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Introduction

Software verification systems performing static analyses almost invariably rely
on external theorem provers or decision procedures to prove the verification con-
ditions they generate. These solvers tend to be specialized for certain theories
or logics, forcing verification system designers to choose between two unsatisfac-
tory options: The first one is to restrict oneself to a logic handleable by a solver
and to renounce constructs which fall outside of its scope. As a consequence,
the usability of the system is lowered, either because the properties it can verify
are less expressive or because they need to be encoded into the simpler logic,
introducing significant overhead. The second option to circumvent the limita-
tions of individual solvers is to use several of them. This is a difficult task, as
verification conditions need to be split into fragments that match the various
supported logics and discharged accordingly. The combination of logics is in
fact a wide and ongoing research subject.

Among the goals of the VEPAR project is to provide a unified interface to
powerful reasoning procedures and automate as much as possible the decompo-
sition of formulas in an expressive logic into formulas in decidable fragments.
The implementation of VEPAR started with this semester project. The work
done is described in the following sections, as well as some directions for future
work.

Overview of the system

Figure 1 shows an overview of the projected system. The parts in grey were
implemented as part of this semester project and are described in the following
sections.

The general structure is similar to the formDecider component from the Jahob
system [8]: formulas in a higher-order logic can be sent to higher-order theorem
provers1 or coerced into first-order logic and subsequently sent to first-order

1Note that in formDecider the Isabelle proof assistant [10] can be used either interactively
or automatically via the auto tactic. Our plans for VEPAR are similar.
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Figure 1: Overview of the VEPAR system. Parts in light grey were implemented
during this project.

theorem provers or SMT solvers. All components are written in Scala [12], with
the exception of the HOL parser which is built with tools originally designed
for Java [7, 5].

Higher-order logic

We use simply-typed lambda calculus to represent formulas in higher-order logic,
as in [1]. This approach presents the advantage of simplicity: only four elemen-
tary building blocks are used, and all other constructs one expects to find in a
logic are encoded using constants to which we attach specific semantics. Figure 2
shows the abstract syntax of our logic, which we simply call “HOL”.

As an example, consider the following formula:

∀S0.∀S1.(S0 \ S1 = ∅)→ (S0 ⊆ S1)

In HOL, this would be encoded as:

(∀ (λS0.∀ (λS1.→ ((\ S0 S1) = ∅) (⊆ S0 S1))))

. . . where ∀, →, \, ∅ and ⊆ are all constants. For instance, → has the type
B ⇒ B ⇒ B and can be read as “a function that returns whether its first
argument implies its second”. The type of ∅ is harder to define because it
depends on the context. If it represents an empty set of integers, its type will
be Z⇒ B, for instance. In other words, ∅ has the polymorphic type α⇒ B, for
some α. Similarly, the constant ∀ has the type (α⇒ B)⇒ B and we attach to
it the semantics of “a function that returns whether a predicate always holds”.

In terms of implementation, all formulas are stored as algebraic data types
(or case classes, in Scala terminology) representing the basic building blocks.
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f ::= λx.f lambda abstraction
| f1 f2 function application
| f1 = f2 equality
| x variable or constant
| f :: t typed formula

t ::= B booleans
| Z integers
| O uninterpreted objects
| t1 ⇒ t2 total functions
| t list lists

Figure 2: Abstract syntax of formulas and types in HOL. Note that sets of
elements of type t are described by their characteristic function of type t⇒ B,
and multisets by their multiplicity function t⇒ Z.

Pattern-matching and reasoning in general on these formulas is made easier by
the use of extractors [4] which provide different views on the same data. Thus,
when pretty-printing formulas, for example, we can use extractors to match on,
say, quantifiers without having to deal with their encoding, while computing
the set of free variables will be easier to do by matching on the terms in their
lambda-calculus form.

Concrete syntax

Needless to say, reading and writing formulas in the prefix or abstract form
is unpleasant at best, and we use the conventional infix operators as often as
possible. We use a (very small) subset of the Isabelle formula language as our
default syntax for HOL. The concrete grammar is depicted in Figure 3.

Our parser uses JFlex [7] for the lexical analysis and the LALR Parser Gen-
erator CUP [5] for the syntactical analysis. These tools generate Java classes
from which we call Scala factory functions to build the trees.

Formula editor

The Isabelle-like concrete syntax can be considered user unfriendly. \<subseteq>
is a poor substitute for ⊆, for instance, making large formulas look little like
what one would write in math or logic. To palliate this inconvenience, we wrote
a small formula editor which automatically substitutes Unicode equivalents to
the ASCII sequences used to represent math symbols. Figure 4 shows an ex-
ample of a formula being edited. When the file is saved, the editor reverts the
process and produces a pure ASCII file.
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f ::= ALL var . f ∀-construct
| EX var . f ∃-construct
| % var . f lambda abstraction
| f f function application
| f = f equality
| ( f :: t ) typed formula
| f ( --> | | | & ) f boolean connectives
| ∼f negation
| f ( + | - | * | / ) f arithmetic operators
| f ( < | <= | > | >= ) f arithmetic relational symbols
| intLit integer literals
| f ( \<subseteq> | \<setminus> ) f set operators
| \<emptyset> empty set
| card f set cardinality
| final f final set

var ::= ident variable
| (ident::type) typed variable

t ::= bool boolean type
| int integer type
| obj uninterpreted object type
| t => t function type
| t list list type
| ’ident type variable

ident ::= [a-zA-Z][a-zA-Z0-9 ]∗ identifiers
intLit ::= 0 | [1-9][0-9]∗

Figure 3: Isabelle-like concrete syntax of HOL formulas, as recognized by our
parser implementation.

