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1 Biographies of Principal Investigators

The principal investigators are leading three research groups, which collaborate as part of the EPFL
Thrust in Reliable Software Research (TRESOR).

TRESOR Page: http://tresor.epfl.ch

Thomas Henzinger is Professor at EPFL and Adjunct Professor at the University of California,
Berkeley. He holds a PhD in Computer Science from Stanford University (1991) and was an Assistant
Professor at Cornell University (1992-95), then Assistant Professor (1996-97), Associate Professor (1997-
98), and Professor (1998-2004) at UC Berkeley. In Berkeley, he was a Director of the Center for Hybrid
and Embedded Software Systems. He was also Director at the Max-Planck Institute for Computer
Science in Saarbruecken (1999-2000).

Henzinger is a member of Academia Europaea, a member of the German Academy of Sciences
(Leopoldina), a Fellow of the ACM, a Fellow of the IEEE, and an ISI Highly Cited Researcher. He
has published more than 200 articles in refereed conferences and journals. He founded the main inter-
national conferences on hybrid systems (HSCC) and embedded software (EMSOFT) and chaired the
program committees of several international conferences such as Computer-Aided Verification and Com-
puter Science Logic.

Henzinger’s research focuses on models, algorithms, and tools for the design and verification of soft-
ware and embedded systems. His hybrid automaton model has become the standard formalism for
analyzing mixed discrete-continuous systems and his HyTech tool was the first model checker for such
hybrid systems. Other software from Henzinger’s team include Mocha, a toolkit for the verification
of reactive modules; Blast, a model checker for C programs; and Giotto, a coordination language for
distributed real-time tasks.

Homepage: http://mtc.epfl.ch/∼tah

Viktor Kuncak is Assistant Professor at EPFL and the head of the Automated Reasoning and Anal-
ysis group. His work combines ideas from decision procedures, theorem proving, constraint solving,
run-time checking, static analysis, and programming languages. His recent contributions include verifi-
cation of precise properties of imperative data structures, and decision procedures for reasoning about
collections of objects. Before joining EPFL in 2007, Viktor Kuncak was a doctoral student at the Mas-
sachusetts Institute of Technology. In his PhD thesis he developed and implemented new algorithms for
proving program properties that had been beyond the reach of previous automatic verification techniques.
He has also worked on the foundations of expressive subtyping constraints and applications of interactive
theorem proving. He was a summer intern at Software Productivity Tools group in Microsoft Research,
Redmond, USA, in 2002 and a visitor at the Max-Planck-Institute for Computer Science, Saarbrücken,
Germany, in 2003 and 2005.

Homepage: http://lara.epfl.ch/∼kuncak

Martin Odersky is Professor at EPFL where he heads the programming research group. His research
interests cover fundamental as well as applied aspects of programming languages. They include semantics,
type systems, programming language design, and compiler construction. The main focus if his work lies
in the integration of object-oriented and functional programming. His research thesis is that the two
paradigms are just two sides of the same coin and should be unified as much as possible. To prove this
he has experimented with a number of language designs, from Pizza to GJ to Functional Nets. He has
also influenced the development of Java as a co-designer of Java generics and as the original author of
the current javac reference compiler. His current work concentrates on the Scala programming language,
which unifies FP and OOP while staying completely interoperable with Java and .NET.

Martin Odersky got his doctorate from ETH Zürich in 1989. He held research positions at the IBM
T.J. Watson Research Center from 1989 and at Yale University from 1991. He was a professor at the
Univerisity of Karlsruhe from 1993 and at the University of South Australia from 1997. He joined EPFL
as full professor in 1999. He is associate editor of the Journal of Functional Programming and member
of IFIP WG 2.8. He was conference chair for ICFP 2000, and program chair for ECOOP 2004 as well as
ETAPS/CC 2007. He is a fellow of the ACM.

Homepage: http://lamp.epfl.ch/∼odersky
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2 Project Description

2.1 Background: State of the Art

The use of embedded control systems, from medical implants to automobiles (drive-by-wire) and aircraft
(fly-by-wire), is increasing rapidly. As they are deployed in safety-critical situations, the verification of
such systems has become a central concern [10, 36, 24].

