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1 Extended Summary of the Research Plan

Software developed today contains many errors. If not discovered, such errors can have disastrous
consequences. Static analysis and verification tools have a great potential for detecting and helping
eliminate many of these errors. This potential is currently not fully realized because existing tools
either detect only a limited range of errors, or fail to scale to substantial pieces of software. To
resolve this problem we have developed an approach for combining precise and scalable techniques
in software analysis. Our goal is to make this approach applicable to real-world software.

In our approach, the developer specifies software interfaces in a common specification language.
Our systems use these interfaces along with an automated decomposition procedure to combine
multiple analyses, decision procedures, and theorem provers, leveraging the strengths of each in-
dividual technique. This approach enables the development of software components with verified
interfaces, supports precise analysis of selected regions of code, and supports scalable analysis of
substantial code bases. We have implemented this approach within two software analysis systems.

The Hob analysis system. The Hob analysis system [64, 69] verifies programs written in the
Hob language, an imperative memory-safe language with dynamically allocated cells and statically
instantiated parameterized modules. Module interfaces in Hob are expressed in set algebra. Hob
uses symbolic shape analysis and a decision procedure for monadic second-order logic over trees
to verify data structure implementations. It uses an analysis that propagates set expressions to
verify data structure uses as well as relationships between data structures. By analyzing properties
in applications such as liquid simulation and web server, each of which uses dynamically allocated
data structures, Hob demonstrated that a combination of precise and scalable analyses is effective.

The Jahob analysis system. We have started developing the Jahob system [63] for analyzing
Java programs, with the goal of transferring these ideas into real real-world programming languages
and verifying a richer set of properties. Jahob allows expressing and verifying richer interfaces,
including interfaces of dynamically instantiable data structures and numerical properties. To enable
verification of richer interfaces, we developed a technique that can not only combine multiple
analyses operating in different regions of code, but also combine multiple automated reasoners
when proving each proof obligation. Using this technique, we incorporated into the system first-
order theorem provers [18] and satisfiability modulo theories solvers. We have also developed and
incorporated new decision procedure for sets with cardinality constraints [65, 66], enabling the
verification of invariants about sizes of data structures.
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Proposed directions. We propose to develop the Jahob analysis system along several directions.
Our expectation is that these developments will make Jahob applicable to components of real-world
software, and that they will advance the state of the art in static analysis, verification, decision
procedures, and methodology for reliable software development.

• Scalable high-level analyses. We will develop analyses capable of propagating rich inter-
faces across substantial pieces of code. These analyses will correspond to the high-level anal-
ysis in the Hob system [69], but will support Jahob’s more expressive specification language
[63]. As the guideline in implementing scalable constraint solvers we will explore techniques
from description logic systems [106], set constraint solvers [62], and systems based on binary
decision diagrams [109]. To support rich invariants we will also consider new classes of con-
straints such as sets and multisets with symbolic cardinality bounds. We will apply high-level
analyses to verify uses of container data structures, including iterators, to verify relation-
ships between containers, and to detect errors such as null dereference, incorrect sequence of
operations, and unreachable code.

• Data structure analysis. We will further improve the effectiveness of Jahob’s data structure
analysis. This analysis is one of the current strengths of Jahob, but the precision required to
verify that a real-world data structure implements the desired interface can be comparable
to full program verification and still presents a challenge for current systems. To address
this challenge we will augment our current decision procedure based on monadic second-
order logic with faster decision procedures, using recent results on logics for regular trees
[45]. Furthermore, we will develop a library of transfer functions for common data structure
manipulation patterns, with the goal of avoiding most of the decision procedure invocations
during the analysis. With these improvements we expect to be able to verify data structures
present in widely used collection libraries.

• Methodology for modular verification. To enable verification of detailed properties in
large code bases, we will combine the high-level analysis with the data structure analysis.
Such a combination requires a methodology for modular analysis that enforces encapsulation
and is sound in the presence of mutation, aliasing, and callbacks. We plan to develop a generic
mechanism for specifying modular analysis methodologies while ensuring soundness. Using
this mechanism, we will explore new points in the design space of encapsulation disciplines
and compare them to recently proposed approaches [10] in terms of programmer flexibility
and the complexity of generated proof obligations.

