
New Techniques that Improve

MACE-style Finite Model Finding

Koen Claessen and Niklas Sörensson
{koen,nik}@cs.chalmers.se

Chalmers University of Technology and Göteborg University

Abstract. We describe a new method for finding finite models of unsorted
first-order logic clause sets. The method is a MACE-style method, i.e. it
”flattens” the first-order clauses, and for increasing model sizes, instanti-
ates the resulting clauses into propositional clauses which are consecutively
solved by a SAT-solver. We enhance the standard method by using 4 novel
techniques: term definitions, which reduce the number of variables in flat-
tened clauses, incremental SAT, which enables reuse of search information
between consecutive model sizes, static symmetry reduction, which reduces
the number of isomorphic models by adding extra constraints to the SAT
problem, and sort inference, which allows the symmetry reduction to be ap-
plied at a finer grain. All techniques have been implemented in a new model
finder, called Paradox, with very promising results.

1 Introduction

There exist many methods for finding finite models of First Order Logic (FOL)
clause sets. The two most successful styles of methods are usually called MACE-

style methods, named after McCune’s tool MACE [7], and the SEM-style methods,
named after Zhang and Zhang’s tool SEM [5].

A MACE-style method transforms the FOL clause set and a domain size into
a propositional logic clause set by introducing propositional variables representing
the function and predicate tables, and consecutively flattening and instantiating
the clauses in the clause set. A propositional logic theorem prover, also called SAT
solver, is then used to attack the resulting problem. Apart from MACE itself, Gan-
dalf [13] makes use of a MACE-style method, and there are reports of usages of
SATO in a similar way [4].

A SEM-style method performs a search directly on the problem without con-
verting it into a simpler logic. A basic backtracking search backed up by powerful
constraint propagation methods, mainly based on exploiting equality, are used to
search for interpretations of the function and predicate tables. A principle called
symmetry reduction is used to avoid searching for isomorphic models multiple times.
Apart from SEM itself, the tools FINDER [11], and ICGNS [8] are SEM-style meth-
ods, and again Gandalf also makes use of SEM-style methods. SEM-style methods
are known to perform well on equational problems, and MACE-style methods are
supposed be more all-round.

In this paper, we develop a collection of new techniques for finite model gener-
ation for unsorted first-order logic. These techniques improve upon the basic idea
behind MACE dramatically. We have implemented the techniques in a new model
finder called Paradox. The main novel contributions in the paper are the following.

– The main problem in MACE-style methods is the clause instantiation, which
is exponential in the number of first-order variables in a clause. A well-known
variable reduction technique is non-ground clause splitting, for which however
only exponential or incomplete algorithms are known. We have devised a new



polynomial heuristic for clause splitting. Moreover, we have come up with a
completely new variable reduction technique, called term definitions.

– The search for a model goes through consecutive stages of increasing domain
sizes. In current-day algorithms, there is hardly any coupling between the search
for models of different sizes. We make use of an incremental satisfiability checker

in order to reuse information about the failed search of a model of size s in the
search of a model of size s + 1.

– SEM-style model finders make use of techniques like the least number heuristic

[5] and the extended least number heuristic [2] in order to reduce the symmetries
in the search problem. To our knowledge, wTTe are the first to adapt a similar
technique in a MACE-style framework. Our contribution here is that when using
a SAT-solver, we must apply the symmetry reduction statically, i.e. by adding
extra constraints, whereas SEM-style methods can apply this dynamically, i.e.
during the search.

– It is well-known that sort information can help the search for models. However,
we are working with unsorted problems, and therefore need to create unsorted
models. We have developed a sort inference algorithm, which automatically
finds appropriate sort information for unsorted problems. This sort information
can then be used in several ways to reduce the complexity of the model search
problem, while still searching for an unsorted model.

The rest of the paper is organized as follows. In Section 2 we introduce some no-
tation. In Section 3 we describe the basic ideas behind MACE-style methods. In
Sections 4, 5, 6, and 7, we introduce the four techniques: clause splitting and term

definitions, incremental search, static symmetry reduction, and sort inference. In
Section 8 we discuss some experimental results. Sections 9 and 10 discuss related
work and conclusions.

2 Notation

In this section, we introduce some standard notation we use in the rest of the paper.
We use the set N to stand for the set of natural numbers {0, 1, 2, . . .}. The set B is
the set of booleans {false, true}.

Terms, literal and clauses A term t is built from function symbols f, g, h, constants
a, b, c, and variables x, y, z. Each function symbol f has a single arity ar(f) : N which
should be respected when building terms. We will merely regard constants as nullary
function symbols.

An atom A is a predicate symbol P, Q, R, S applied to a number of terms. Each
predicate symbol P has a single arity ar(P) : N . There exists one special predicate
symbol =, with arity 2, representing equality, whose atoms are written t1 = t2.

