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Abstract

This thesis presents NC(T ), an extension of the DPLL(T ) scheme [16, 29] for decision
procedures for quantifier-free first-order logics. In DPLL(T ), a general Boolean DPLL
engine is instantiated with a theory solver for the theory T . The DPLL engine is re-
sponsible for computing Boolean implications and detecting Boolean conflicts, while
the theory solver detects implications and conflicts in T , and the communication be-
tween the two parts is done through a standardized interface. The Boolean reasoning
is done on a set of constraints represented as clauses, meaning that formulas have to
be converted to conjunctive normal form before they can be processed. The process
results in the addition of variables and a general loss of structure. NC(T ) remove this
constraint by extending the Boolean engine to support the detection of implications
and conflicts on non–clausal constraints, using techniques working on graphical repre-
sentations of formulas in negation normal form first described in [19, 21]. Conversion
to negation normal form preserves the size and structure of the input formula and
does not introduce new variables.

The above scheme NC(T ) has been implemented as a tool called fstp, where the
theory T under consideration is the quantifier–free theory of uninterpreted function
and predicate symbols with equality. We describe our implementation and give early
experimental results.
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Chapter 1

Introduction

The problem of determining the Boolean satisfiability of a formula, SAT, is central

in complexity theory. This stems from its NP-complete status and from its simple

and concise description, making it a suitable target for reductions from more complex

problems. As a consequence, many problems can be reduced to SAT and subsequently

worked on using existing, well-sustained tools, through simple interfaces.

The problem of determining the satisfiability of formulas in quantifier-free first-

order theories with equality, satisfiability modulo theories, or SMT, extends the scope

of applicability of SAT by allowing reasoning about non-Boolean values such as inte-

gers, real numbers, bit-vectors or uninterpreted function symbols, for instance.

The development of efficient tools for both these problems, called SAT solvers

and SMT solvers, or decision procedures, has enabled a broad range of applications

in formal methods, program analysis and AI. These include for instance bug-finding

[6, 8], symbolic and bounded model-checking [5, 9], proofs of correctness for compiler

optimizations [23], or the verification of microprocessors [36].

As applications target more challenging domains, they in turn generate more

difficult instances of SAT and SMT problems. Consequently, the demand for better

solvers continues to increase, driving the research into efficient decision procedures.

SAT solvers traditionally work on formulas in conjunctive normal form, or CNF.

This standard form is easy to reason about and has been thoroughly studied in the

context of DPLL SAT solvers (see Chapter 2 for details). However, this approach
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requires that problems which are not naturally best expressed as a set of clauses

be translated to CNF first, for instance using the well-known Tseitin encoding [35].

These transformations introduce new variables and can destroy the structure of the

original problem, sometimes making it artificially hard to solve. We refer the reader

to Thiffault et al. [34] and Jain et al. [20] for a detailed discussion of this problem.

Modern SMT solvers suffer from a similar problem. These solvers use a general-

ization of the DPLL algorithm known as DPLL(T ) [16, 29] (see Chapter 2 for details).

This generalization similarly requires that the Boolean structure of the input formulas

be in conjunctive normal form, and consequently suffers from the same problems as

in the case of SAT solvers, namely that important structural information is lost in

the process.

Therefore, it is of great interest to the SAT and SMT communities, as well as

the users of their tools, to come up with techniques that do not necessarily require

translation of the Boolean structure of the formulas into conjunctive normal form.

Furthermore, these techniques should be able to exploit the structural information to

deliver greater performance.

The focus of this thesis is to propose a solution to the problem of solving SMT

formulas without requiring conversion to CNF. The following section gives an overview

of our solution and its implementation.

