If we cannot find an alternative watch we leave the current watch
intact, obtaining one TRUE watch and one unassigned watch, and check the and node
to see if it is currently FALSE. If it is then we activate rule four and propagate FALSE

to the sole unassigned watch child. Finally, whenever we label an and node FALSE, we
look at its two watch children. If one of these is TRUE we know that the other is the only
remaining unassigned child, and we activate rule four propagating FALSE to that child.

Previous circuit based solvers (e.g., [14, 15]) have restricted themselves to binary
Boolean operators and have used tables to perform label propagation in the DAG. Al-
though table lookup is fast, to propagate TRUE to an and node containing thousands
of children (and then converted to a tree of binary and nodes) requires a table lookup
every time one of the children is labeled. With the watch child technique, we only need
to perform some computation when a watch child is labeled. One of the suites we ex-
perimented with (VLIW-SAT.1.1 due to M. Velev) contained and nodes with an average
of 15.9 children, and had some and nodes with over 100,000 children. The other suites
also contained some and nodes with thousands of children. As a result we found that
implementing the watch child technique for triggering propagation in the DAG yielded
very significant gains in efficiency. Besides watches for the and propagation rules we
were able to use an analogous set of watches for the or, iff, and xor propagation rules.
Watches were also used in don’t care propagation.

As a result, conversion to CNF does not seem to be necessary. A non-clausal DPLL
SAT solver can duplicate the search performed by a CNF solver: labeling nodes cor-
responds to making literals in the CNF encoding TRUE, propagation in the DAG cor-
responds to unit propagation in the CNF encoding, conflicting labels corresponds to
conflicting assignments to a variable in the CNF encoding, and conflicts consisting of
sets of labels correspond to conflict clauses in the clausal encoding. Furthermore, propa-
gation in the DAG can be made just as efficient as unit propagation in the CNF encoding
by using watched children. Besides being able to duplicate the behavior of CNF solvers,
non-CNF solvers also have the advantage of being able to exploit additional structural
information not present in a CNF encoding. In the next section we present some simple
techniques for exploiting this structure.



4 Exploiting Structure

4.1 Complex Gates

It is well known that every DPLL search tree for an UNSAT problem can be converted
to a similarly sized resolution refutation of the problem. Hence, a clausal DPLL solver
is inherently limited by the power of resolution. Non-clausal DPLL solvers on the other
hand can employ complex gates and special purpose propagators for those gates that in
certain cases, can circumvent the limitations imposed by resolution. In fact, any subcir-
cuit can be encoded as a single gate and propagation through that subcircuit realized by
a specialized propagation algorithm.

For example, the SAT problem might be an encoding of a CSP problem containing
an all-diff constraint. In general, reasoning with all-diff requires exponentially sized
resolution proofs (e.g., the pigeon hole problem can be encoded with a single all-diff
constraint over a set of multi-valued variables). Hence, the causal encoding to SAT will
suffer an exponential loss of efficiency over polytime all-diff propagators. In a non-
clausal solver, on the other hand, a single gate can be used to encode the all-diff con-
straint and a polytime all-diff propagator can be used to propagate truth values through
the gate.

4.2 Don’t Care Propagation

The problem described earlier where a clausal solver might branch on a don’t care
variable is easily addressed using the circuit structure. Two techniques have previously
been described in the literature for exploiting don’t cares. Gupta et al. tag each variable
with fanin and fanout information from the original circuit [13]. Using this information
they are able to detect when a clause encodes part of the circuit that no longer influences
the output, given the variable assignments we have already made. Such clauses are
tagged as being inactive and are restored to active status when backtracking makes
them relevant again. The detection of inactive clauses requires a sweep through all of
the active clauses in the theory. This sweep must be performed at every node in the
search tree.

Safarpour et al. use a different technique [12]. They maintain the original circuit and
use it to mark variables that dynamically become don’t cares (lazy in their notation).
Then they prohibit the CNF solver from branching on don’t care variables. They scan
the entire circuit to detect don’t care variables at every node of the search tree.