A literal is a positive or negative occurence of an atom. Negative literals are
written using ¬A, and negative equalities are written t1 6= t2.

A clause C is a finite set of literals, intended to be used disjunctively. We write
FV (C) for the set of variables in a clause C.

Interpretations An interpretation I consists of a non-empty set D (the domain),
plus for each function symbol f a function I(f) : Dar(f) → D, and for each predicate
symbol P a function I(P) : Dar(P) → B, where we require I(=)(d1, d2) = true exactly
when d1 is the same domain element as d2, and false otherwise. An interpretation
is called finite if its domain D is a finite set.



3 MACE-style Model Finding

This section describes shortly what the basic idea behind MACE-style model finding
methods is. The description differs slightly from earlier presentations [7].

Finite domains The following observation about models is well-known. Given an
interpretation I with a domain D satisfying a clause set S. Given a set D′ and a
bijection π : D ↔ D′, we construct a new interpretation I ′ with domain D′ in the
following way:

I ′(P)(x1, . . . , xm) = I(P)(π−1(x1), . . . , π
−1(xm))

I ′(f)(x1, . . . , xn) = π(I(f)(π−1(x1), . . . , π
−1(xn))

Now, I ′ also satisfies S. We call two models I and I ′ in the above relationship
isomorphic. The observation implies that in order to find (finite) models, only the
size s of the domain matters, and not the actual elements of the domain. Therefore,
we arbitrarily choose D to be {1, 2, . . . , s}. A special case of the observation, which
we will use later, arises when D′ = D, and π simply corresponds to a permutation
of D.

Propositional encoding We are going to encode the model finding problem for a par-
ticular set of FOL clauses using propositional variables. For each predicate symbol P,
and each argument vector (d1, . . . , dar(P)) (with each di ∈ D), we introduce a propo-
sitional variable P(d1, . . . , dar(P)) representing the case when I(P)(d1, . . . , dar(P)) is
true. Also, for each function symbol f, for each argument vector (d1, . . . , dar(f)), and
for each domain element d, we introduce a propositional variable f(d1, . . . , dar(f)) = d

representing the case when I(f)(d1, . . . , dar(f)) is d. We stress that these proposi-
tional variable names are merely syntactic constructs and have no meaning without
context.

Flattening In order to create the necessary propositional constraints on the above
variables, the first step is to transform the general FOL clauses into clauses only
containing shallow literals, a process called flattening.

Definition 1 (Shallow Literals). A literal is shallow iff it has one the following

forms:

1. P(x1, . . . , xm), or ¬P(x1, . . . , xm),
2. f(x1, . . . , xn) = y, or f(x1, . . . , xn) 6= y,
3. x = y.

There are two cases when a given literal is not shallow: (1) it contains at least one
subterm t which is not a variable, but should be; (2) the literal is of the form x 6= y.
In case (1), we can lift out an offending term t out of any literal occurring in a
clause C by applying the following sequence of rewrite steps:

C[t] −→ let x = t in C[x] (x not in C)

−→ ∀x. [x = t ⇒ C[x]]

−→ t 6= x ∨ C[x]

In the second step in the above we make use of a standard representation of let-
definitions in terms of universal quantification and implication. If t occurs more
than once in C, we introduce only one variable x for t, and replace all occurences
of t by x. In case (2), we apply the following rewrite rule:

C[x, y] ∨ x 6= y −→ C[x, x]

If we apply the above transformations repeatedly, in the end all literals will be be
shallow literals.



Example 1. Take the unit clause { P(a, f(x)) }. After flattening, the clause looks as
follows:

{ a 6= y, f(x) 6= z, P(y, z) }.

Instantiating The final step is to generate propositional clauses from the flattened
clauses. We generate three sets of propositional clauses:

– Instances For each flattened clause C, and for each substitution σ : FV (C) →
D, we generate the propositional clause Cσ. (Recall that shallow literals instan-
tiated with domain elements function as propositional literals.) In the result of
the substitution, we immediately simplify all literals of the form d1 = d2 (whose
value is known at instantiation time), leading to either removal of the whole
clause in question (when d1 and d2 are equal), or simply removal of the equality
literal (when d1 and d2 are not equal).

– Functional definitions For each function symbol f, for each d, d′ ∈ D, d 6= d′,
and for each argument vector (d1, . . . , dar(f)), we introduce the propositional
clause { f(d1, . . . , dar(f)) 6= d, f(d1, . . . , dar(f)) 6= d′ }, representing the fact that
a function can not return two different values for the same arguments.

– Totality definitions For each function symbol f, and for each argument
vector (d1, . . . , dar(f)), we introduce the propositional clause { f(d1, . . . , dar(f)) =
1, . . . , f(d1, . . . , dar(f)) = s }, representing the fact that a function must return
at least one value for each argument.