1.1 Proposed solution

The first contribution of this thesis is a proposal to extend the DPLL(T ) scheme

by adding to it an extra component allowing reasoning on non-clausal constraints,

thus forming a new scheme that we call NC(T ). Just like in DPLL(T ), a NC(T )-

based decision procedure consists of a theory solver for the theory T and a general,

theory-unaware, Boolean solver. We preserve the standard interface for theory solvers

described in [16]. Unlike in DPLL(T ), our proposal for the Boolean solver is a combi-

nation of a standard DPLL solver, working on constraints expressed as clauses, and a

non-clausal solver, based on [19, 21], capable of reasoning about constraints expressed

10



as formulas in negation normal form (NNF). Particularly important in our design is

the communication between these two components: new implications and conflicts

discovered by the non-clausal reasoner are encoded as clauses and communicated to

the clausal part. This results in an incremental translation into conjunctive normal

form: as the number of clauses augments, so does the proportion of conflicts and

implications found during clausal reasoning against those found on the non-clausal

constraints. This approach enables us to leverage the efficient existing techniques for

DPLL/DPLL(T ) while at the same time avoiding the initial translation to CNF.

Our second contribution is fstp, an implementation of the described scheme

along with a theory solver for the quantifier-free theory of uninterpreted function and

predicate symbols with equality (T=
UF). The implementation of our theory solver is

based on [16, 27, 28].

1.2 Organization of this thesis

The rest of this thesis is organized as follows: Chapter 2 gives a quick overview of

the design of modern DPLL-based SAT solvers and DPLL(T )-based SMT decision

procedures. Chapter 3 examines techniques first introduced in [19, 21] for reasoning

on non-clausal constraints and shows how they can be used to extend the general

DPLL(T ) scheme to form the new NC(T ) scheme. Chapter 4 describes fstp, our

implementation of NC(T ) for the theory T=
UF. Chapter 5 presents some experimental

results we obtained by comparing our tool to an existing, DPLL(T )-based one, and

Chapter 7 concludes by presenting some ideas for future work.

11
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Chapter 2

Reasoning on clausal constraints

This chapter presents the foundations of the DPLL algorithm for SAT, and its adap-

tation to the problem of satisfiability modulo theories, DPLL(T ). Both these applica-

tions have a record of success against competing approaches. DPLL, along with some

of the popular techniques for clausal learning, fast Boolean constraint propagation,

restarts, etc., is the algorithm of choice in virtually every competitive SAT solver

[15, 17, 25]. The DPLL(T ) approach combines the power of clausal solvers and a

high versatility which makes it a suitable choices for many theories. SMT decision

procedures based on DPLL(T ) regularly perform extremely well in many categories

at the annual SMT competition [3, 4, 12, 14, 26].

2.1 Conversion to CNF

As we already mentioned in the introduction, the DPLL algorithm requires that input

formulas be in conjunctive normal form. Any Boolean formula can be converted to

that form using for instance the distributivity laws on ∧ and ∨, however this is

not practical, as the size of the formula can then grow dramatically. A technique

commonly used instead is the Tseitin encoding [35].

The idea behind the Tseitin encoding is to add new propositional variables to rep-

resent subformulas, introduce additional clausal constraints to link the value of these

variables to the subformula they represent, and then flatten out the main formula by
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replacing each subformula by its representative.

Conjunctions p1 ∧ . . . ∧ pm can be replaced by a single variable Tn if we add the

clausal constraints (Tn ∨¬p1 ∨ . . .∨¬pm)∧ (¬Tn ∨ p1)∧ . . .∧ (¬Tn ∨ pm). These new

constraints encode the relation Tn ⇐⇒ (p1 ∧ . . . ∧ pm).

Disjunctions are treated dually: p1 ∨ . . . ∨ pm gets represented by Tn by adding

the constraints (¬Tn∧p1∧ . . .∧pm)∨ (Tn∧¬p1)∨ . . .∨ (Tn∧¬pm), encoding Tn ⇐⇒
(p1 ∨ . . . ∨ pm).

One can then traverse recursively the structure of the formula, flattening the

inner-most subformulas first and proceeding until the top level is reached. The size

of the encoded formula is linear in the size of the original one1.

2.2 DPLL

What falls under the denomination “the DPLL algorithm” is usually more than

the simple Davis-Logemann-Loveland algorithm [10], itself a variation on the David-

Putnam algorithm [11]. It is assumed that all implementations will include features

such as clausal learning and non-chronological backtracking, or efficient heuristics for

literal selection, restarts or clause deletion. We briefly survey the elements among

these whose understanding is required for the reading of the rest of this thesis.