• Extending the applicability of the system. We will develop several techniques to make
Jahob applicable in multiple scenarios and by users with different expertise. We will organize
system architecture into the front-ends, the intermediate language verifier, and the theorem
proving engine; each of these components will be useful on its own. We make Jahob input
suitable for verifying constraints from graphical modelling notation, enabling its use not only
during code development but also during software design. We will extend Jahob’s annota-
tion language to allow users complete control over the proving process and thereby support
verification of arbitrarily complicated properties. Finally, we will integrate Jahob with a
run-time checker and a finite domain constraint solver [79], which will allow users to debug
specifications and code using specification-based testing.
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The proposed work will benefit from interactions with Professor Wei Ngan Chin from the
National University of Singapore, Dr. Pierre Genevés from INRIA and CNRS, France, Dr. Rustan
M. Leino from Microsoft Research Redmond, USA, Professor Darko Marinov from the University
of Illinois Urbana-Champaign, USA, Professor Andreas Podelski from the Freiburg University,
Germany, and Professor Martin Rinard from the Massachusetts Institute of Technology, USA. This
work will also benefit from interactions with our colleages at EPFL, including Professor George
Candea, Professor Thomas Henzinger, Professor Dejan Kostic, Professor Martin Odersky, Professor
Alain Wegmann, and Professor Willy Zwaenepoel.

2 Background: The State of the Art

We next survey some of the relevant work in verification and static analysis and summarize its
relationship to this proposal.

2.1 Program Verification

At the core of our proposals is a view of modern program verification as an integrating technology
for a range of automated approaches that have been developed to address specific aspects of software
reliability.

Evolution of program verification. Program verification has a long tradition and has resulted
in tools such as the Program Verifier [60], Gypsy [47], Stanford Pascal Verifier [83], VDM [57], the B
method [1], RAISE [30], and Larch [49]. This work established the principles of reducing verification
to theorem proving. It also identified difficulties of the program verification problem, both in the
automating the proofs of verification conditions and in user effort needed to devise appropriate
specifications and loop invariants. More recent work on ESC/Modula-3 [36] and ESC/Java [42]
reflects an important philosophical view shift from the full program verification ideal to building
immediately usable tools that check common program errors using similar underlying techniques
[83]. These ideas influence the scope of our proposal: we aim at building useful tool for the price
of verifying potentially simpler properties and using a simplified (but well defined) programming
language semantics.

Recent tools. Among the recently developed tools are ESC/Java2 [22] and Spec# [10], which
share architecture similar to our Jahob system, but differ in loop invariant inference techniques and
deployed theorem provers and decision procedures. To the best of our knowledge these tools are
not integrated with shape analyses such as [112, 111] and use instead simpler techniques for loop
invariance inference [41, 43]. In terms of theorem proving technology these systems use primarily
satisfiability modulo theory solvers [92], whereas Jahob also uses resolution-based theorem provers
[18], specialized decision procedures [111, 66], and interactive theorem provers [117]. One of the
goals of our proposal is to collaborate with researchers developing these tools to exchange ideas
and create a common set of benchmarks that will foster further cross-fertilization of techniques
deployed in these systems.

Modular verification methodology. Data refinement [56, 33] is the general technique of soundly
replacing a complex piece of software with a simpler one. However, there are difficulties in applying
these techniques in modern object oriented programs, because the relationship between an object
and its state is not given syntactically but depends on references in the heap [71]. Ownership types
[19, 25] can approximate the relationship between the object and its auxiliary objects. Naumann
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and Barnett [82] make explicit the binary ownership relation that is implicit in ownership types.
One of the main features of Spec# [10] is a modular verification methodology that correctly handles
such situations. The verification methodology in Jahob [63, Section 3.2.8] is more restrictive than
one in Spec#. In the proposed work we will design a generic mechanism for exploring existing and
new modular verification methodologies.

The role of interactive proof. Several tools support interactive theorem proving in the verifica-
tion process, including LOOP [54], Krakatoa [38, 76], KIV [9], KeY [2], as well as the embeddings
[98], [74]. In our experience [117] such combination is useful both in verifying very complex prop-
erties and in debugging the system itself [63, Section 4.2]. One of the goals of the present project
is to make such verification available through program annotations that are close to standard pro-
gramming constructs, in the hope of making it more accessible to software developers. The overall
goal of the project, however, is to reduce the need for interaction as much as possible by advancing
the automated methods.

2.2 Abstract Interpretation

One of the central problems in verification of safety properties is automated computation of reach-
ability invariants, which can be formalized as abstract interpretation [29]. An analysis system can
use such invariants to check that program satisfies desired specifications and avoids execution errors.
Researchers have developed numerous analyses based on abstract interpretation. These analyses
differ in classes of invariants that they can synthesize and analysis efficiency that determines their
scalability. One of the goals of our system is to enable integration of a wide range of such analyses
including scalable analyses proven to work on large code bases and shape analyses that can verify
detailed data structure properties.