If we can find a propositional model that satisfies all of the above clauses, we have
found a finite model satisfying the original set of FOL clauses. We use a SAT solver
to find the actual propositional model. The FOL model can be easily built by using
the propositional encoding described earlier in this section.

4 Reducing Variables in Clauses

The number of instances of each clause that is needed, is exponential in the number
variables the clause contains. In general, if a clause contains k variables, the number
of instances that will be needed for domain size s are sk. Moreover, this property
is made worse by the fact that term flattening introduces many auxiliary variables
(something that a SEM-style model finder does not do). In this section we describe
how to remedy this situation.

Splitting Splitting is a well known method [10, 13, 1] that can be used to replace
one clause by several other clauses each containing fewer variables than the original
clause. The following is an example of non-ground splitting.

Example 2. By introducing the completely fresh split predicate S(x), the clause
{ P(x, y), Q(x, z) } can be split into the follwing clauses. Note that we by doing
this have reduced the maximum number of variables per clause from three to two.

{ P(x, y), S(x) }

{ ¬S(x), Q(x, z) }

The general criterion for splitting that we use look like this.

Definition 2 (Binary Split). Given a clause C[x] ∪ D[y] where C, D are sub-

clauses and x, y are the sets of variables occuring in them. Then C and D constitute

a proper binary split of the given clause iff there exist at least one variable x in x



such that x 6∈ y, and at least one variable y in y such that y 6∈ x. The resulting two

clauses after the split are:

{ S(x ∩ y) } ∪ C[x]

{ ¬S(x ∩ y) } ∪ D[y]

Here, S must be a fresh predicate symbol not occurring anywhere in the problem.

The resulting two clauses contain less variables per clause since x is guaranteed
not to appear in the second clause, and y not in the first clause. A special case
is when x ∩ y is empty, in which case S becomes nullary predicate, i.e. a logical
constant.

Repeated Binary Splitting In general the resulting clauses of a binary split can
possibly be splitted further, thus to get best possible result binary splits can be
repeated on both resulting clauses until for as long as it is possible. However, there
might be several possible ways to apply a binary split, and a greedy choice could
destroy the possibilities for further splitting of the resulting clauses. It might be
worthwhile to come up with an optimal (in terms of number of variables) algorithm
for repeated binary splitting, but so far we have reached good results using a cheap
heuristic.

Existing heuristics for binary splits Gandalf [13] and Eground [10] both incorporate
the same heuristic for finding binary splits, which works as follows. Given a clause
C, all proper subsets of variables occurring in C are enumerated (small subsets
first). For each subset V , it is checked if the clause can be split into two clauses,
such that the intersection of variables occurring in both clauses is equal to V , which
takes linear time in the length of the clause. If such a subset V is found, the clause
is split accordingly. Since there is an exponential amount of such subsets, there is an
upper limit (an arbitrary constant) on the amount of subsets that is tried. Beyond
the limit, the algorithm gives up. The problem here is that for clauses containing
many variables, we have to be lucky and find the right subset before we pass the
upper limit.

Our heuristic In contrast, the heuristic we use is polynomial and it will always find
a split if there is one, though it might not always turn out to be the best split.
First, given a clause C, we say that two variables are connected in C if there is some
literal in C in which they both occur. Note that if all variables are connected to
each other, then a proper split is impossible, but otherwise it is. The heuristic now
finds the variable x which is connected to the least amount of other variables in C.
As soon as we find x, we take all literals containing x on one side of the split, and
all other literals on the other side. One advantage of this method is that we know
that the side of the split containing x cannot be split any further, so we only have
to continue splitting the other side. Our heuristic seems to work well in practice,
and works even for clauses with many variables.

Term definitions In cases where literals contain deep ground terms we can avoid
introducing auxiliary variables, by introducing fresh constants as names for the
terms, and substituting the terms for their names.

Example 3. Flattening the clause { P(f(a, b), f(b, a)) } yields the clause:

{ a 6= x, b 6= y, f(x, y) 6= z, f(y, x) 6= w, P(z, w) }

This clause, which cannot be splitted (all variables are connected to each other),
contains 4 variables. However, if we first transform the original clause by introducing



fresh names for its ground terms, we obtain the following satisfiability-equivalent
set of clauses:

{ t1 = f(a, b) }

{ t2 = f(b, a) }

{ P(t1, t2) }

If we now flatten these, we get the following three clauses:

{ a 6= x, b 6= y, f(x, y) 6= z, t1 = z }

{ a 6= x, b 6= y, f(y, x) 6= z, t2 = z }

{ t1 6= x, t2 6= y, P(x, y) }

These clauses each contain 3 variables; a significant improvement.