Like Safarpour et al. we also use a variable marking technique. However, we have
gained efficiency by using watches and by not having to maintain both a CNF encoding
as well as a circuit description. To understand how watches improve efficiency consider
a typical example when a node is the child of an and node that has been labeled FALSE.
The node’s label is then irrelevant with respect to its impact on this particular and
parent. However, the node might still be relevant to the label of its other parents. Hence,
a node’s value becomes irrelevant to the circuit as a whole only when for each of its
parents it is either irrelevant to that parent’s value, or that parent has itself become
irrelevant to the circuit’s output.

To perform efficient propagation of don’t care values through the DAG we use a
single don’t care watch parent for each node. The invariant for a don’t care watch parent
is that the parent should not be a don’t care and that the child it is watching should not



be irrelevant to its value. Whenever a node is assigned at truth value that makes its
watched children irrelevant, or when a don’t care value is propagated to it we search
for a new don’t care watch parent for each watched child. If we fail to find one we
can propagate a don’t care to the child and then perhaps subsequently to the child’s
children, etc. Our use of watches means that computation is required only when the
watch parent is modified, changes to the other parents do not require any computation.
In the approaches described above a node will be checked every time one of its parents
is modified.

Some of the problems we experimented with contained nodes with over 8,000 par-
ents, and an average of 23 parents per node. Many other problems contained nodes with
over a 1,000 parents. Hence our watch technique yielded significant gains. As described
below, on some problems we obtained a speedup of 38 times using don’t care propaga-
tion. The above cited works report speedups from don’t care propagation in the order of
only 3 to 7 times. This also provides evidence that CNF solvers are wasting a significant
amount of time by branching on don’t care variables, and are thus suffering from the
loss of structural information in the CNF encoding.

4.3 Conflict Clause Reduction

Another structure based technique we have implemented is conflict clause reduction.
To the best of our knowledge this technique is new to this work. The idea is simple,
when we learn a conflict clause it will contain some set of node labels. We examine
these labels to see if any of them are “locally” redundant given the circuit structure,
and if they are we remove them. We say that label � makes label � ′ redundant if one
of the DAG propagation rules generates � ′ from �. For example, if n is an and node
and n′ is one of its children, then n = FALSE makes n ′ = FALSE redundant. In a
conflict clause we can remove any redundant labeling. For example, if we have the
conflict clause (n = FALSE, n′ = FALSE, x = TRUE, . . .) we can reduce this clause
to (n = FALSE, x = TRUE, . . .). This corresponds to a resolution step: we have that
n′ = FALSE ⇒ n = FALSE ≡ (n′ = TRUE, n = FALSE), which resolved against
the conflict clause yields the reduced clause. In addition to removing any label made
redundant by another label, we can transitively remove all labels made redundant by the
redundant label. Since redundancies are defined with respect to local DAG propagation
rules, all redundancies can be efficiently checked by examining the parents and children
of the node in the label.

The above resolution of (n′ = TRUE, n = FALSE) and (n = FALSE, n′ = FALSE, x =
TRUE, . . .) is known as Krom Subsumption. Krom subsumption has been utilized be-
fore in clausal Sat solvers [18]. The difficulty lies in detecting that the binary clause
(n′ = TRUE, n = FALSE) holds. van Gelder and Tsuji [18] utilized extensive bi-
nary clause reasoning to discover a large number of binary clauses at each stage of the
search. These binary clauses were then used to perform Krom subsumption (however
their solver did not generate new learned clauses). The advantage of the non-clausal
representation is that a very local test can be performed (running the local propagation
rules) to effectively circumscribe the computation required to detect the needed binary
clauses.