Scalable analyses. Many of the scalable program analyses have been developed in the context of
pointer analysis [5, 101, 109, 16, 50] flow-sensitive typestate analysis [31], analysis of ML exceptions
[3], and approximation of run-time types [4]. Many scalable analyses separate the problem of
generating a set of constraints from code from the problem of solving the generated constraints using
dedicated solvers. In the proposed work we will investigate the applicability of such existing and
new constraint solving approaches to the problem of propagating properties specified by expressive
preconditions and postconditions.

Data structure analyses. On the other side of the precision/efficiency spectrum of static
analyses are shape analyses, which can analyze detailed properties of mutable data structures. Many
previous shape analyses used specialized graph-like structures to represent abstract program state
[96, 95, 46]. Jahob uses a new symbolic approach to shape analysis implemented in a component
called Bohne [112, 111, 110, 90] and builds on the advances in predicate abstraction [8, 52] to
automatically discover new predicates and refine the abstraction domain. In the context of the
TVLA system [72, 73] researchers have also developed symbolic approaches [114, 115] as well as
approaches for refining the abstraction domain [75] and inferring analysis transfer functions [93].
Separation logic approaches also use formulas to represent program state and have proven effective
for verifying shape properties [70, 48, 15]. We plan to explore the potential of such techniques
for improving the performance of Jahob’s shape analysis. Jahob’s data structure analysis proves
not only preservation of shape invariants, but also invariants such as sorting and changes to data
structure content. Such invariants can be handled by the system [84] that reasons about shape,
sortedness, sizes, and data structure content. In the long term we expect to combine separation
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logic reasoning with classical reasoning in Jahob.

2.3 Software Model Checking

Model checking techniques [27] automatically prove properties of finite state systems. They have
proved successful in hardware verification where the state is typically finite [58]. Software systems
have practically infinite state space, but abstraction techniques make model checking applicable in
those cases as well. Two forms of abstraction are relevant for the research we are proposing.

Finitization. The first approach is to introduce bounds on parameters of the system such as the
values of variables and the number of allocated objects, or to constrain code execution by bounding
the number of loop iterations [103, 20, 59]. Such approaches usually do not guarantee the absence
of errors (with the exception of specific classes of properties [7]). However, an error found using
this approach usually indicates an error in the original infinite-state system. Such approaches are
therefore very likely to be useful in the initial phases of verification when specification and the
code contain many errors. We plan to deploy such approaches in the context of Jahob as a way of
debugging specifications and code before attempting to prove the absence of errors.

Predicate abstraction. In recent years researchers developed counterexample-driven predicate
abstraction [8, 51, 55, 52], a promising combination of model checking, abstract interpretation, and
theorem proving. Jahob’s shape analysis is based on generalization of these techniques to a richer,
quantified, semantic domain [90], and benefits from the improvements in predicate abstraction
techniques. With our collaborators we will continue developing symbolic shape analysis and explore
the possibility of tuning the precision of abstract domain to obtain performance comparable to
combinations of TVLA shape analysis with Blast predicate abstraction [17].

2.4 Expressive Static and Dynamic Type Systems

Type systems encourage program correctness by integrating reasoning into the programming lan-
guage itself. Expressive type systems based on dependent types [113], refinement types [44] and
recently developed Hoare Type Theory [81] enable developers to express proofs of detailed prop-
erties of programs. We propose to develop annotation systems that have similar benefits but are
based on classical logic and imperative programming. Soft typing [21, 4] and hybrid type checking
[40] combine static and dynamic type checking. We will explore such combination for Jahob specifi-
cations by developing a run-time checker that communicates with Jahob’s static analyzers. Existing
annotations languages that have both static and runtime checkers include Spec# [12, 11] and the
Java Modelling Language [28, 23]. The Eiffel programming language [78] has a long tradition of
run-time checking and is being extended with static verification as well. We hope to benefit from
such related efforts elsewhere by exchanging ideas and verified artifacts using common formats for
verification such as BoogiePL [34].

2.5 Theorem Proving and Constraint Solving

Automated theorem provers such as Simplify [35, 83] have long presented the core technology
in program verifiers. Recent advances that incorporate insights from SAT solvers have led to
substantial performance improvements [92, 13, 32] that, combined with hardware advances enable
verification of more complex properties than before. First-order theorem provers have also made
remarkable advances over past decades [99, 108, 107] and are successfully used in verification [18, 91].
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We also found that for expressive properties we need to consider specialized decision procedures
such as decision procedure for monadic second-order logic over trees [61]. In the proposed work we
plan to integrate faster decision procedures that can express similar properties [45].

For debugging specifications and code we will explore the uses of finite constraint solvers such
as Korat [20, 79] as well as the use of model finders [53, 105, 24]. We believe that these techniques
will substantially increase the usability of Jahob.