In the 1990s, formal verification techniques such as model checking made a successful transition from
theory to practice in hardware design. This transition was enabled by new technologies for exploring
very large state spaces, such as symbolic and compositional methods for model checking [8] and efficient
methods for SAT solving [35]. Today it would be difficult to find a hardware design corporation that
does not use formal verification tools in one way or another [14]. The 2008 Turing award was given for
this achievement.

In the current decade, formal verification has begun to make some inroads in software design. The
routine use of verification tools that detect common simple errors (e.g., FindBugs [20]) is enforced by
a number of companies (such as Google); model-checking techniques are deployed in the verification of
protocol-intensive code such as device drivers (e.g., at Microsoft [1]); abstract-interpretation techniques
have been used to find numerical and timing errors in safety-critical software [7, 32]. The enablers have
been technologies for coping with infinite state spaces, such as counterexample-guided refinement of finite
abstractions [3], improved theorem-proving technology [11], shape analysis for dynamic heap structures
[6, 5], sophisticated abstract interpretation engines [7], and approaches based on verification condition
generation [9]. Recently, the Spec# system [4] has made remarkable steps towards adoption of verification
tools, by integrating verification condition generation, theorem proving, abstract interpretation, run-
time checking, and interactive deployment in Visual Studio. However, to our knowledge, none of these
systems enables the analysis of running time, memory usage, and failure probability, which are essential
for embedded software development. More generally, significant work on automation and the scope of
applicability remains before we are able to put a formal-verification toolbox on every programmer’s desk.

2.2 Objective: Advances Expected from the Proposed Research

We believe that the time is ripe to offer formal-verification technology as an integral part of a workbench
that can be shared by both programmers developing embedded software and by verification tool devel-
opers, for their mutual benefits. This project will build such a workbench, dubbed ProgLab.NET. For
the project to succeed, existing verification technology will need to be harnessed and refocused so that

1. program analyses provide unobtrusive and easily understandable information not only about com-
plete programs but especially about partial programs, i.e., program fragments whose missing pieces
are constrained by environment assumptions, component interfaces, procedure summaries, function
stubs, and requirement specifications;

2. guided by an evidence manager, program analyses perform efficient and incremental checks as the
(partial) programs and their requirements change during software development;

3. different program analyses feed into each other in order to leverage their strengths and present
their results to the software developer in a simple, uniform way.

The ProgLab workbench will consist of a set of program analyses (including model checkers, type
checkers, and theorem provers) that support demmand-driven and modular verification of software frag-
ments expressed in a common representation format. The verified properties will include both expressive
versions of the traditional safety properties and non-functional properties such as execution time, power
consumption, and memory usage.

ProgLab will integrate both fully formal and semiformal analyses (such as testing) but will concentrate
on analyses that are largely automatic, in particular, type-based analyses and execution-based analyses
(such as model checking and abstract interpretation). In contrast to heavy-weight and time-consuming
formal verification approaches, the primary purpose of ProgLab is not to provide full formal correctness
proofs of already completed programs. Instead, the goal is to aid the programmer throughout the software
development process with rapid feedback obtained from tools that work with incomplete programs as
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they are being developed. We believe that in this way we can take a significant step toward the wide
adoption of formal verification techniques in software design.

ProgLab design will unify a range of program analyses through common APIs and intermediate
representation formats targetted towards demand-driven analysis of partial programs. We will evaluate
this design through an integration within the Visual Studio IDE.

2.3 Opportunity: Scala as a Language Facilitating Verification

Current research in software verification can be classified into efforts that focus on widely used languages
such as C, and efforts that focus on purely academic languages such as ML. The main argument for
the former line of work is that in order to have practical impact, one must handle real-world programs
in all their complexity and ugliness, even at the price that successes are far more difficult to come by,
more modest, and often idiosyncratic. However, the focus on a language like C also has a significant
drawback, namely, that insights gained from the verification research have little chance of flowing back
into the design of the language and its usage patterns. In other words, there is no feedback loop from
the tool designers to the language designers.