In the general case, a clause C[t] is translated into the clauses { a = t } and C[a],
where t is a non-constant ground term and a is a fresh constant, not occurring
anywhere else in the problem. In the clause C[a] only one variable needs to be
introduced for the constant a, in constrast to one for all subterms of t. Note also
that if the term t occurs in several different clauses in the problem, then there only
has to be one definition { a = t }, and the fresh constant a can be reused by all
clauses containing t.

5 Incremental Search

The most popular basic algorithm for SAT solving, the DPLL procedure [3], is
a backtracking procedure based on unit propagation. Modern versions of the al-
gorithm usually also include several improvements, such as heuristics for variable
selection, backjumping, and conflict learning.

In our context, conflict learning is of particular interest. It allows the procedure
to learn from earlier mistakes. Concretely, for each contradiction that occurs during
the search, the reason for the conflict is analysed, resulting in a learned clause that
may avoid similar situations in future parts of the search. In this way, a set of
conflict clauses is gathered during the search, representing information about the
search problem. A conflict clause is always logically implied by the original problem,
and thus holds without any assumption.

As part of our tool Paradox, we have implemented a Chaff-style [9] version of the
DPLL algorithm1, extended with the possibility to incrementally solve a sequence of
problems. The idea is that we want to benefit from the similarity of the sequence of
SAT instances, generated by our propositional encoding for each domain size. This
is done by keeping the learned clauses generated by the search for one instance, also
for the next.

Here is a formalization of the kind of sequences of SAT problems that our in-
cremental SAT solver can deal with.

Definition 3. Given a sequence of sets of propositional clauses δi, and a sequence

of sets of propositional unit clauses αi. Then the sequence ϕi, defined as follows, is

an incremental satisfiability problem.

ϕ1 = α1 ∪ δ1

ϕ2 = α2 ∪ δ1 ∪ δ2

ϕ3 = α3 ∪ δ1 ∪ δ2 ∪ δ3

. . .

1 The SAT solver, called Satnik, is also a stand alone tool in itself



That is, to move from one instance to the next, we have to keep all the general clauses
δi, but can retract and replace the unit clauses αi. The incremental SAT algorithm
we use represents the αi as assumptions, and not as constraints. Therefore, we can
keep all learned clauses from one instance and reuse them in the next instance.
This is because every learned clause generated by the conflict analysis algorithm is
implied by the subset (

⋃i

j=1 δj) of the problem instance.

Model Generation as Incremental Satisfiability In Section 3 we described how to
encode the problem of finding a model of a specific size into propositional logic. It
is easy to see that the encodings for different sizes have much in common, but in
order to specify it as an incremental satisfiability problem we need to be precise
about what the difference is.

Given the SAT instance for a specific size s we want to create the instance for
the size s + 1. Then for the instances and function definitions, we can keep all
previous clauses, and we only have to add the new clauses that mention the new
domain element s + 1. For the totality definitions however, we need to take away
the clauses and replace them with less restrictive clauses.

In order to fit this in the incremental framework mentioned above, we introduce
a special propositional variable ds for each domain size s. This variable should be
interpreted as “the current domain size is s”. Instead of adding a totality clause as
it is, we add a conditional variant of it, by adding ¬ds as a literal to each totality
clause. When solving the problem for domains of size s, we simply take ds being
true as an assumption unit clause αs. This immediately implies the unconditional
versions of the totality clauses. Then, if we find a model, we are done. Otherwise, ds

was apparently a too strong assumption, and we thus retract the assumption αs, and
add ¬ds as a top-level unit clause. By doing this, we have effectively ”deactivated”
the totality clauses for size s by satisfying them, and are ready to add clauses for
the next domain size s + 1.

Example 4. Assume that we have two constants a and b and a current domain size
of 2. Then the conditional totality definitions look like this:

{ a = 1, a = 2, ¬d2 }

{ b = 1, b = 2, ¬d2 }

The problem for size 2 is now solved by assuming d2. We can get to the problem
for size 3 by adding the following clauses:

{ ¬d2 }

{ a = 1, a = 2, a = 3, ¬d3 }

{ b = 1, b = 2, b = 3, ¬d3 }

Assuming d3 now gives the right totality clauses for size 3.

Effectiveness In our preliminary experiments, the method of incrementally solving
the model generation problem for increasing domain sizes decreases the overall time
spent in the SAT solver in many cases by at least a factor of 2. The implementation
of the SAT solver removes clauses that are trivially satisfied because of the presence
of other unit clauses. This mechanism takes care of removing the reduntant totality
clauses of previous sizes.

There are also some questions left to investigate, particularly which of the
learned clauses should be kept between instances. In general it slows the SAT solver
down too much to store all of them, apart from the fact that it is also too space con-
suming. Currently we simply use our SAT solver’s basic heuristic for learned clause



removal, which is designed to work well for solving single problems. It is likely that
one could design other heuristics that would take into account the fact that a clause
that seems to be uninteresting in the current part of the current search problem, in
fact could be useful in the next problem instance.