Jahob uses the Isabelle interactive theorem prover [87] as a semantic foundation and a fall-
back for proving verification conditions not proved by other techniques. Furthermore, interactive
theorem provers are increasingly being integrated with decision procedures and automated provers
[77, 100, 14] which makes their languages appealing as a notation for combining different reasoning
techniques. The simple combination approach developed in Jahob [63, Section 4.4] could be useful
as a technique for combining provers for expressive languages.

3 Prior and Current Research of the Applicant

We have contributed several results in the area of analysis algorithms and systems, decision pro-
cedures and verification case studies. We next describe our past and current work on building
analysis systems and developing the underlying algorithms.

3.1 Hob System

To explore the idea of combining multiple analyses using verified set interfaces, we have developed
the Hob analysis system [64, 111, 67, 117, 69]. Hob analyzes programs written in the Hob language,
an imperative memory-safe language with dynamically allocated cells and statically instantiated
parameterized modules. Each module in Hob consists of an implementation section, a specification
section, and an abstraction section.

Figure 1 shows some of the operations in a Hob module that describes a doubly-linked list
with an iterator. Note that the specification section abstracts the doubly-linked structure using
an abstract set, Content. It also abstracts the state of the iterator using another set, Iter, which
stores those elements of Content that still remain to be iterated over. These two sets provide a
natural abstract description of a container with an iterator. Hob uses a shape analyses [64, 111] to
verify that data structures such as linked list correctly implement their set specifications. In this
process Hob shows that data structure operations avoid memory errors and perform the change to
data structure content described by the ensures clause, with the meaning of sets specified by the
abstraction function given in the abst section of the module. Because they refer to content change,
such properties are stronger than properties analyzed by many other shape analyses [48].

Having verified that data structure implementations satisfy their set specifications, Hob then
uses such specifications to verify the uses of data structures and relationships between data struc-
tures. For example, the following code fragment processes all elements of a the doubly-linked list
with an iterator.

DLLIter.openIter();

while (!DLLIter.isLastIter()) {

Node n = DLLIter.nextIter();

process(n);

}

DLLIter.closeIter();
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impl module DLLIter {

format Node { next : Node; prev : Node; }

var root, current : Node;

proc isEmpty() returns e:bool {

return root==null;

}

proc remove(n : Node) {

if (n==current) { current = current.next; }

if (n==root) { root = root.next; }

Node prv = n.prev, nxt = n.next;

if (prv!=null) { prv.next = nxt; }

if (nxt!=null) { nxt.prev = prv; }

n.next = null; n.prev = null;

}

proc openIter() { current = root; }

proc nextIter() returns n : Node {

Node n1 = current;

current = current.next;

return n1;

}

proc isLastIter() returns e: bool {

return current==null;

}

}

abst module DLLIter {

use plugin "PALE";

...

Content = { n : Node | "root<next*>n" };

Iter = { n : Node | "current<next*>n" };

}

spec module DLLIter {

format Node;

specvar Content, Iter : Node set;

invariant Iter in Content;

proc isEmpty() returns e:bool

ensures e’ <=> (card(Content’) = 0);

proc remove(n : Node)

requires card(n)=1 & (n in Content)

modifies Content, Iter

ensures (Content’ = Content - n) &

(Iter’ = Iter - n);

proc openIter()

requires card(Iter) = 0

modifies Iter

ensures (Iter’ = Content);

proc nextIter() returns n : Node

requires card(Iter)>=1

modifies Iter

ensures card(n’)=1 & (n’ in Iter) &

(Iter’ = Iter - n’);

proc isLastIter() returns e:bool

ensures not e <=> (card(Iter’) >= 1);

}

Figure 1: Hob Module for a Doubly Linked List with an Iterator

Hob can use set specifications alone to verify that preconditions of list operations are satisfied and
that all list elements are processed at the end of the iteration. It can similarly verify disjointness of
contents of multiple data structures even in the presence of operations that move elements between
the data structures.

We have used Hob to verify applications such as a minesweeper game implementation, a water
particle simulation, and a web server [67], each of which uses uses dynamically allocated data
structures. In this verification effort we have combined shape analysis [111], interactive theorem
proving [117], and analysis based on set algebra expressions [69], demonstrating that a combination
of precise and scalable analyses is effective. We made contributions to the analysis of data structures
[111], the analysis of data structure clients [69] and explored modularity problems [68].

3.2 Jahob System

The experience with the Hob system has led the applicant to start developing the Jahob system
[63], which is the starting point of the research proposed in this application. Jahob shares with
Hob several ideas: combining multiple techniques in the analysis of a given piece of software, using
a common specification language as a way of combining these techniques, and using specification
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variables to soundly abstract module details. Jahob aims to push these ideas further and explore
them in a more realistic context: Jahob’s implementation language is a subset of Java, and Jahob’s
specification language is a subset of Isabelle’s higher-order logic [86]. We next outline the design
of Jahob through an example and then discuss our current work on addressing the challenges of
verifying expressive specifications in Jahob.