This is why we have started to look for a language that has a significant user community and yet
is under our complete control. We need both: a broad, progressive user community in order to foster
early adoption and collect real data about the use of our verification tools, and complete control over the
language design in order to facilitate the verification tasks. For this purpose we have brought together
in a single team—in what we believe to be a unique combination in the world—the groups of Martin
Odersky, who has designed and implemented the Scala language, Thomas Henzinger, whose expertise
lies in formal verification, and Viktor Kuncak, whose expertise lies in automated theorem proving for
static analysis. We will extend the state-of-the-art in software verification and at the same time evaluate
the new methods on a concrete workbench based on Scala [29, 28], whose support for modularity and
functional programming makes it an ideal starting point for verification. The benefits will be mutual:
insights into how analyses can be facilitated will flow directly into the design of the language, and insights
from usage patterns of the language and verification tools will flow back to guide the verification research.

Scala is remarkable in delivering a modern language design while at the same time seemlessly inter-
operating with widely used platforms. In particular, Scala already compiles to .NET platform and
supports the use of certain .NET libraries. ProbLab workbench aims to leverage this opportunity by
extending the developed analyses not only to the code develoepd in Scala but also to .NET libraries and
other software developed on .NET platform. Key techniques that will make this possible are proof carry-
ing bytecodes that preserve high-level properties of heterogeneous source languages, and rich interfaces
that express these properties at code fragment boundaries.

2.4 Methodology

We will organize the work in four thrusts. The main task of the first thrust is to build the infras-
tructure: a workbench we plan to call ProgLab in analogy to MatLab. While in Matlab the objects
of study are mathematical formulas, in ProgLab the objects of study are programs. ProgLab will be
designed to permit the addition of new program analyses that communicate through a common set of
data structures representing the following four categories of software artifacts: 1) Programs and partial
programs, including component interfaces, procedure summaries, environment assumptions, and code;
2) Requirements, including assertions, monitors, timing and reliability constraints; 3) Platforms for soft-
ware execution, including semantic definitions, schedulers, memory and resource models; 4) Evidence,
including abstractions, proofs, and tests. The workbench will manage and integrate evidence that is
established by the analyses, and present it to the user in an understandable way. We will put a premium
on compositional and incremental analyses. Compositionality means that an analysis does not need to be
redone when a (partial) program is reused in a different context; incrementality means that an analysis
does not need to be redone in its entirety when the (partial) program changes. Both compositionality
and incrementality cannot be achieved in absolute terms, but require a sophisticated evidence manager
that tracks assumptions and generates new proof obligations. Such evidence management will be a key
task of ProgLab.

The remaining three thrusts will focus on particular program analyses in the ProgLab framework,
with special focus on embedded software.
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2.5 Proposed Design of ProgLab Infrastructure

We are aware of challenges in engineering an incremental analysis integrated into an IDE through the
experience of developing two generations of Eclipse plugins for the Scala programming language, which
included a type-checker for Scala’s advanced type system. Based on this experience, we propose a layered
architecture of ProgLab that will make integration of analysis into an IDE easier.

Part of the ProgLab design will be formats for the four programming artifacts (programs, require-
ments, platforms, evidence), including their abstract syntax, human-readable and binary concrete syntax,
precise semantics, and a set of operations that ProgLab components are expected to perform efficiently.
To facilitate compositional and incremental analyses, we envision a representation format where local
changes in the source code correspond to changes to a small number of files in the representation. The
semantic basis of the representation format will be control-flow graphs whose edges are specified by
transition formulas expressed in a standardized and expressive logic. We will also explore connections
and translations between our format and future versions of the intermediate language for Spec#.

Given a common serializable representation format, the basic communication between the analyses
and the IDE will be through the file system. The granularity for incremental and modular analysis will
differ for different program analyses. For many analyses we expect that updating computed results on
each file save and tracking information at the level of procedures and basic blocks will be sufficient.

To meet the challenges of deploying the analyses within Visual Studio, we have dedicated part of our
funds to a full-time PhD level programmer with a familiarity of Visual Studio. The sole responsibility
of the programmer will be the integration of developed analyses into Visual Studio. The Visual Studio
Languages Team has committed to act in an advisory role for this effort. That team overseas design,
compiler and IDE support for Microsoft’s major managed languages, including C#, VB, F#, IronPython
and IronRuby. Sean McDirmid at Microsoft Research Bejing will help us with general .NET integration
issues. We also expect collaboration with Microsoft Research groups that have experience in integrating
advanced verification tools into Visual Studio.