A modern DPLL-based decision procedure follows the structure of Algorithm 1

[15, 25]. The idea is to attempt to determine the satisfiability of the input formula by

incrementally building a satisfying assignment. Whenever a new literal is added to

the assignment, or asserted, the decision level of the procedure is incremented, and

the new assignment is checked against the formula. If some variables in the formula

have to assume a certain polarity to maintain the overall satisfiability as a result of

the assertion of new literals, the combination of these variables and their polarity

forms new implied literals at the current decision level. If on the other hand the

assignment makes the formula unsatisfiable, one reached a conflict situation. When

a conflict occurs, the cause of that conflict is determined and a certain number of the

1As long as we restrict ourselves to the Boolean operators ∧ and ∨.
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Algorithm 1 DPLL-like decision procedure

1: while > do
2: if AssertNextLiteral() = > then
3: Propagate()
4: if FoundConflict() = > then
5: if AnalyzeConflict() = ⊥ then . Conflict could not be resolved
6: return unsat
7: else
8: Backtrack()
9: end if

10: end if
11: else . All variables were assigned
12: return sat
13: end if
14: end while

latest asserted literals are removed from the assignment: this operation constitutes

backtracking to an earlier decision level. When the analysis of a conflict determines

that the search needs to be backtracked until prior to the first assertion, the conclusion

is that the formula under consideration is unsatisfiable. On the other hand, when all

variables have been assigned a polarity and no conflict has been found, then the

formula is satisfiable and the built assignment is a satisfying assignment for it.

2.2.1 Implications and conflicts

Being able to determine new implications from a partial assignment, also known

as Boolean constraint propagation (BCP), and determining which assignments are

conflicting are two essential parts of any DPLL-based decision procedure. A technique

introduced in [25] known as the two-watched-literal scheme is what is commonly used

to perform both these tasks. The principle works as follows:

• In each clause, two literals are “watched”, and we try to maintain as an invariant

that none of them is falsified by the current assignment.

• Whenever one of these two literals becomes falsified, we have three possible

cases:

15



p1 p2 p3 p4

(a) Before the assignment of p̄1

p1 p2 p3 p4

(b) After

Figure 2-1: Example of two-watched-literal scheme application

1. There exists another, non-watched literal in the clause which is not falsi-

fied. In that case, we stop watching the falsified literal and start watching

that other one. There are no implications and we are not in a conflicting

situation.

2. The only non-falsified literal is the one being watched by the second watch.

In that case, that literal is implied by the current assignment. Indeed, it

has to be satisfied, or the clause would then be entirely falsified.

3. All literals in the clause are already falsified. In that case, we have reached

a conflict.

The two-watched-literal scheme presents the double advantage that it is fast, as

each time a new literal is asserted, only the small set of clauses where that literal is

one of the two being watched has to be examined, and no operation needs to be done

when the search backtracks to a previous decision level. Indeed, all clauses in which

watches are set on non-falsified literals will conserve that property, as backtracking

only cancels assignments.

Figure 2-1 shows an illustration of the two-watched-literal scheme: before ¬p1

gets asserted, both watches are on non-falsified literals. When ¬p1 becomes true, p1

becomes false and the watch has to be moved to another non-falsified literal. After

this point, if p3 or p4 becomes false, then the other one is implied. If on the other

hand they both become false at the same decision level, for example because ¬p3

triggers ¬p4 in a different clause, then the assignment is conflicting.
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Figure 2-2: Example of an implication graph. Double circles denote decision literals.
Decision levels are indicated next to the literals.

2.2.2 Conflict resolution and clause learning

Whenever a literal is implied, the clause which triggered the implication is associated

to it. This allows us to retrieve the reason of an assignment; each literal is assigned

either because it was the one asserted at its decision level, or because a set of already

assigned literals triggered its implication in a clause. One can visualize this informa-

tion as a directed graph, which we call an implication graph, where decision literals

are root nodes and BCP-implied literals have incoming edges from the other literals

in their clause. Consider for instance the formula:

(¬a ∨ b ∨ e) ∧ (¬b ∨ c) ∧ (¬f ∨ ¬b ∨ ¬c) ∧ (¬g ∨ f) (2.1)

under the partial assignment {a,¬e, g}. The assignment and its implications are

graphically depicted in Figure 2-2. b is implied by a and ¬e and because of the first

clause, f is implied by g and because of the first clause, and both c and ¬c are implied,

because of the second and third clauses respectively. This is a conflicting situation.