3.2.1 Jahob through an Example

We next consider the verification of detailed properties of a global singly-linked list in Jahob (for
more details, please see [63, Chapter 2]). Figure 2 shows an example verification session. The upper
section of the editor window shows the List class with the addNew method and Jahob annotations
written inside special comments. Class annotations in this example introduce two specification
variables of type set of objects: nodes, containing objects reachable from root along the next

field, and content, containing objects stored in these nodes using the data field. The meaning
of these specification variables is reflected in class invariants nodesDef and contentDef. Method
contracts such as addNew uses specification variables to describe method behavior while keeping
private the class representation in terms of next and root fields. Furthermore, class invariants,
such as sizeInv, use specification variables to express consistency properties of the data structure.
The body of addNew also contains assignments to specification variables, as well as a noteThat

assertion that acts as a verified lemma that helps Jahob in the proof (in this case by indicating the
assumptions needed to prove sizeInv).

The lower window section in Figure 2 shows the command used to invoke Jahob to verify addNew,
as well as Jahob’s output indicating a successful verification. A Jahob invocation specifies the name
of the source file List.java, the method addNew to be verified, and a list of three provers: spass,
mona, and bapa, used to establish proof obligations during verification. Jahob’s output indicates a
successful proof and shows that all three provers took part in the verification. We next describe
how Jahob soundly combines different provers.

3.2.2 Proving Complex Formulas by Combining Multiple Provers

Jahob reduces the verification problem to a sequence of validity queries for formulas in higher-order
logic. To prove such formulas Jahob first decomposes them into a conjunction of polynomially many
simpler formulas, then attempts to apply each of the given provers to each of the conjuncts [63,
Section 4.4]. Each prover typically accepts only a subset of higher-order logic formulas. Jahob
therefore does prover-specific preprocessing of such conjuncts, which includes substituting certain
equations in assumptions, rewriting constructs such as set comprehensions and set operations, and
approximating constructs not supported by the prover. The result is a stronger proof obligation
that is accepted by the language of the prover. The overall proof obligation succeeds if for each
conjunct at least one prover succeeds in proving its approximation. The developers can increase
the effectiveness of this simple approximation technique by introducing noteThat statements. A
noteThat statement can only strengthen the proof obligation so its use is always sound. It trans-
forms the proof obligation by effectively introducing a lemma (cut) into the proof that is specific
to a given program point. It can optionally restrict the set of hypothesis in the conjunct to those
whose name matches the given one.

We next describe the provers that we incorporated into Jahob using this technique.
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Figure 2: Screen shot of verifying a linked list implementation in Jahob

3.2.3 Leveraging First-Order Provers

Using our combination technique we were able to incorporate resolution-based theorem provers
into Jahob, which is attractive because of their continuous improvement [108, 107, 99, 102]. Using
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resolution-based provers we were able to verify data structures such as a trees, as well as a hash
table implementation with operations insert, update, remove and rehash [18]. We have verified key
data structure invariants, as well as postconditions such as

content = (old content \ {(x, y). x = key}) ∪ {(key, new value)}

that precisely describe the change of the content relation after executing the hash table operation
update(key, new value). In the example from Figure 2, the translation into first-order logic and
the use of SPASS [108] theorem prover successfully establishes 5 proof obligations, including the
preservation of the contentDef invariant.

Using similar techniques, we were able to leverage satisfiability modulo theory solvers using the
SMT-LIB standard interface [92, 13, 32]. We found SMT provers to be similarly useful, typically
stronger with arithmetic and weaker with quantifier reasoning compared to resolution-based provers.

3.2.4 Leveraging Decision Procedures for Trees

We were also able to incorporate a decision procedure based on monadic second-order logic into
our system. In the example from Figure 2 this technique proves the preservation of nodesDef and
tree[Node.next] invariants.

Our translation expects formulas in the form of an implication where one of the assumptions
is tree[f1, . . . , fn], meaning that graph given by fields f1, . . . , fn is a tree. It then approximates
the entire formula by projecting it onto the tree structure with edges f1, . . . , fn. To make this
approximation more precise, we have developed a new techniques, field constraint analysis [111]
that recognizes formulas of the form ∀x, y. g(x) = y → H(x, y) for a non-tree edge g, and uses
them to soundly approximate the occurrences of g with formula H.