We experimented with various uses of conflict clause reduction and found empir-
ically that the most effective use was to employ reduction on shorter conflict clauses,



ZCHAFF NOCLAUSE

Benchmark Time Decisions Impl/s Size Time Decisions Impl/s Size

sss-sat-1.0 (100) 128 2,970,794 728,144 70 225 1,532,843 616,705 39
vliw-sat-1.1 (100) 3,284 154,742,779 302,302 82 1,033 4,455,378 260,779 55
fvp-unsat-1.0 (4) 245 3,620,014 322,587 326 172 554,100 402,621 100
fvp-unsat-2.0 (22) 20,903 26,113,810 327,590 651 4,104 5,537,711 267,858 240

Table 1. Comparison between ZCHAFF and NoClause on 4 benchmark suites. Time: CPU seconds
to solve all problem in suite. Decision: number of branches in the search tree. Impl/s: number of
unit implications per second during search. Size: average size of a learned conflict clause.

length 100 or less. For longer clauses the clause remained long even after reduction,
whereas on the shorter clauses the reduction produced more useful clauses. It should
also be noted that conflict clause reduction has a cumulative effect: conflict clauses pro-
duce new conflict clauses, so shorter conflict clauses produce new conflict clauses that
are themselves shorter.

5 Empirical Results
Our non-clausal DPLL solver NOCLAUSE uses the ideas described above. We repre-
sent the input as a propositional formula in ISCAS format, convert it to a non-redundant
Boolean circuit, perform 1-UIP clause learning at failures, use ZCHAFF’s VSIDS heuris-
tic to guide branching, perform don’t care propagation, and use the circuit structure to
reduce all learned clauses of size 100 or less.

We designed our solver to perform a carefully controlled experimental comparison
with the ZCHAFF solver. ZCHAFF is no longer the fastest SAT solver, but its source code
is available. Hence, we were able to have better control over the differences between
our solver and ZCHAFF. In particular, we duplicated as much as possible ZCHAFF’s
branching heuristic, clause learning, and clause database management techniques by
careful examination of the ZCHAFF code. Hence we were able to build NOCLAUSE so
that the differences with ZCHAFF are mainly dependent on NOCLAUSE’s use of the
circuit structure. This allows us to assess more accurately the benefits of using a non-
CNF representation.

For this reason we compare only with the ZCHAFF solver. Our aim is to demon-
strate the specific benefits of a non-CNF representation. Other more recent solvers, e.g.,
BerkMin and Siege, employ different branching heuristics from ZCHAFF and to some
extent different clause learning techniques, and are often able to outperform ZCHAFF

with these new techniques. However, as explained in Sec. 3 a non-CNF solver can be
made to duplicate the search performed by a CNF solver. Thus it should be possible to
implement the same branching and clause learning techniques employed in these other
solvers with a commensurate gain in efficiency. It seems plausible that at least some of
the gains we obtain from exploiting structural information would be preserved under
these alternate branching and clause learning strategies. Unfortunately, the exact nature
of the strategies employed in many of these solvers remains undisclosed so it is difficult
to test such a conjecture.

Another restriction in our experimental results is that our solver requires non-CNF
input. It was quite difficult to obtain non-CNF test problems, and the only ones that were



ZCHAFF NOCLAUSE

Problem # Vars. Time Decisions Impl/s Cls Size Time Decisions Impl/s Cls Size

2pipe 892 0.14 6,362 1,156,271 35 0.27 4,880 1,133,000 17
2pipe 1 834 0.17 5,254 1,075,924 32 0.13 3,323 925,923 13
2pipe 2 925 0.25 6,664 1,042,740 38 0.31 5,697 828,923 18
3pipe 2,468 2.74 39,102 865,566 88 1.45 14,898 702,202 24
3pipe 1 2,223 2.43 25,939 724,459 87 7.93 39,859 419,688 48
3pipe 2 2,400 3.80 35,031 723,537 93 5.99 31,622 414,157 36
3pipe 3 2,577 6.94 53,806 653,575 105 7.10 37,258 427,852 53
4pipe 5,237 188.89 541,195 467,001 253 9.87 41,637 509,433 40
4pipe 1 4,647 26.55 131,223 512,108 158 35.52 114,512 327,098 77
4pipe 2 4,941 49.76 210,169 482,896 186 36.50 112,720 327,298 84
4pipe 3 5,233 144.34 392,564 424,551 254 62.03 169,117 316,049 108
4pipe 4 5,525 93.83 295,841 470,936 228 42.26 122,497 326,186 112
5pipe 9,471 54.68 334,761 526,457 258 33.34 102,077 409,154 93
5pipe 1 8,441 126.11 381,921 425,921 273 116.18 255,894 280,758 140
5pipe 2 8,851 138.62 397,550 437,166 276 177.24 362,840 279,298 165
5pipe 3 9,267 137.70 385,239 441,319 271 134.08 292,802 295,976 165
5pipe 4 9,764 873.81 1,393,529 370,906 406 284.62 503,128 270,234 208
5pipe 5 10,113 249.11 578,432 456,400 324 137.09 283,554 298,903 172
6pipe 15,800 4,550.92 5,232,321 322,039 619 297.13 435,781 288,855 232
6pipe 6 17,064 1,406.18 2,153,346 402,301 469 1,056.56 1,326,371 267,207 309
7pipe 23,910 12,717.00 12,437,654 306,433 900 1,657.70 1,276,763 244,343 336
7pipe bug 24,065 128.90 1,075,907 266,901 393 0.29 481 403,148 10