6 Static Symmetry Reduction

The way we have expressed the model finding problem in SAT implies that for
each model, all of its isomorphic valuations (i.e. the valuations we get by permuting
the domain elements) are also models. This makes the SAT problem unneccessarily
difficult. SEM-style methods use symmetry reduction techniques such as the least

number heuristic (LNH) [5] and the extended least number heuristic (XLNH) [2]
in order to restrict the search space to particular permutations of models. This is
done while the search for a model is going on, i.e. dynamically. In order not to
have to change the inner workings of the SAT-solver, we adapt some of the ideas
behind these symmetry reduction techniques, but implement them by adding extra
constraints, which remove symmetries statically.

Constant symmetries Let us start with the simple case, and only look at the values
of the constants occurring in the problem. If we order all constants occurring in the
problem in some arbitrary way, we get a sequence a1, a2, . . . , ak. Suppose that we are
searching for a model of size s. We now require that the model we are looking for has
a certain canonical form. This canonical form corresponds to a certain permutation
of the domain elements, namely such that a1 = 1, and for all i > 1, ai = d only
when there is a j < i such that aj = d − 1. So, when picking a domain element
for ai, we can either pick an element that we have already seen, or a new element,
which must be the least element in D which we have not used yet. It is easy to see
that every interpretation has an isomorphic permutation where this is the case.

Adding this extra restriction implies that I(ai) ≤ i, which immediately gives
rise to the following extra clauses:

{ a1 = 1 }

{ a2 = 1, a2 = 2 }

{ a3 = 1, a3 = 2, a3 = 3 }

. . .

These clauses actually subsume the totality clauses for their constants. Also, for
any 1 < i ∈ D, and for 1 < d ≤ i ∈ D, we add the following clause, which directly
formulates the canonicity requirement:

{ ai 6= d, a1 = d − 1, a2 = d − 1, a3 = d − 1, . . . , ai−1 = d − 1 }

That is, ai can only get the value d if some previous constant already has used the
value d − 1.

This process can be adapted for an incremental search in the following way: for
each new model size, we add only those symmetry-reducing clauses that contain the
new domain element, and none of the greater elements. We never take away any of
the generated symmetry reduction clauses in the incremental search.

Function symmetries If the problem only contains function symbols of arity 0,
then the above clauses are enough to remove all symmetries. However, when there
are function symbols of higher arity, this is no longer easy to do statically. We
can however remove some of the symmetries by, in addition to the above clauses,



adding the following clauses for a function symbol f of arity 1, when we are looking
for models of sizes s greater than k (the number of constants). We require that
k > 0 (we just introduce an arbitrary constant when k = 0).

{ f(1) = 1, f(1) = 2, . . . , f(1) = k + 1 }

{ f(2) = 1, f(2) = 2, . . . , f(2) = k + 1, f(2) = k + 2 }

{ f(3) = 1, f(3) = 2, . . . , f(3) = k + 1, f(3) = k + 2, f(3) = k + 3 }

. . .

The rationale here is again that, in order to pick a value for a particular f(d), we
can simply use a element that we have already seen, or the least element that has
not been used yet.

Note that we add only one such clause for each size increase beyond k. We
have not investigated how to decide which function symbol to pick. In our current
implementation, we simply pick an arbitrary function symbol. In principle it is
possible to use a different function symbol in every clause. We can also generalize
the above for function symbols g of arity larger than 1, by defining a fresh function
f in terms of g by e.g. f(x) = g(x, x).

The resulting SAT problem, even though it is a little bit bigger than without
the symmetry reducing clauses, is often dramatically easier to solve, both in cases
where there is a model, and in cases where there is no model.

7 Sort Inference

When formalizing a problem in terms of unsorted FOL, there often exist different
concepts in the problem, which when finding a model, all have to be interpreted using
the same domain D. This can be quite unnatural, both when trying to understand
a model and when trying to find a model. Examples of these kinds of concepts are
points, lines, and planes in geometry problems, and booleans and numbers in system
descriptions. A ’typed’ version of FOL, Multi-Sorted First Order Logic (MSFOL),
requires these concepts, the sorts, to be explicit in the formulation of the problem.
It is well-known that sort information helps searching for models. In this section,
we describe how to use the sort information, and, more interestingly, how to infer

the sort information such that it can be used for originally unsorted problems as
well.

Sorted models In the MSFOL world, apart from predicate symbols and function
symbols, there exists sort symbols A, B, C. Each function symbol f has an associated
sort sort(f) of the form A1×. . .×Aar(f) → A, and each predicate symbol P (except for
=, which works on all sorts) has an associated sort sort(P) of the form A1×. . .×Aar(P).
Moreover, in each clause, each variable x has an associated sort sort(x) of the form
A. These sorts have to be respected in order to build only well-sorted terms and
literals.