This technique enables us to precise analyze data structures with back pointers as well as data
structures such as two-level skip list where H does not specify a function, overcoming limitations
of previous tools [80]. Compared to approaches based on first-order theorem provers this approach
enables the use of transitive closure, yielding explicit definitions for specification variables and often
avoiding manual specification variable updates. More recently, as part of a student project in a
class taught by the applicant, this approach was applied to verify not only acyclic but also to cyclic
data structures, without any additional extensions to the underlying mechanism.

3.2.5 Developing and Using new Decision Procedures

Identifying relevant classes of specifications and developing decision procedures for them are among
the the most significant developments in the context of Jahob. One class of decision procedures
arises from verification of invariants such as sizeInv in Figure 2. The preservation of this invariant
yields the verification condition of the form

x /∈ content ∧ size = cardinality(content) → size + 1 = cardinality({x} ∪ content)

This constraint belongs to a natural class that we call Boolean Algebra with Presburger Arithmetic
because it contains both Boolean Algebra of sets and Presburger Arithmetic on the cardinalities of
sets. This language admits quantifier elimination [37] so it is decidable, but no complexity results for
the decision procedure were previously known. In [65] we describe an implementation of a decision
procedure for quantified constraints and characterize its complexity. Subsequently we examined

10



quantifier-free constraints, for which all previous algorithms were running in non-deterministic
exponential time. We found a new algorithm that runs in non-deterministic polynomial time [66],
obtaining an exponential improvement. This improvement allows us to find counterexamples for
certain invalid verification conditions formulas that we were previously unable to handle. Most
recently, we have started extending these results to constraints that involve not only sets but
also multisets in which elements can occur multiple times [89]. We have obtained new decision
procedures and complexity bounds for quantifier-free constraints, and established undecidability of
quantified constraints.

3.2.6 Runtime Checking

There are many errors in code that can be detected by a moderate amount of testing. Testing can
similarly detect errors in specifications if the verification system has a facility to execute specifi-
cations at run time. We have recently started exploring issues involved in building such a system
by using a runtime checking prototype built as an interpreter of Jahob’s intermediate language
[116]. One of the challenges in building a runtime checker for a program verification system is that
the language of invariants and assertions is designed for simplicity of semantics and tractability of
proofs, and not for run-time checking. Some of the more challenging constructs include existential
and universal quantification, set comprehension, specification variables, and formulas that refer to
past program states. We have examined the uses of these constructs that arise in specifications
that we encountered and developed approaches for handling them.

We have also started exploring the problems of designing a specification language to facilitate
both runtime checking and static verification. In addition to classical logic, we have explored
runtime checking approaches for a subclass of separation logic specifications [85]. Finally, we are
working on extending the functionality of constraint solvers for imperative predicates [79] to make
them applicable to specification-based testing in verification tools such as Jahob.

4 Proposed Research Directions

Jahob is a promising verification system, but requires important further development to become
applicable to real-world software. These developments must simultaneously happen at multiple
fronts and require substantial algorithmic insights and engineering effort. We propose to concentrate
these developments around the following four research directions.

4.1 Scalable High-Level Analyses

Objective: Develop analyses capable of propagating expressive specifications across substantial

pieces of client code.

In the Hob system we demonstrated that the use of interfaces can enable relatively simple
analysis to prove important high-level application properties [69]. Our goal is to achieve similar
benefits in the context of Jahob. This requires developing analyses that can extract useful infor-
mation from Jahob’s more expressive specification language. For this purpose, we plan to to use
sound formula approximation [63, Section 4.3] and apply it to the domains of constraints supported
by the analysis. We will also explore on-demand refinement of the approximation in response to
detected analysis imprecision. The use of instantiable data structures in Java requires analyses that
compute sufficiently precise aliasing and side-effect information. For this purpose we will explore
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the use of existing analysis as well new analyses that can take advantage of any supplied invariants
that specify aliasing.

We will also explore scalable solvers for new classes of constraints. As the guideline in imple-
menting scalable constraint solvers we will explore techniques from description logic systems [106],
set constraint solvers [62], and systems based on binary decision diagrams [109]. We will considered
layered analysis approaches for typestate checking such as [39] as our starting point for scalable
flow-sensitive analyses. We will apply our analyses to verify uses of container data structures,
including iterators, to verify relationships between containers, and to detect errors such as null
dereference, incorrect sequence of operations, and unreachable code.

We expect these analyses to be able to infer some of the procedure specifications. We will explore
constraint simplification techniques to facilitate the communication of such inferred specifications
to the developer.