Table 2. Comparison between ZCHAFF and NOCLAUSE on the complete fvp-unsat-2.0 bench-
mark suite. #Vars: number of variables in problem instance. Other columns as in Table 1.

able to obtain had already suffered some loss of structural information by been encoded
into ISCAS format which contains only and, or, and not gates. We expect to see even
better performance on problems which have not been so transformed. All experiments
were run on a 2.4GHz Pentium IV machine with 3GB of RAM.

Table 1 shows the performance of ZCHAFF and NOCLAUSE on four different bench-
mark suites containing a total of 226 problems. These suites were the only difficult
problems we found that were available in both CNF and non-CNF formats. The table
shows the total run time (all times in CPU seconds) to solve the suite, the total num-
ber of decisions (branches) over all of the search trees explored, and the rate of unit
propagations per second achieved. It also shows the average size of the conflict clauses
learned over the suite. We see that NOCLAUSE is faster on all but the easiest of suites
(sss-sat-1.0, where each problem took ZCHAFF an average of 1.3 seconds to solve).
NOCLAUSE is significantly faster on the hardest of the suite fvp-unsat-2.0. We also see
that it makes far fewer decisions and learns shorter conflict clauses. Furthermore, its
raw performance, measured in terms of implications per seconds is comparable with
ZCHAFF.

Table 2 shows the runtimes of ZCHAFF and NOCLAUSE in more detail on the fvp-
unsat.2.0 suite. On the larger problems, ZCHAFF is learning very long conflict clauses,



NOCLAUSE NOCLAUSE without DON’T CARES

Benchmark Time Decisions Step Impl/s DC/s Time Decisions Step Impl/s

sss-sat-1.0 (100) 225 1,532,843 4.20 411,760 204,945 272 3,095,245 6.75 652,927
vliw-sat-1.1 (100) 1,033 4,455,378 6.32 175,995 84,784 2,120 13,208,363 10.86 381,188
fvp-unsat-1.0 (4) 172 554,100 3.95 212,012 190,609 494 3,442,123 12.42 295,179
fvp-unsat-2.0 (22) 4,104 5,537,711 3.03 186,603 81,255 30,934 20,382,047 3.18 335,242

Table 3. Analysis of DON’T CARE propagations in NOCLAUSE on 4 benchmark suites. DC/s:
number of don’t care implications per second. Step: average number of levels backtracked over
on backtrack.