An MSFOL interpretation M consists of a domain DA for each sort A, plus for
each function symbol f a function I(f) : DA1 × . . .×DAar(f)

→ DA matching the sort
of f, and for each predicate symbol P a function I(P) : DA1 × . . . × DAar(P)

→ B,
matching the sort of P.

We define the notion of satisfiability for MSFOL interpretations in the obvious
way: quantification of variables in clauses becomes sort-dependent.

Unsorted vs. sorted Now, since our objective is to find an unsorted model, in order
to make use of sorts, we must link unsorted models and sorted models in some way.
It is not automatically the case that if we find a sorted model, there is also an



unsorted model of the same problem. However, it is the case that we can turn any
unsorted model of a problem into a sorted model of the same problem.

The basic observation is that any unsorted interpretation I with a domain D

can be turned into a sorted interpretation MI by taking DA = D for each sort A,
and by simply reusing all function and predicate tables from I. Now, for a suitably
well-sorted set of clauses S, we have that I satisfies S iff MI satisfies S. So, the key
idea is that when searching for an unsorted model I, we can just as well search for
the sorted model MI , i.e. search for a sorted model where all sorts have the same
domain size.

The advantage of searching for a sorted model becomes clear in the following,
which is a more fine-grained version of the symmetry observation for unsorted inter-
pretations. Given an MSFOL interpretation M containing a domain DA for a sort
A satisfying an MSFOL clause set S. Given a set D′ and a bijection π : DA ↔ D′,
we construct a new interpretation M′ by replacing DA by D′ and applying π in the
obvious way. Now, M′ also satisfies S.

Sorted symmetry reduction We can now make the following refinement of our earlier
symmetry reduction method. Given a valid sort-assignment to each function and
predicate symbol, we can simply search for an MSFOL model where the domains
for each sort are the same, but we can apply symmetry reduction for each sort
separately. That is, for each sort, we create a sequence of the constants of that sort,
and we add the extra clauses mentioned in Section 6.

Example 5. Given a problem with three constants a, b, c and two sorts A, B, where
sort(a) = sort(b) = A and sort(c) = B, we get the following symmetry reduction
clauses:

{ a = 1 }

{ b = 1, b = 2 }

{ c = 1 }

Sort inference The big question is then: How do we get such a suitable sort-
assignment for a flattened unsorted clause set? The algorithm we use is simple.
In the beginning, we assume that all function symbols and predicate symbols have
completely unrelated sorts. Then, for each variable in each clause, we force the sorts
of the occurences of that variable to be the same. Also, we force the sorts on both
sides of the = symbol to be the same. This can be implemented by a straight-forward
union-find algorithm, so that the whole agorithm runs in linear time. In the end,
the hope is to be left with more than one sort.

We have found that this simple sort inference algorithm really finds multiple sorts
in about 30% of the (unsorted) problems occurring in the current TPTP benchmark
suite [12] over all, and in about 50% of the satisfiable problems particularly.

Sort size reduction There is another way in which we can make use of the inferred
sort information in model finding. Under certain conditions, we can restrict the size
of the domains for particular sorts, which reduces the complexity of the instantiation
procedure.

Suppose that we have a sort A, and k constants a1, . . . , ak of sort A, but no
function symbols of arity greater than 0 which have A as their result sort. Moreover,
assume that we are not using the = symbol positively on terms of sort A anywhere
in the problem S, then the following holds. There exists an MSFOL model of S

with a domain DA of size k iff there exists an MSFOL model of S with a domain
DA of size greater than k. In other words, to find an MSFOL model of S, we do not
have to instantiate variables of sort A with more than k domain elements. This can
considerably reduce instantiation time for problems where sorts are inferred.



The proof looks as follows. (⇐) If we have a model where DA has more than
k elements, there must be an element d which is not the value of any constant, so
we can safely take it away from the domain, and all function tables and predicate
tables will still be still well-defined. It is also still a model, since making a domain
smaller only increases the number of clause sets that are satisfied. (⇒) If we have a
model of S, then we can always add a new element d′ to DA by picking an existing
element d ∈ DA and making all functions and predicates produce the same results
for d′ as they do for d. The resulting interpretation is still a model, because every
literal evaluates to the same value for d′ as it does for d. (However, this is only true
for non-equality literals.) For negative equality, making the domain bigger can only
increase the number of clause sets that are satisfied. This is not true for the use
positive equality literals, which is the reason why it is disallowed in the assumption.

(It is however possible to weaken the restriction on the use of positive equality.
In order to be able to restrict the size of the domain of A, it is enough to require
that we do not use positive literals of the form x = y, where x and y are variables
of sort A. So, it is okay to use positive literals of the form t = t′ and t = x, where
t and t′ are not variables. In the latter case however, we generally need to consider
k + 1 elements instead of k.)