The simple strategy for conflict resolutions of the original DLL algorithm is as

follows: whenever a conflict is reached, one searches for the latest asserted literal

which is not marked as having been tried in both polarities. One backtracks to the

decision level of that literal, flips its polarity in the assignment, marks it as flipped

and then continues the search from there. Modern approaches however use conflicts

rather than just working around them: when a conflict is reached, a new clause

17



which records the cause for it is added to the clause set. This avoids falling in similar

conflicting situations at later stages.

2.2.3 First unique implicant

A conflict arises when both the true and false polarities get assigned to a variable.

This can be observed in the example depicted in Figure 2-2. One can learn the reason

for such a conflict by following the edges in the implication graph backwards from

the two nodes containing the variable in opposed polarities, as the set of nodes which

have outgoing edges to another one represent the set of literals responsible for the

implication. We can use such a set to produce a learnt clause which can then be

added to the clause set the ensure that the same conflict will not be triggered again.

In our example, we could add the clause ¬b∨¬f to the set. This will have the desired

effect that the next time b is asserted or implied, ¬f will be found as a consequence

of BCP and the same conflict will not arise again.

¬b ∨ ¬f is not the only clause that we could learn. We could for instance replace

b by the set of literals that implied b, creating instead the clause e∨¬a∨¬f . It is not

difficult to see that we could keep going, replacing literals by their implicants until

all literals in the clause are asserted literals, which by definition have no implicants.

The question of which type of clause to learn has been well studied [37], and the

strategy generally chosen works as follows: when a conflict is reached at decision level

l, we first compute the set of the direct implicants, then we incrementally replace all

literals from the decision level l in the set by their own implicants until there is only

one of them left2. The goal of this strategy, called first unique implicant, is to learn

a clause where there is only one literal from the decision level at which the conflict

occurs. We then search for the second-highest decision level among the literals in

that clause, and backtrack the search to that level. As only the unique implicant will

then become unassigned and all other literals in the clause will be falsified, BCP will

trigger its new assignment.

2Note that there is always necessarily at least one, namely the literal asserted at that decision
level.
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We conclude this section on DPLL by quickly presenting techniques commonly

found in solvers. The main concern of this thesis is not DPLL, though, and we do

not elaborate on these.

2.2.4 Dynamic literal selection

An important component of an efficient SAT solver is a good heuristic for the selection

of the next literal to assert. Most solvers use variations of the VSIDS heuristic [25],

where scores are assigned to all variables in both polarities based on the number of

clauses they appear in. When new clauses are added, the score for the literals in them

augments, improving the chance that they will be picked soon. Periodically, all scores

are divided by a constant. The rationale behind this technique is that the heuristic

will tend to satisfy learnt clauses, with a particular focus on recent ones. See [32, 37]

for details.

2.2.5 Restarts

Another feature commonly found in SAT solvers are automated restarts : periodically,

for instance after a fixed number of decisions or learnt clauses, the search restarts

from scratch, although the set of learnt clauses is conserved. This is done in order to

prevent the search from getting stuck in subspaces where no substantial progress can

be made. More details can be found in [18].

2.2.6 Clause management

Finally, most solvers put bounds on the size of the clause set they maintain, to avoid

an explosion in memory usage. Techniques vary among implementations; some solvers

delete clauses only during restarts, some merge clauses or attempt to detect situations

where some clauses are subsumed by other one, etc. More information can be found

in [15, 25].
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2.3 DPLL(T )

We now move on to the description of the DPLL(T ) scheme [16, 29]. We start by

informally describing the theory to which we will bring our focus for the rest of this

thesis, T=
UF. We will then use it as an example to describe the main features of

DPLL(T ).