Figure 4: A screenshot of the formula editor displaying Unicode characters
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f ::= (∀ | ∃) x.f quantified formulas
| f1 ( → | ∧ | ∨ ) f2 boolean connectives
| ¬f negation
| f1 = f2 equality
| ( sym f1 . . . fn ) function or predicate application
| x variable or constant

sym ::= + | − | ∗ | arithmetic function symbols
| < | ≤ | > | ≥ arithmetic relational symbols
| x function or predicate symbol

t ::= B booleans
| Z integers
| O uninterpreted objects
| (t1, . . . , tn)⇒ tr total functions and predicates

Figure 5: Abstract syntax of FOL

First-order logic

Since most of the solvers with which VEPAR is destined to work are designed to
handle formulas in first-order logic, it is important that we have some represen-
tation for them built in the system. The abstract syntax for this logic, which
we call FOL, is shown in Figure 5.

We currently do not have a parser or a concrete syntax for this logic. Trees
can be built using library functions, or by converting a HOL formula as described
in the next section.

Translation from high-order logic

At this stage of development, the translation from HOL to FOL is implemented
in a straight-forward way: if a HOL formula appears to be encodable entirely in
FOL, it is done so recursively. No attempt is made to convert set operations to
quantified statements about their characteristic functions, for instance. Neither
do we attempt to over- or under-approximate the HOL formula should an exact
translation be impossible. More elaborate techniques are described in [3], for
instance, and their implementation as part of VEPAR is left for future work.

Connection to SMT solvers

FOL formulas can be dispatched to SMT solvers such as Z3 [11] or CVC3 [2].
These solvers check for the satisfiability of formulas and we therefore use the
common fact that a formula φ is valid if and only if ¬φ is unsatisfiable.
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The connection to the solvers is achieved by pretty-printing the FOL formula
in SMT-LIB format [15] into a file, passing this file to the solver and retrieving
the output of the solver. Although CVC3, for example, provides a C interface,
using files is the only solution which works consistently over all SMT solvers.
Currently, all formulas are generated for the AUFLIA logic and we do not
attempt to detect when a simpler logic can be used (such as QF UFLIA or
QF UF).

Development of a non-clausal SMT solver

During this semester project, some work has also been done on fSTP, an SMT
solver, [16] in parallel to the development of the VEPAR project.

Traditionally, SMT solvers work on formulas in conjunctive normal form
(CNF). While this has the advantage that it makes their algorithms concep-
tually simpler, it also means that formulas which are not in CNF must be
converted to this form first. This can be done in polynomial time and space by
introducing new boolean variables in the formula, but at the cost of destroying
the original structure therefore running the risk of making the search for a solu-
tion (a satisfiable assignment) harder. fSTP was designed to work on formulas
in negation normal form (NNF). Any formula can be converted to NNF with-
out changing its size and, arguably, its structure. The algorithms for reasoning
about formulas in NNF were introduced in [6].

The work done on fSTP during this semester involved bug fixes, and iden-
tification of performance bottlenecks. We are currently exploring the role of
fSTP and its algorithsm in a prover for expressive formulas, such as VEPAR.

Future work

We have presented the current status of the VEPAR project. The system is
currently in an early development stage and we expect significant development
in the coming months.

Near-term infrastructure development

One feature we will need to have implemented very soon is type inference.
Currently, only variables are identified and their type, if explicitly declared, is
shared among their instances. We will add full Hindley-Milner type inference
[13, Chapter 22] to the system.

Integration of SAT solver

An important component we will need to integrate is a SAT solver, which will
be used for boolean reasoning and, arguably more importantly, for DPLL-like
satisfiability checking of HOL formulas. The applicability of these techniques
to rich logics remains to be studied.
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Congruence closure and unification

A congruence closure algorithm is often at the center of a or a combination
of decision procedures. We will study the applicability of such an approach to
higher-order formulas.

Reasoning about recursive functions and relations

(Purely) functional programs can in general be translated into higher-order logic
with minimal effort, with the exception of recursive definitions. We will study
techniques to reason about these definitions, possibly by integrating some form
of bounded unrolling into the theorem proving process.

Combination techniques for rich theories

While decision procedures exist for some decidable fragments of HOL, their po-
tential for combination is still a subject of investigation. Some recent work [9]
has been done in that direction, but some questions still need to be addressed,
in particular regarding the practicality of the (theoretically sound) approach.
Given its HOL foundation, VEPAR appears to be an adequate platform to ex-
periment with these new combination ideas.

Integration of related techniques

VEPAR is a collective effort. The following are among the ongoing developments
in VEPAR being pursued concurrently with my efforts:

• Abhinav Kumar is working on the connection to MONA, a decision pro-
cedure for WS2S;

• Ali Sinan Köksal is doing a semester project on connecting VEPAR with
finite model finding tools;

• Steven Obua is designing a tactic language for within VEPAR, and devel-
oping the set-theoretic foundations;

• Ruzica Piskac will be developing and integrating a new decision procedure
for multisets with cardinality constraints [14].

I will collaborate with the researchers involved in these efforts and ensure
that they integrate into the overall VEPAR infrastructure.
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