Proposed Analyses. The core expected contribution of the proposal are new program analyses
operating on partial programs under development. The analyses will use a range of techniques from
advanced type systems, model checking, and theorem proving, but will all communicate through the
common representation format (described in the previous section) to provide evidence for software quality
and reliability that will be made available to the developer through an IDE. We group the activities of
developing the proposed analyses into three thrusts: rich types for effect analyses, analyses capturing
physical program properties, and developing theorem provers that enable the analyses.

2.6 Effect Analyses Through Rich Types

There are many properties that go beyond standard types. For instance, given a function, one might
be interested in whether it terminates, what exceptions it can throw, what side effects it has, areas of
memory it will read, write, or allocate, or what other resources it consumes. Such properties can be
regarded as computational effects. Type systems for formalizing such effects have been known for 20
years [26], and there are some strong parallels with monads [33]. In essence, an effect system can be
characterized as a monad which admits a least-upper bound operator. In the absence of effect masking
operators, the total effect of a computation is the least upper bound of all computations it invokes; so
effect analysis has also strong parallels to closure analysis.

Despite these results, effect analysis has not yet found its way into programming languages that are
in actual use. It appears the main challenges to overcome before it can be adopted are how to keep the
notation lightweight and how to make the framework customizable so that precisely the topics of interest
can be handled.

In this project, we will develop a general modular framework for the notation and static analysis
of computational effects. The novelty of the framework will be that particular effect domains should
be “pluggable” (i.e. user-definable and freely combinable) instead of being fixed in the programming
language. User-defined effects will be written down using Scala’s type annotation mechanism; they will
be analyzed in the ProgLab workbench. The framework will be instantiated for several concrete analyses
with particular focus on analyses for real-time and embedded software: A region analysis, a space/time
complexity analysis, and an exception escape analysis.
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The effect checking type systems will also feed back into other analyses and into general language
programming. For instance, it’s reasonable to require that functions defined in specifications, such as
pre/postconditions or invariants be total and side-effect free. If these guarantees can be established
a-priori, the design and implementation of contract checkers becomes simpler. Another issue in the
programming languages is the handling of guards in pattern matching code. Again, one should demand
that a guard be side-effect free.

The work planned in this thrust will include the following topics:

(1) Augment Scala’s existing framework for annotated types with annotation type parameters. Such
type parameters should be compile-time only; unlike the existing type parameters in .NET generics they
would be erased at run-time. These type parameters are needed in polymorphic type annotations, such
as the ones that express polymorphic effects. Rules for syntax, type checking and type inference of
polymorphic annotations will have to be designed and investigated. This work item should also develop
recommendations for adding polymorphic annotations to .NET’s standard annotation framework.

(2) Develop a modular framework for effect-checking type systems. Principal questions are: How can
one define and combine several effect analyses? Should it be possible to abstract in an effect-polymorphic
function over several analyses at once? Can one find a lightweight notation by making intelligent use of
defaults?

(3) Investigate how effect information can be retrofitted to existing .NET libraries. This part is crucial
because virtually every component will make heavy use of the .NET infrastructure—either directly or
indirectly. Assuming a worst-case scenario every time a common CLR library is accessed would weaken
analyses to the point of making them impractical.

(4) Based on the infrastructure, develop two simple effect systems for totality and side-effect freedom.
Have the results of these effect systems flow back into other analyses and the base language.

(5) Again based on the infrastructure, develop three analyses that are move involved: a region analysis to
avoid the need of a garbage collector, a space/time complexity analysis to estimate resource consumption,
and an escape analysis to give approximations to which exceptions an application might throw. These
analyses have special utility in an embedded systems context, where resources are limited, real-time
garbage collection is expensive, and reliability is often of crucial importance.