2.3.1 T=
UF

The quantifier-free theory of uninterpreted function symbols and predicates with equal-

ity, which we denote by T=
UF, is also sometimes called the empty theory. Valid terms in

that theory are uninterpreted constants (a, b, . . . ) and applications of uninterpreted

functions and uninterpreted predicates of arbitrary arity (f(a), p(a, b), f(f(a)), . . . ).

Valid atoms are equalities between uninterpreted terms and function applications, and

predicates or applications of uninterpreted predicate symbols. Thus, some examples

of literals in T=
UF are for instance f(a, b) = c, ¬p(c) or a 6= b.

Equality is reflexive, transitive and symmetric, and the additional congruence

axiom applies. For a function symbol f of arity n, we have that:

a1 = b1 ∧ . . . ∧ an = bn =⇒ f(a1, . . . , an) = f(b1, . . . , bn) (2.2)

Similarly for a predicate symbol of arity n:

a1 = b1 ∧ . . . ∧ an = bn =⇒ (p(a1, . . . , an) ⇐⇒ p(b1, . . . , bn)) (2.3)

The satisfiability problem for a formula φ in T=
UF consists in determining whether

there exists a congruence relation on all uninterpreted constants in φ such that φ is

true whenever ’=’ is interpreted as this congruence relation. A congruence relation

is a set of congruence classes, where each uninterpreted constant appears in exactly

one class, and all terms in a class are defined to be equal. For instance, the formula:

f(a) = f(b) ∧ a 6= b ∧ b = c (2.4)
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is satisfied by the congruence relation {{a}, {b, c}}, while the formula:

f(a, b) = a ∧ f(f(a, b), b) = b ∧ a 6= b (2.5)

admits no satisfying congruence relation.

2.3.2 Theory solver interface

DPLL(T )-based decision procedures are built around a DPLL Boolean solver and a

decision procedure for conjunctions of literals in the theory T . Decision procedures

for conjunctions of literals of T=
UF are well-studied [13, 28], and we do not describe

them here. During solving, the Boolean solver asserts new literals, as in standard

DPLL, and communicates them to the theory solver. The theory solver maintains a

stack of asserted literals. To be properly usable in the context of DPLL(T ), it must

also implement some operations which are described as a standardized interface [16].

We present this interface along with examples for a solver for T=
UF:

• The Boolean solver can tell the theory solver to assert a new literal. The theory

solver adds that literal to its stack, and either responds by saying that the new

set of literals is inconsistent, or by sending back a list of literals which are

implied by the latest addition. For instance, if the stack already contains the

literals a = b and c = f(c), then the assertion of f(a) 6= f(b) will make the

set inconsistent. On the other hand, the assertion of b = c would produce the

newly implied literals a = f(c) and b = f(b), for instance. Note that the set of

literals is not required to be complete.

• The Boolean solver can query the theory solver with a literal to ask it whether

it is implied by the current set of asserted literals. In our previous example, a

query for f(a) = f(b) would return “true” while a query for b = c would return

“false”. Note that a “false” response does not mean the negation of the literal

is implied.
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• The Boolean solver can order the theory solver to backtrack to a previous deci-

sion level, thus popping some elements off the stack.

• The Boolean solver can ask for an explanation for a true literal l, consisting in a

subset of the asserted stack which logically implies l. For instance, if the stack

already contains the literals a = b, f(a) = a and b = c, and if a query for an

explanation for g(a) = g(c) is made, then the subset {a = b, b = c} would be

returned, not containing the irrelevant literal f(a) = a.

• Finally, when the set of asserted literals is inconsistent, the Boolean solver can

ask for an unsat core, a subset of literals from the stack whose conjunction is

unsatisfiable.

In the case of T=
UF, [28] and [26] describe how a solver implementing this interface

can be built.

We can now informally describe the workings of a DPLL(T ) decision procedures.

Just as in DPLL, the goal is to incrementally build a satisfying assignment by succes-

sively asserting literals. Each time a new literal is asserted, it is passed to the theory

solver.

New literals can also be discovered through Boolean implications, as in DPLL,

or through theory implications, returned by the theory solver as explained in the

interface description. The method for retrieving the implicants of a literal therefore

depends on the type of implication: for Boolean implications, this is done by ex-

amining the implicant clause, as in DPLL, and for theory implications by querying

the theory solver for explanations. As a consequence, the implication graphs in such

decision procedures contain two types of edges. Figure 2-3 shows such a graph, where

dashed edges indicate theory implications.