Sample research subproblem: scalable solver for constraints on collections. We have
established decidability and complexity results for new classes of constraints on sets and multisets
with numerical constraints, which are useful for analyzing data structure clients. However, a direct
implementation of these algorithms does not yield scalable solvers. Instead, we must examine
constraints arising in practice and design algorithms that exploit their structure to perform well
on average. This may require new algorithmic insights and implementation in the context of a
theorem prover or a satisfiability modulo theory solver.

4.2 Data Structure Analysis

Objective. Improve the performance and the scope of applicability of Jahob’s data structure

analysis.

Data structure analysis is one of the current strengths of Jahob: we are aware of no other
system that can verify such detailed user-supplied data structure specifications with such level
of automation. Nevertheless, the precision required to verify that a real-world data structure
implements the desired interface can be comparable to full program verification and still presents
a challenge for the current system.

To address this challenge we will augment our current decision procedure based on monadic
second-order logic with faster decision procedures, using results on less expensive logics for regular
trees [45, 104] as well as generalizations of results based on small model property [7] to quantifier-
free logics on trees. We will also explore more sophisticated encodings that would allow us to apply
efficient decision procedures to more complex data structures. We will develop a library of transfer
functions for common data structure manipulation patterns, with the goal of avoiding most of the
decision procedure invocations during the analysis. With these improvements we expect to be able
to verify expressive specifications of data structures present in widely used collection libraries.

Sample research sub-problem: safe data structure analysis extensions. We will explore
approaches for incorporating extensions into Jahob’s data structure analysis. An extension would
specify a component of the analysis domain and prove the correctness of data-flow analysis transfer
functions. This approach should be a generalization of Jahob’s current constructs for introducing
and defining specification variables. It should be possible to specify such transfer functions not
only for individual statements but also for sequences of statements at once. It might be fruitful
to consider the interaction of such approach with current lemma matching [63, Section 4.2.4 ] and
semantic caching [112, Section 5] in Jahob. We will consider automation of the inference of transfer
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functions using Jahob’s provers as well as syntactic approaches [93, 97].

4.3 Methodology for Modular Verification

Objective. Develop flexible and statically tractable modular verification methodology.

To enable verification of detailed properties in large code bases, we will combine the high-level
analysis with the data structure analysis. Such a combination requires a methodology for modular
analysis that enforces encapsulation and is sound in the presence of mutation, aliasing, and call-
backs. One design decision is the treatment of encapsulated objects, which affects the meaning of
frame conditions in clients.

In the first approach, encapsulated objects are never hidden from the clients of the module,
they are simply characterized in a certain way (for example, by being in a particular typestate).
Although the modifies clauses do not explicitly mention changes to those objects, such changes are
implicitly expanded in the client. Consequently, to prove that a method call does not modify a
given object (even if the method has an empty modifies clause) it is first necessary to prove that
the object cannot belong to the set of implicitly modified objects, which is a semantic check. This
is the approach taken by the Spec# methodology [10].

In the second approach, the references to encapsulated objects are entirely hidden from clients.
Consequently, such client can never observe the objects, the expanded modifies clauses need not
mention them and the clients can often syntactically conclude that certain parts of state remain
unchanged. However, this approach can be more restrictive and it is more difficult to ensure its
soundness because it relies on the fact that clients can only access their reachable objects. This
approach is taken by many ownership types systems [26].

We plan to develop a generic mechanism for specifying modular analysis methodologies while
ensuring soundness. Using this mechanism, we will explore new points in the design space of en-
capsulation disciplines and compare them to recently proposed approaches in terms of programmer
flexibility and the complexity of generated proof obligations. We will also explore the possibility
of multiple encapsulation disciplines coexisting in the same piece of software. We anticipate that
this will require module interfaces that go beyond standard preconditions and postconditions and
impose requirements on all statements executing outside the module.

Sample research sub-problem: encapsulation analysis. We will develop specialized analyses
that can establish proof obligations arising from frame conditions of instantiable structures, and
from the encapsulation requirements for data structures. Such analysis will need to examine the
invariants to determine regions of state to which they refer. This problem is in general difficult but
we expect it to be solvable with precision sufficient for this purpose.

4.4 Extending the Applicability of the System

Objective. Enable Jahob to be used by both experts and verification novices and to be applied to

systems described in different languages.

Among the most common problems in verification are errors in specifications. We will develop
runtime checking techniques that allow specifications to be executed at runtime and therefore tested
in a way similar to code testing. Users of the system will thus obtain concrete counterexamples
for their specification errors. To enable specifications to be both tested and verified statically,
we will develop formula transformations that make a large class of formulas amenable to both
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approaches. In our experience with both an interpreter [116] and a runtime compiler [85] for
complex specifications, pure dynamic execution yields large performance overheads. We therefore
plan to explore compiler optimizations and fine-grained combinations between static and dynamic
analysis to reduce this overhead. Orthogonally to these approaches, we will explore the ability to
perform checks only with certain frequency and to use additional hardware resources in multi-core
processors to parallelize the execution of runtime checks.