2.7 Analyses Capturing Physical Program Properties

While much research has been carried out on topics such as scheduling, fault-tolerant architectures, and
fault analysis, we are still at an early stage of incorporating nonfunctional properties into programming
language design. Indeed, current practice in embedded programming has been likened to the assembly
age, with programmers tweaking low-level constructs such as task priorities in order achieve satisfying
timing behavior in test suites. We have advocated the view that the programmer should be relieved
from managing real time, failure rates, and other physical properties in the same way in which the
programmer is relieved, in high-level languages, from managing memory. We designed an experimental
language, called Giotto, in which the programmer specifies end-to-end timing behavior and long-term
failure probabilities, and the compiler ensures these properties (if possible) by generating appropriate
task schedules and by replicating tasks on multiple processors [18, 15]. In order to do this, the compiler
must know (or make assumptions about) the worst-case execution times of tasks and hardware failure
rates.

In this project, we will develop within ProgLab language-based mechanisms —type systems and
program analyses— to give the programmer information about physical program properties such as
timing, resource, and reliability properties relative to a specified execution platform. For this purpose,
execution platforms will become objects of study within ProgLab, and execution time analysis as well as
fault analysis will become objectives of program analyses within ProgLab. Moreover, based on insights
from the Giotto project, we will provide type-based extensions to languages for specifying both timing
and failure behavior.

More specifically, we advocate a coroutine-style programming model, where individual software tasks
operate on logically private memory space in logically private execution time slots under a logically fixed
failure rate. All interaction between tasks is restricted to program-specified public variables at program-
specified public time instants. For example, a task may announce that it will read an input variable and
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write to an output variable every 10 ms, meaning that there will be no additional, intermediate synchro-
nization points with other tasks. The task is admitted only if, for each invocation, sufficient memory
space and execution time can be allocated to guarantee that the outputs are computed in time. The
admissibility analysis needs to use performance assumptions about the execution platform to compute
space and time utilization requirements for the task. The analysis will generate both memory layouts
(the assignment of space to tasks) and schedules (the assignment of time to tasks) partly statically, when
task bytecode is generated, and partly just-in-time, when native code is generated. We will experiment
with various trade-offs between static and JIT resource management and scheduling, using an extended
bytecode such as embedded machine code [16, 17], which includes resource management instructions and
annotations. Since the performance assumptions about the execution platform may be incorrect, and to
allow some amount of dynamic resource management and scheduling, the resource consumption of each
task will, in addition, be monitored at run-time, invoking program-specified exception handlers if either
space or time overruns occur. The goal is that, once admitted, each task will exhibit deterministic (i.e.,
predictable) timing behavior, independent of the overall load of the system.

Faults will be handled in a similar way. A program may specify, for example, that in the long run,
99.99% of all computed output values of a periodic task are valid. Invalid output values may be due to
hardware failures such as sensor faults, or due to software failures such as insufficient available execution
time. As part of the admissibility analysis, the compiler generates a replication mapping of tasks to
processors which guarantees the specified task failure rate under given assumptions (e.g., hardware
failure rates) about the execution platform. For instance, if the assumed failure rate of a processor is
1%, then in order to achieve the specified task failure rate of 0.01%, each task invocation needs to be
replicated on two independent processors.

ProgLab will provide a user-friendly facility for experimenting with novel embedded programming
models such as the proposed one. It will support both the capability to define performance assumptions
of resource-constrained execution platforms such as cell phones, and the capability to extend high-
level languages with types, and intermediate languages with instructions and annotations, for resource
management.

2.8 Enabling Analyses using Theorem Provers

Theorem proving and constraint-solving are among key enabling technologies for analysis and verification
of software systems. They are an essential component of software model checking tools such as SLAM
[2], Static Driver Verifier [1], and BLAST [19]. Software for embedded systems imposes new kinds
of constraints on timing, power, and memory use, and requires new advances in constraint solving
techniques. The size and complexity of embedded software is increasing, which requires tools for checking
rich classes of properties. Furthermore, the integration into development environments such as Visual
Studio demands algorithms that produce concrete timely feedback.