EPR problems A special case of sort size reduction is the case where the problem is
an Effectively Propositional (EPR) problem, i.e. no functions of arity greater than 0
occur in the problem at all. In this case, each sort only contains constants, and the
number of constants k in the largest sort is an upper bound on the size of models we
need to consider. (This is independent of the use of equality in the problem, since
we only need the (⇐) part of the above proof.) When no model of size up to k is
found, we know there can be no model of greater size, and therefore the problem
must be contradictory. Thus we have a complete method for EPR problems.

8 Experimental Results

We have implemented all the techniques in a new finite model finder called Paradox.
Here is a list of promising concrete results we have obtained so far with our model
finder:

– On the current TPTP version 2.5.0 [12], and with a time limit of 2 minutes for
each problem, we can solve 90% of the satisfiable problems. This is significantly
better than last year’s CASC winner in the satisfiability category on the same
problems with a time limit of 5 minutes.

– Within a time limit of 10 minutes, we have solved 28 problems from the current
TPTP which currently have a rating 1.0 (i.e. Paradox is the first to solve those
problems), including 15 ”open” or ”unknown” problems that were solved within
seconds.

– With an older version of Paradox (using different term definitions heuristics and
SAT solver parameters), in the search for counter models for the combinatory
logic question if the fragment {B,M} posseses the fixed point property, we have
shown that there are no counter models of sizes smaller than or equal to 10,
which took us 9 hours. The previously known bound was 7.

Our preliminary findings are that the techniques described in this paper strictly
improve on all known MACE-based methods. Also, they perform almost always
better than SEM-based methods on problems that contain more than just unit
equalities. SEM-based methods however are superior on most problems that contain
lots of unit equalities, such as group theory problems. Interestingly, there are some
exceptions, such as combinatory logic problems, where Paradox seems to behave
well.



9 Related Work

There are several tools that solve similar problems as we do, or use similar techniques
to the ones we use.

Eground [10] is a tool that takes an EPR problem, i.e. a problem that does
not contain any function symbols of arity greater than 0, and generates a SAT
problem that is satisfiable iff the original problem is. Interestingly, Eground has
many of the same problems as a MACE-style model finder. Eground was the first
tool to perform non-ground splitting in order to reduce the number of variables
in clauses. Also, Eground performs an analysis that computes sets of constants for
each variable in a clause for which the variable should be instantiated. The hope is
that these sets are smaller than the set of all constants in the problem. The analysis
is somewhat similar to sort inference, with three main differences. Our analysis
also works for non-EPR problems, and also works for problems containing equality.
Eground’s analysis makes use of the sign of predicate symbols, which makes it more
precise in some cases.

Comparing Eground as an EPR solver with our proposed method of solving
EPR problems mentioned at the end of Section 7, it seems that they are comple-
mentary. Assuming that no equality is used in the problem, and that the analyses
work equally well, and ignoring the symmetry reduction, we can make the follow-
ing rough observations. Given an EPR problem that is contradictory, Eground’s
method is probably going to win over ours since it immediately tries the ”biggest”
case, whereas our method will go through all smaller model sizes first. Given an
EPR problem that is satsifiable, it is very likely that it is not needed to go all the
way up to the biggest case, and that a smaller model can be found much quicker.

MACE [7] is McCune’s first finite model finder. The basic idea behind MACE is
described in Section 3. Since it does not perform any variable reduction techniques,
there are many problems where MACE cannot deal with largish domain sizes. It
has its own built-in SAT solver which is currently not up-to-date with the current
state-of-the-art SAT technology.

SEM [5], FINDER [11], and ICGNS [8] are all SEM-based tools. SEM and
FINDER are specifically designed for sorted problems, whereas ICGNS only works
for unsorted problems. Comparing the symmetry reduction in SEM-based tools
with ours, we can say that their symmetry reduction works dynamically, i.e. dur-
ing the search they will always pick the smallest not-used domain element when a
new element is needed. We apply the symmetry reduction statically, which removes
the same symmetries when picking values for constants, but for functions, our ex-
tra function symmetry clauses do not remove as many symmetries. Still, having a
state-of-the-art SAT solver as the underlying search engine seems to be superior in
many cases once one is able to instantiate the problem for the desired domain size.
It will continually be useful to investigate these complementary method’s strengths
and weaknesses in order to understand the problem area better.

Gandalf [13] is a general theorem prover that also implements model finding.
Gandalf contains lots of different complementary algorithms for particular problem
domains, which are, upon receiving a problem, scheduled, together occupying all
available time. For satisfiability, Gandalf provides saturation techniques (that help
finding cases with infinite models), SEM-style techniques, and one MACE-style
method. As far as we know, Gandalf was the first to use splitting techniques in
MACE-style model finding. Gandalf was the winner of last year’s CASC satisfiability
division.