Conflict analysis is done as in DPLL, with the computation of a first unique impli-

cant and the subsequent backtracking. The only different cases are theory conflicts,

where the reason for the conflict is a theory-inconsistent set of asserted literals rather

than a Boolean contradiction. When such a situation arises, the theory solver is asked
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f(b) 6= f(c)

f(b) = f(c)
b = c

p1

a = c

a = b

g(a) = a

Figure 2-3: Example of an implication graph including theory implications

to return an unsat core, which is then used to form a clause. We then use the first

unique implicant technique on that clause.

Most other important features from DPLL such as the VSIDS heuristic or the use

of restarts are used in DPLL(T ) as well.

Our description of DPLL(T )-based decision procedures is certainly over-simplistic.

We believe however that it is sufficient to understand our proposal for an extension

of this scheme, that we present in the next chapter. We refer the reader to [29] for a

complete account of the theoretical foundations of DPLL(T ).
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Chapter 3

Reasoning on non-clausal

constraints

In the previous chapter, we have given an overview of the workings of SAT and

SMT solvers on constraints expressed in conjunctive normal form. We have seen

how efficient algorithms can be implemented to perform two fundamental tasks on

these formulas; conflict detection and Boolean constraint propagation. We now bring

our focus to constraints expressed as arbitrary formulas. We show how the conflict

detection and Boolean constraint propagation operations can be effectively performed

on these constraints, after a reduction to a different, simpler normal form.

3.1 Graph-based representation of non-clausal for-

mulas

3.1.1 Negation normal form

In this chapter we assume that Boolean formulas contain only ∧,∨,¬ as propositional

operators.

A Boolean formula is in negation normal form (NNF) if the negation operator ¬
appears only directly in front of variables. In other words, a formula is in NNF if it

consists only of literals connected together with the Boolean operators ∨ and ∧.
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Any formula can be mechanically transformed into a logically equivalent formula

in NNF by applying De Morgan’s laws and removing double negations.

For example, the formula:

((p ∨ q) ∧ ¬r ∧ ¬(p ∧ q)) ∨ ¬(p ∨ (¬s ∧ (r ∨ s)) ∨ ¬q) (3.1)

is logically equivalent to its negation normal form:

(p ∨ q) ∧ ¬r ∧ (¬p ∨ ¬q)) ∨ (¬p ∧ (s ∨ (¬r ∧ ¬s)) ∧ q) (3.2)

The process naturally extends to formulas in first-order theories. For instance,

the formula in T=
UF:

f(a, b) = a ∧ ¬(a = b ∨ f(f(a, b), b) 6= b) (3.3)

has the following equivalent in NNF:

f(a, b) = a ∧ a 6= b ∧ f(f(a, b), b) = b) (3.4)

Two valuable properties of negation normal form are that the normalization pro-

cess does not introduce new variables and does not increase the size of the original

formula, if we make the reasonable assumption that positive and negative literals can

be represented using the same amount of space.

3.1.2 Two-dimensional diagrams

In [1], Andrews introduces a two-dimensional representation for formulas in NNF.

Following his convention, we write disjunctions in the usual, horizontal, fashion while

we represent conjunctions by displaying their conjuncts in vertical stacks surrounded

by brackets. As an example, Figure 3-1 shows (3.2) in its two-dimensional representa-

tion. Andrews goes on by defining vertical paths in such representations: informally,

one obtains a vertical path by traversing the diagram from top to bottom choosing
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


p ∨ q

r̄

p̄ ∨ q̄

 ∨


p̄

s ∨
[
r̄
s̄

]
q




Figure 3-1: Two-dimensional representation of (3.2). We use p̄ to denote ¬p.

for each encountered disjunction to traverse one of the disjuncts. Possible vertical

paths in (3.2) are for instance p → ¬r → ¬p or ¬p → ¬r → ¬s → ¬q. Horizontal

paths are defined in a similar, dual, way. Examples of horizontal paths in Figure 3-1

are p→ q → s→ ¬s or ¬r → ¬p.