NOCLAUSE NOCLAUSE without DON’T CARES

Problem Time Decisions Impl/s DC/s Total/s Time Decisions Impl/s

4pipe 9.87 41,637 337,405 172,028 509,433 57.68 198,828 526,014
4pipe 1 35.52 114,512 236,336 90,762 327,098 62.65 159,049 413,037
4pipe 2 36.50 112,720 234,174 93,124 327,298 94.46 212,986 438,386
4pipe 3 62.03 169,117 233,951 82,098 316,049 213.27 365,007 404,224
4pipe 4 42.26 122,497 244,725 81,460 326,186 318.64 525,623 412,208
5pipe 33.34 102,077 281,338 127,816 409,154 246.93 650,312 559,266
5pipe 1 116.18 255,894 194,417 86,341 280,758 300.59 489,825 380,509
5pipe 2 177.24 362,840 190,681 88,617 279,298 360.67 585,133 392,928
5pipe 3 134.08 292,802 206,226 89,750 295,976 387.65 593,815 405,352
5pipe 4 284.62 503,128 198,872 71,362 270,234 2097.31 1,842,074 360,270
5pipe 5 137.09 283,554 212,402 86,501 298,903 379.19 543,535 448,226
6pipe 297.13 435,781 194,494 94,361 288,855 10,241.64 4,726,470 283,592
6pipe 6 1,056.56 1,326,371 192,991 74,216 267,207 3,455.35 2,615,479 374,503
7pipe 1,657.70 1,276,763 163,934 80,409 244,343 12,685.59 6,687,186 343,710
7pipe bug 0.29 481 345,986 57,162 403,148 1.00 2,006 481,415

Table 4. Analysis of the DON’T CARE propagations in NOCLAUSE on the non-trivial problems
from the fvp-unsat-2.0 benchmark. Total/s: number of implications per second plus the number
of don’t care propagations per second.

much longer than those learned by NOCLAUSE. We also see that NOCLAUSE displays
more uniform scaling behavior.

Table 3 shows the effect of don’t care propagation on NOCLAUSE’s performance.
We see that don’t care propagation is a major contributor to its performance. With-
out don’t care propagation NOCLAUSE for the most part has inferior performance to
ZCHAFF being slower on two of the benchmarks and slightly faster on the other two.
The table also shows the average number of don’t care implications per second on
these suites, and the average number of backjump levels on detecting a conflict. We
see that without don’t cares the solver will jump back further on average. This is be-
cause the solver is able to jump back over decision levels where don’t care variables
were branched on. Nevertheless, despite the ability of conflict clauses to jump back
over don’t care decisions, don’t care decisions still have a significant negative impact
on performance.

Table 4 shows in more detail the results of don’t care propagation on the non-trivial
problems in the fvp-unsat-2.0 suite. We see that don’t care propagation has its largest



NOCLAUSE NOCLAUSE without reductions
Benchmark Time Decisions Impl/s Size Exam Rem Time Decisions Impl/s Size

sss-sat-1.0 225 1,532,843 616,705 39 90% 12% 228 1,624,312 628,953 52
vliw-sat-1.1 1,033 4,455,378 260,779 55 88% 11% 984 4,322,679 281,017 90
fvp-unsat-1.0 172 554,100 402,621 100 73% 11% 402 820,582 311,127 119
fvp-unsat-2.0 4,104 5,537,711 267,858 240 33% 16% 5,675 7,614,898 246,498 418

Table 5. Analysis of clause reductions in NOCLAUSE on 4 benchmark suites. Exam: percentage
of conflict clauses examined. Rem: percentage of literals removed from the examined clauses.

NOCLAUSE NOCLAUSE without reductions
Problem Time Decisions Impl/s Size Exam Rem Time Decisions Impl/s Size

4pipe 9.87 41,637 509,433 40 90% 18% 30.50 105,543 384,022 148
4pipe 1 35.52 114,512 327,098 77 73% 16% 45.13 146,250 324,710 132
4pipe 2 36.50 112,720 327,298 84 71% 16% 54.97 160,462 311,666 132
4pipe 3 62.03 169,117 316,049 108 55% 15% 69.70 189,004 320,735 162
4pipe 4 42.26 122,497 326,186 112 59% 15% 80.13 204,747 303,505 157
5pipe 33.34 102,077 409,154 93 63% 17% 16.29 67,868 437,006 113
5pipe 1 116.18 255,894 280,758 140 42% 14% 195.81 410,159 289,525 204
5pipe 2 177.24 362,840 279,298 165 33% 15% 159.45 348,772 297,682 199
5pipe 3 134.08 292,802 295,976 165 32% 13% 154.02 331,226 294,891 218
5pipe 4 284.62 503,128 270,234 208 30% 13% 504.27 806,083 269,251 264
5pipe 5 137.09 283,554 298,903 172 32% 11% 216.11 424,870 305,280 237
6pipe 297.13 435,781 288,855 232 37% 16% 647.78 834,635 251,934 540
6pipe 6 1,056.56 1,326,371 267,207 309 14% 10% 1,421.42 1,648,993 253,759 380
7pipe 1,657.70 1,276,763 244,343 336 28% 22% 2,053.92 1,778,995 201,923 761
7pipe bug 0.29 481 403,148 10 100% 0% 0.29 481 403,148 10