The advantage of modular verification is that each procedure can be verified in isolation. To
provide the benefits of modularity to run time checking as well, we will integrate Jahob with solvers
for imperative predicates [79] and declarative specifications [105]. These tools will enable generation
of states that satisfy the given precondition, saving the developers the work needed to generate unit
tests. Similarly to static analyses, it may be necessary to specialize these approaches to particular
classes of properties to make them feasible.

In addition to the current Java front end we will explore alternative front ends for Jahob, such as
annotated Java bytecodes, the Scala programming language, and the BoogiePL verification format
[34]. This will generate a new set of benchmarks for Jahob and increase the number of potential
Jahob users. We will also make Jahob input suitable for verifying constraints from graphical
modelling notation, enabling its use not only during code development but also during software
design.

Sample research sub-problem: automated and interactive proof along with runtime

checking. We will extend Jahob’s annotation language to optionally provide users with com-
plete control over the proving process and thereby support verification of arbitrarily complicated
properties. We will build on the current constructs such as noteThat. We will additionally provide
support for proof rules involving quantifiers and propositional connectives, making the system com-
plete for first-order logic. Furthermore, we will explore the interaction of such annotation language
with runtime checking, with the possibility of manual proof decomposition and runtime checking
simultaneously helping the verification process. We will establish connections of such approach
with LCF-style theorem proving [88] and deductive runtime certification [6].

5 Time Table and Milestones

This section presents the tentative time-line for the project, the approximate assignment of objec-
tives to doctoral students, and the results expected after each year.

We ask for the support of two doctoral students, which will work jointly with the applicant
towards the goals described in Section 4. We expect the first doctoral student (Student A) to
focus on the high-level analysis and modular analysis methodology. We expect the second doctoral
students (Student B) to explore advances in verifying data structures, annotation-based proof
system, and the integration of specification-based testing.

Year 1. The students will become familiar with the goals and the background. They will make
the first steps towards the overall goals. We then expect to crystalize the modular methodology
and enable modular proofs of complex properties given sufficient user annotations.

Student A) Get acquainted with Jahob and with existing modular verification methodologies.
Design and implement a generic mechanism for specifying encapsulation policies.

Student B) Get acquainted with data structure verification in Jahob, with interactive program
verifiers, and with interactive theorem provers. Develop an annotation-based proof system.
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Year 2. We expect the main algorithmic advances in this year, which will increase the automation
of data structure verification. In parallel, we will develop the enabling technology for scalable high-
level analysis. At this stage, the system will be effective for verifying complex properties for
programs that are properly annotated at method boundaries.

Student A) Develop core infrastructure for scalable analyses, including the front-end and the
constraint solver.

Student B) Implement and evaluate the annotation-based proof system. Integrate faster
automated data structure reasoning procedures into Jahob.

Year 3. We will integrate the system with specification-based testing, which will help users debug
specifications and the code. We will develop and evaluate high-level analysis and apply it to a
range of problems. These developments will make the system easier to use on larger code bases.

Student A) Develop high-level analysis for Jahob and apply it to detect interface usage vioa-
tions and run-time errors.

Student B) Integrate specification-based testing with static verification and interactive proof.

6 Significance and Impact of the Proposed Research

The proposed research aims to advance the principles and the practice of automated software
analysis and verification.

The proposed research addresses some of the core problems of programming languages, software
engineering, and automated reasoning. We will develop and implement new algorithms for deciding
and solving logical constraints and synthesizing program invariants. We will establish connections
between static verification, specification-based testing, and run-time checking. We will explore the
impact of programming methodology on our ability to enforce that software satisfies the desired
properties. Our results will therefore improve our ability to reason about software. Given that
software projects are one of the largest engineered artifacts, these results will ultimately help in
processing other forms of structured and semi-structured data.

We expect our results to substantially improve the effectiveness of software verification tools.
All of the goals of this proposal contribute to improving the usability of Jahob: scalable analyses
enable its application to larger code bases, improved data structure analysis enables verification
of realistic data structures, and modular verification methodology is essential for scalability and
wide applicability. Finally, techniques such as runtime checking and specification-based testing are
specifically aimed at providing feedback to software developers and making it easier to use.

We will implement our contributions in the context of a publicly available distribution of the
Jahob system. Jahob was already used by students in the class taught by the applicant. Once the
proposed research is completed we also expect software companies and open source community to
be able to use our tools and techniques to improve the reliability of produced software. Given the
high cost of software errors [94], such improvements can have substantial economic benefits.
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