Provers for Expressive Specifications. Our view is that theorem provers for future software analysis
tasks need native support not only for traditional theories such as uninterpreted function symbols and
linear arithmetic, but also for much richer theories. We will develop and integrate decision procedures for
expressive constraints appearing in software specifications, such as recently proposed decision procedures
for collections such as sets and bags with cardinality operators [23, 30, 31]. For mutable data structures
we will develop more efficient decision procedures that support transitive closure on tree-like graphs,
building on our experience [34] and taking into account recently proposed techniques [13]. We will
also develop and implement decision procedures for inductive data types; the impact of such decision
procedures in ProbLab will be reinforced by Scala’s strengths in developing and checking properties of
functional programs [12].

We will systematically study the complexity, proof systems, and interpolation for these theories,
drawing the the boundary between tractability and intractability of proof obligations. We will also
explore feasibility of combining such rich constraints over non-disjoint theories [21, Chapter 4]. Just
like solvable clases of differential equations are essential for computer algebra and modelling packages,
solvable classes of logical constraints will form the foundation of automated reasoning and analysis in
ProgLab.

Proofs, Interpolants, and Models. Our algorithms will provide not only yes/no answer to formula
validity but provide concrete evidence useful for other ProbLab components and incoporated in evidence
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management system. Such evidence will be essential for providing feedback to ProgLab users. For valid
constraints, our procedures will generate proof objects that justify reasoning to users and enable com-
putation of interpolants for invariant inference. For satisfiable constraints, our procedures will construct
models (solutions), building on model finding using SAT solvers [22]. In addition to satisfiability prob-
lems, we will explore more general optimization problems and their use in embedded software analysis
[25], especially in integer arithmetic domains.

Deployment in ProgLab. We will implement our provers in the Scala programming language to
enable smooth fine-grained integration with ProgLab. As part of an API for reasoning services we will
provide a definition of an expressive formula language based on the Isabelle/HOL logic [27], building on
our previous experience [21, Chapter 4]. The developed decision procedures will be particularly useful
for rich types and effects. They will also provide ProgLab with unique strengths of reasoning about
mutable data structures. In addition to its uses within rich type systems and verification condition
generation, we expect the prover to directly support deep reasoning about functional Scala programs by
embedding a Scala subset into the language of prover’s formulas. Such integrations will provide similar
benefits to Scala and .NET as the unification of programming and specification language in ACL2 or
code generation in Isabelle.

2.9 Expected Collaborations

Interaction with Microsoft groups. We will collaborate with several groups at Microsoft in order
to achieve our research objectives. We plan to collaborate with Peter Müller at Microsoft Research
Redmond on a variety of ProgLab issues, including annotated types, ownership types, and static analy-
ses. We plan to collaborate with Rustan Leino from Microsoft Research Redmond on aspects of system
architecture, as well as exchange formats that will facilitate interoperability with Spec#. We also main-
tain interactions with Nikolaj Bjørner, Byron Cook, Shaz Qadeer, and Sriram Rajamani on automated
software verification. The Visual Studio Languages Team has agreed to act in an advisory role for our
efforts to write a visual studio plugin. That team overseas design, compiler and IDE support for Mi-
crosoft’s major managed languages, including C#, VB, F#, IronPython and IronRuby. Sean McDirmid
at Microsoft Research Bejing intends to help is with general .NET integration issues.

Interaction with Researchers in Switzerland. Two related ICES research proposals complement
our work: 1) the proposal on Failure Immunity for Embedded Software in Consumer Devices by George
Candea (EPFL), and 2) the proposal on Soft Integration of Hard Real-Time Capabilities in C# by Rachid
Guerraoui (EPFL) and Jan Vitek (Purdue). We are already interacting with groups led by George Candea
and Rachid Guerraoui (which are also part of TRESOR). We expect ICES program to further facilitate
our interaction. As a collaboration activity related to the first proposal, we will investigate specification
formats that enable runtime mechanisms to enforce properties that were not established using static
techniques. In relation to the second proposal, we will explore a common .NET format for pluggable
types that can be shared by the C# extension and by the .NET bytecodes generated by Scala’s existing
pluggable type system. To complement these activities on Scala and C#, in the course of this project
we also expect interactions with researchers from ETH Zürich related to common representations for
components written in additional programming languages compiled to .NET platform.