Table 6. Analysis of clause reductions in NOCLAUSE on the non-trivial problems from the
fvp-unsat-2.0 benchmark. Exam: percentage of NoGoods examined; Rem: percentage of literals
removed from the examined clauses.

impact on the hardest problems. For example, we obtain a speed up factor 34 on the
6pipe instance. We also see that the total number of propagations per second (impli-
cations plus don’t cares indicated in the Total/s column) remains fairly similar with
the addition of don’t care propagation. However, some of that raw speed must now be
used to perform don’t care propagation which results in a lower rate of implications per
second. Nevertheless, this more than pays for itself in the reduced number of decisions.

Table 5 shows the effect of conflict clause reduction on performance. The size col-
umn shows the average size of a conflict clause learned. We see that without reduction
the conflicts are significantly larger. Note that the size of the clause was measured prior
to being reduced. The table also shows the percentage of clauses that are examined for
reduction (only clauses of length 100 or less are reduced) and for these the percentage
reduction achieved. We see that for the easier suites, sss-sat-1.0, and vliw-sat-1.1, clause
reduction does not help—the clauses are already quite short. For the two harder suites
clause reduction does provide useful performance gains, although the gain is less sig-



nificant that that achieved with don’t cares. We also see that as the problems get harder,
the conflict clauses get longer and a smaller percentage of them are examined for re-
duction (the examined column). However, despite only reducing 33% of the conflicts in
the fvp-unsat-2.0 suite, we still cut the average size of the conflicts by almost half. This
shows that reducing only some of the conflicts can still have a significant impact on the
other learned conflicts.

Table 6 shows in more detail the results of conflict clause reduction on the non-
trivial problems in the fvp-unsat-2.0 suite. We see that clause reduction does not al-
ways improve performance, e.g., 5pipe and 5pipe 2. However, overall it appears to of-
fer a useful performance enhancement. Clause reduction also influences the branching
heuristic (as mentioned above we use ZCHAFF’s VSIDS heuristic which counts how
many times a literal appears in recent conflict clauses, see [2] for details), and we see
that on the fvp-unsat-2.0 suite performance improvement is correlated with the number
of decisions. Further analysis of the interaction between the branching heuristic and
clause reduction is a topic for future investigation.

6 Conclusion
Our results demonstrate that conversion to CNF is unnecessary. A DPLL like solver
can reason with Boolean circuits just as easily as with a clausal theory. We have im-
plemented NOCLAUSE, a non-CNF DPLL like solver with similar raw efficiency to
highly optimized clausal DPLL solvers. Reasoning with Boolean circuits offers a num-
ber of advantages. For example, we can support much more complex inference like
formula rewriting, as well as propagation rules for complex gates like counting gates.
We can also use the circuit structure to simplify learned clauses, and to inform branch-
ing heuristics. NOCLAUSE is related to a number of previous works on circuit based
Boolean solvers. Its main innovations are (a) greater efficiency through adaptation of
the watch literal technique and (b) its new technique of conflict clause reduction. It is
also the first circuit based solver that performs don’t care propagation (previous uses of
don’t care reasoning have built on top of CNF solvers). We have demonstrated empiri-
cally that don’t care propagation has a very significant impact on performance, and that
conflict clause reduction can offer useful performance improvements.