A more general approach to incremental SAT solving than what we use here is
used in the tool Satire [6]. In Satire, one can take away and add clauses arbitrarily.
This requires extra bookkeeping to implement. Our method requires one to decide
on beforehand which clauses are going to be retracted. Fortunately, Satire’s extra



generality is not needed in our application, and our simple, more efficient (but more
restrictive) approach is enough.

10 Conclusions and Future Work

We have shown that MACE-style methods can be improved upon by incorporating
symmetry reduction methods (inspired by well-known related work in the SEM
world), by adding them as static constraints to the generated SAT problem. The
automatic inference of sorts in order to refine the symmetry reduction turned out
to be a very powerful tool in this context. We have also shown that it is good to
intimately integrate a SAT solver with the algorithm that uses it, in order to get
the most benefit out of it.

However, our work on reducing the number of variables in clauses by using
splitting methods and term definitions is, though very promising, only showing the
tip of the ice berg of what is left to do in the area. Our splitting heuristic seems to
perform well in practice, but it is unsatisfactory that it is based on repeated binary
splits. We have not been able to formulate a ”most general” clause hyper-splitting
condition, which all correct splitting algorithms must obey; all previous attempts
have been too restrictive. This has made it impossible for us to explore the design
space of splitting algorithms in a satisfactory way. A similar situation holds for
the term definitions, where it is unclear exactly when term definitions should be
introduced. Ultimately we would like to integrate splitting and term definitions in
order to get the best of both worlds.

Other future work includes improving the sort inference algorithm which is very
simple at the moment. The problem can be thought of as a flow-analysis problem
from the field of program analysis, and much inspiration can be found there. Also, we
would generalize the sort inference to already sorted problems, in order to find more
fine-grained sort assignments than the sort-assignment declared in the problem.

Another direction of research is to adapt clausification algorithms in order to
perform clausification, flattening, and splitting at the same time. The basic decision
a clausification algorithm must make is when to introduce a new name for a sub-
formula. This decision is guided by optimizing certain parameters of the resulting
problem, usually the number of resulting clauses or literals. We could adapt such
an algorithm to minimize number of variables per clause instead.

Some problems are inherently complex because they for example contain pred-
icate or function symbols with a huge arity. In order to even represent (let alone
search for) models of reasonable domain size would require too much memory. One
idea we have started to explore is to strengthen the original theory by replacing the
offending symbols by nested expressions containing function symbols of much lower
arity. If we find a model of the strengthened problem, which might not exist any-
more but is hopefully easier to do, that model can be translated back into a model
of the original problem. (Of course, introducing these huge predicates is ultimately
a modelling question; something that the modeller of the original problem should
think about.)

Lastly, we have looked at non-standard applications of our model finding tech-
niques in the fields of planning (where a found model represents a plan), finite state
system verification (where a found model represents a proof of the correctness of
the system), and general FOL theorem proving (where we use finite models to ap-
proximate possible infinite models, and the absence of such a finite approximation
model beyond a certain precision represents the absence of a model alltogether).



References

1. A. Voronkov A. Riazanov. Splitting without backtracking. Technical Report Preprint
CSPP-10, University of Manchester, 2000.

2. Gilles Audemard and Laurent Henocque. The eXtended Least Number Heuristic.
Lecture Notes in Computer Science, 2083, 2001.

3. D. Loveland D. Putnam, G. Logeman. A machine program for theorem proving.
Communications of the ACM, 5(7), 1962.

4. H. Zhang J. Zhang. SEM: a system for enumerating models. In Proc. of International
Joint Conference on Artificial Intelligence (IJCAI’95), 1995.

5. H. Zhang J. Zhang. Generating models by SEM. In Proc. of International Conference
on Automated Deduction (CADE’96), pages 308–312. Springer-Verlag, 1996.

6. Karem A. Sakallah Jesse Whittemore, Joonyoung Kim. Satire: A new incremental
satisfiability engine. In Design Automation Conference, pages 542–545, 2001.

7. W. McCune. A Davis-Putnam program and its application to finite first-order model
search: Quasigroup existence problems. Technical report, Argonne National Labora-
tory, 1994. http://www-unix.mcs.anl.gov/AR/mace/.

8. W. McCune. ICGNS, 2002. http://www-unix.mcs.anl.gov/˜mccune/icgns/.
9. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), 2001.

10. S. Schulz. A comparison of different techniques for grounding near-propositional CNF
formulae. In Proc. 15th International FLAIRS Conference, pages 72–76, 2001.

11. John Slaney. FINDER 3.0, 1993. http://arp.anu.edu.au/˜jks/finder.html.
12. Geoff Sutcliffe and Christian Suttner. TPTP v. 2.5.0, 2003. http://www.tptp.org.
13. T. Tammet. Gandalf, 2002. Webpage momentarily unknown. Available from tam-

met@staff.ttu.ee.