3.1.3 Vertical and horizontal graphs

A perhaps more explicit way to display these paths is proposed in [20]; we construct

directed acyclic graphs where nodes contain literals and edges represent connections in

the two-dimensional formula representation. For a formula φ, we can build a vertical

graph (vGraph) GV (φ) and a horizontal graph (hGraph) GH . Such graphs are defined

as tuples G = (V,E,R, L, c) where:

• V is the set of vertices. |V | is equal to the number of literals in φ, multiple

occurences of the same literal being counted multiple times.

• E ⊆ V × V is the set of edges

• R ⊆ V is the set of nodes with in-degree 0 (roots)

• L ⊆ V is the set of nodes with out-degree 0 (leaves)

• c : E → l is a function which maps each node in the graph to a literal

We will consider pairs of vertical and horizontal graphs GV (φ) = (VV , EV , RV , LV , cV )

andGH(φ) = (VH , EH , RH , LH , cH) such that VV = VH and cV = cH . Figure 3-2 shows

the vGraph and hGraph for (3.2).
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p̄ q̄

p̄

r̄

q

s

s̄

(b) hGraph

Figure 3-2: Graph representations of (3.2)

Algorithm 2, adapted from [20], presents a mechanical procedure to build a vGraph

for a given formula. Informally, the process consists of recursively building graphs for

the subformulas, starting with the inner-most single literals and acting appropriately

on the Boolean operators ∨ and ∧:1

• For disjunctions, the union of the graphs representing the two sub-formulas

is taken. Visually, this corresponds to “placing the two graphs next to each

other”, without adding any new edge between their nodes.

• For conjunctions, the concatanation of the graphs is computed. This corre-

sponds to “placing the graphs on top of each other”, and connecting each leaf

node of the top graph to every root node of the bottom one.

The process is non-deterministic in the sense that the operands of ∨ and ∧ can

be picked in any order, resulting in different graphs. Figure 3-3 for instance shows an

alternative vGraph for (3.2). The set of vertical paths, however, is unique for a given

formula, if we ignore the ordering of literals in the path.

A similar procedure can be dually defined for the construction of hGraphs, where

subgraphs are concatenated for disjunctions and united for conjunctions.

Andrews showed that for any Boolean formula φ, writing each vertical paths in

GV (φ) as a conjunct and taking the disjunction of all of them yields a new formula in

disjunctive normal form φDNF, with the property that φ and φDNF are equivalent. For

1Note that we consider the operators as binary here.
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Algorithm 2 Vertical graph construction

1: function BuildVGraph(φ)
Require: φ is in NNF

2: if φ is a single literal l then
3: return ({vi}, {vi}, {vi}, ∅, {vi 7→ l}) . where i is a fresh index
4: else if φ is φ1 ∨ φ2 then
5: (V1, E1, R1, L1, c1)← BuildVGraph(φ1)
6: (V2, E2, R2, L2, c2)← BuildVGraph(φ2)
7: return (V1 ∪ V2, E1 ∪ E2, R1 ∪R2, L1 ∪ L2, c1 ∪ c2)
8: else if φ is φ1 ∧ φ2 then
9: (V1, E1, R1, L1, c1)← BuildVGraph(φ1)

10: (V2, E2, R2, L2, c2)← BuildVGraph(φ2)
11: return (V1 ∪ V2, R1, L2, E1 ∪ E2 ∪ (L1 ×R2), c1 ∪ c2)
12: end if
13: end function

p q

r̄

p̄ q̄

r̄

q

s

s̄

p̄

Figure 3-3: Alternative vGraph for (3.2)
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instance, by enumerating the vertical paths in Figure 3-2(a), we can rewrite (3.2) as:

(p ∧ ¬r ∧ ¬p) ∨ (p ∧ ¬r ∧ ¬q) ∨ (q ∧ ¬r ∧ ¬p) (3.5)

∨(q ∧ ¬r ∧ ¬q) ∨ (¬p ∧ s ∧ q) ∨ (¬p ∧ ¬r ∧ ¬s ∧ q)

Or we can rewrite it in CNF by enumerating the paths in Figure 3-2(b):