Our experimental results are very promising. We often outperform a highly opti-
mized solver like ZCHAFF. We expect that the results would be even more favorable if
the benchmarks available to us had not already lost some of their structure. As we ex-
plained before, the ISCAS format only contains and, or, and not gates. There are many
other ways in which we expect performance could be further improved. For example,
more complex preprocessing of the input circuit, as in BCSat [16], is likely to offer
major efficiency gains. Most interesting, however, is that we have only scratched the
surface with respect to using structure to perform more sophisticated clause learning,
branching, and non-chronological backtracking. Future work on these topics has the
potential to deliver significant performance improvements.

References

1. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 4 (1962) 394–397



2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
sat solver. In: Proc. of the Design Automation Conference (DAC). (2001)

3. Tseitin, G.: On the complexity of proofs in poropositional logics. In Siekmann, J., Wright-
son, G., eds.: Automation of Reasoning: Classical Papers in Computational Logic 1967–
1970. Volume 2. Springer-Verlag (1983) Originally published 1970.

4. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of
Symbolic Computation 2 (1986) 293–304

5. Lang, J., Marquis, P.: Complexity results for independence and definability in propositional
logic. In: Proceedings of the International Conference on Principles of Knowledge Repre-
sentation and Reasoning. (1998) 356–367

6. Li, C.M.: Integrating equivalence reasoning into davis-putnam procedure. In: Proceedings
of the AAAI National Conference (AAAI). (2000) 291–296

7. Ostrowski, R., Grégoire, E., Mazure, B., Sais, L.: Recovering and exploiting structural
knowledge from CNF formulas. In: Principles and Practice of Constraint Programming.
Number 2470 in Lecture Notes in Computer Science, Springer-Verlag, New York (2002)
185–199

8. Beame, P., Kautz, H., Sabharwal, A.: Using problem structure for efficient clause learning.
In: Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT
2003). Number 2919 in Lecture Notes In Computer Science, Springer (2003) 242–256

9. Giunchiglia, E., Sebastiani, R.: Applying the Davis-Putnam procedure to non-clausal formu-
las. In: AI*IA 99: Advances in Artificial Intelligence: 6th Congress of the Italian Association
for Artificial Intelligence. Volume 1792 of Lecture Notes in Computer Science., Springer
(2000) 84–95

10. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables for propo-
sitional satisfiability. In: Proceedings of the 8th European Conference on Logics in Artificial
Intelligence (JELIA). Volume 2424 of Lecture Notes in Computer Science., Springer (2002)
23–26

11. Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for
Boolean circuits. In: AI&M 2004, 8th International Symposium on Artificial Intelligence
and Mathematics. (2004) Available on-line at http://rutcor.rutgers.edu/ amai/aimath04/.

12. Safarpour, S., Veneris, A., Drechsler, R., Lee, J.: Managing don’t cares in boolean satis-
fiability. In: Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition Volume I (DATE’04), IEEE Computer Society (2004) 10260

13. Gupta, A., Gupta, A., Yang, Z., Ashar, P.: Dynamic detection and removal of inactive clauses
in sat with application in image computation. In: Proceedings of the 38th conference on
Design automation, ACM Press (2001) 536–541

14. Circuit-based Boolean Reasoning. In: Proceedings of the 38th conference on Design au-
tomation, ACM Press (2001)

15. Ganai, M.K., Ashar, P., Gupta, A., Zhang, L., Malik, S.: Combining strengths of circuit-
based and cnf-based algorithms for a high-performance sat solver. In: Proceedings of the
39th conference on Design automation, ACM Press (2002) 747–750

16. Junttila, T., Niemelä, I.: Towards an efficient tableau method for boolean circuit satisfiability
checking. In: Computational Logic - CL 2000; First International Conference. Volume 1861
of Lecture Notes in Computer Science., Springer (2000) 553–567

17. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in
a boolean satisfiability solver. In: Proceedings of the 2001 IEEE/ACM international confer-
ence on Computer-aided design, IEEE Press (2001) 279–285

18. Van Gelder, A., Tsuji, Y.K.: Satisfiability testing with more reasoning and less guessing. In
Johnson, D., Trick, M., eds.: Cliques, Coloring and Satisfiability. Volume 26 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society (1996) 559–586