2.10 Relevance of the Proposed Research

ProgLab.NET will bring the benefits of advanced analysis and programming language tools to the realm
of embedded software on the .NET platform. Proposed techniques have the potential to increase the
productivity of developing reliable software in a range of embedded devices, from safety critical control
software to software running in resource-constrained portable computing environments. The research will
also have consequences in software development in general, because it will present a unique case of inte-
gration of a popular language and platform with advanced analysis techniques. Common representation
formats developed in the context of ProgLab in collaboration with other research groups have the po-
tential of unifying previously independent techniques and bringing together the corresponding research
communities. Such effort will enable researchers and industry to meet the challenge of cost-effective
reliable software development for future platforms.
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3 Project Plan

3.1 Activities, Milestones, Deliverables

Figure 1 shows a tentative Gannt chart of the proposed activities described in previous sections. The
four thrusts approximately correspond to responsibilities of four research team members for which we
are asking support:

ProgLab infrastructure will be the responsibility of the programmer;

Rich type analyses will the responsibility of first PhD student;

Analyses capturing physical properties will the responsibility of the second PhD student;

Theorem provers for program analyses will be the responsibility of the third PhD student.

We expect significant interaction between the four thrusts and the four team members. In particular,
all members will work closely with the programmer on the design of ProgLab infrastructure. All three
principal investigators will interact with all the team members through regular joint research meetings.

Thrust Year 1 Year 2 Year 3 Year 4

ProgLab

infrastructure

interaction interface,
core plugin

manager for evidence,
requirements, platforms

interactive and visual
feedback

.NET extension
recommendations

rich types
polymorphic annotations,
simple effects

modular effect
composition, retrofitting

escape and region analysis
space/time complexity
analysis

physical

properties

intermediate real-time
language

admissibility analysis fault-tolerant compilation case studies and
evaluation

theorem

provers

prover language, interface,
SMT engine, VCGEN

decision procedures
(collections, integers)

reachability, interpolation,
infinite models

integer optimization,
evaluation

Figure 1: Gannt chart of activities in 4 research thrusts over the period of 4 years

Our final deliverables will be take two main forms: 1) the ProgLab infrastructure along with associated
analyses and the theorem prover, all available under the BSD licence; 2) publications and presentations
describing ProgLab design as well as the foundation and the implementation of the analyses.

Our first milestone, to be delivered after two years, will be a first version of ProgLab with a core Visual
Studio plugin, a simple effect system integrated into Scala’s type system, a compiler for a domain-specific
sublanguage of Scala tailored to embedded systems, and a path-sensitive analysis of this sublanguage
based on our satisfiability-modulo-theories theorem prover.

Subsequent two years will lead to a more robust and interactive deployment within Visual Studio,
with additional effect systems that track memory usage, the corresponding theorem proving technology
for reasoning about heap properties, and the notion of fault-tolerant computation that accounts for errors
(such as memory errors) occurring under certain probability.

3.2 Dissemination, Standardization, and Patent Activities

Dissemination. Our research groups pursue active dissemination activities in the form of research
publications, public presentations, and released software artifacts. Taken together, the number of pub-
lications for the three principal investigators is over 300, and the group has publicly released software
HyTech, Mocha, Blast, Giotto, Hob, Jahob, GJ, Pizza, and Scala. We will continue these activities in
the context of ProgLab. Following the ICES research program guidelines, we will release our software
under the BSD licence.

Standardization. Jointly with our collaborators from Microsoft, EPFL, and ETHZ, we will work on es-
tablishing joint formats for exchanging information about software artifacts, working towards community
standards for reliable software.

Patents. We do not expect to pursue any patent activities specific to the research in this proposal.
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A static analyzer for large safety-critical software. In PLDI, 2003.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking:
1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

[9] D. R. Cok and J. R. Kiniry. Esc/java2: Uniting ESC/Java and JML. In CASSIS: Construction
and Analysis of Safe, Secure and Interoperable Smart devices, 2004.

[10] J. S. C. (Counterpunch). US: The fatal flaws in the Patriot missile system.
http://www.corpwatch.org/article.php?id=11110, 2003.

[11] L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In CADE, 2007.

[12] M. Dotta, P. Suter, and V. Kuncak. On static analysis for expressive pattern matching. Technical
Report LARA-REPORT-2008-004, EPFL, 2008.
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