(p ∨ q ∨ ¬p) ∧ (p ∨ q ∨ s ∨ ¬r) ∧ (p ∨ q ∨ s ∨ ¬s) ∧ (p ∨ q ∨ q)
∧(¬r ∨ ¬p) ∧ (¬r ∨ s ∨ ¬r) ∧ (¬r ∨ s ∨ ¬s) ∧ (¬r ∨ q) ∧ (¬p ∨ ¬q ∨ ¬p) (3.6)

∧(¬p ∨ ¬q ∨ s ∨ ¬r) ∧ (¬p ∨ ¬q ∨ s ∨ ¬s) ∧ (¬p ∨ ¬q ∨ q)

3.1.4 A simple algorithm for satisfiability

The previous fact leads to a very simple algorithm for deciding the satisfiability of a

Boolean formula φ, presented in [1]:

• Convert φ to NNF

• Build its vGraph

• Enumerate all vertical paths

• If there is one such that no literal appears positively and negatively in it, then

the formula is satisfiable, otherwise it is unsatisfiable.

The correctness of the algorithm follows directly from the observation that the set

of vertical paths corresponds to a DNF encoding of φ; a path where no literal appears

in both polarities is a conjunct which can be used to build a (partial) satisfying

assignment for φ by assigning to each literal in the path the truth value corresponding

to its polarity. This trivially satisfies the conjunction corresponding to the path,

satisfying in turn the whole DNF form. On the other hand, if each path contains at

least one literal and its negation, then any assignment will falsify all conjunctions.

This decision procedure can be adapted to the problem of satisfiability modulo

theories: rather than searching for a vertical path with no self-contracting literal,
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one simply searches for one which is theory-consistent, that is where no subset of the

literals from the path implies the negation of another one.

While correct, this algorithm is not practical, as the number of vertical paths

can be exponential in the size of the formula. We will now describe an alternative

approach, working on the same graphical representation of formulas, and which, along

with DPLL(T ), forms the basis of the NC(T ) framework.

3.2 Application to DPLL-based solvers

In Chapter 2, we have given an overview of the main features of DPLL-based decision

procedures; a satisfying assignment is incrementally built by searching through the

space of all possible assignments, and that space is pruned by performing Boolean

constraint propagation and conflict detection on a set of constraints. In conventional

DPLL (and DPLL(T )), these constraints are necessarily encoded as clauses. This sec-

tion presents techniques to do BCP and conflict detection on constraints represented

by NNF formulas.

These two operations are made very efficient in DPLL thanks to the two-watched-

literal scheme [25], which essentially allows to discover implications of the currently

considered partial assignment while only looking at a small subset of the literals in the

clauses. Jain et al. introduce in [19, 21] a similar technique for non-clausal constraints,

which we present here. The theory is his contribution, while the displayed algorithms

and the integration into the broader NC(T ) framework is our work.

3.2.1 Terminology

We define a cut as a set of nodes in a vGraph such that every horizontal path in a

hGraph for the same formula has a least one node in that set. It is not difficult to

show that any vertical path constitutes such a set [21]. Figure 3-4 shows two possible

cuts in a hGraph and the corresponding vGraph. We say a literal l is in a cut if there

exists a node v in that cut such that c(v) = l. Given a partial assignment, a cut

can be acceptable if none of the literals it contains are falsified by the assignment, or
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Figure 3-4: Two cuts, shown on the vGraph and the hGraph of the same formula

not acceptable if at least one of the literals is present with the polarity opposed to

its assigned truth value. Whether or not a cut contains a literal and its negation is

not a criterion for acceptability. Furthermore, cuts can be overlapping if they share

a subset of common nodes. Having common literals is not a sufficient condition for

overlapping. In Figure 3-4 for instance, both cuts contain a node representing the

literal ¬r but they are distinct. These cuts are not overlapping.

Cuts can play a role very similar to watches literals on clauses. As an invariant

during the search, we will always try to maintain two acceptable, non-overlapping

cuts. When this is not possible, we have either reached a conflict or found new

Boolean implications. We will now examine both scenarios.

3.2.2 Conflict detection

A partial assignment is conflicting when no acceptable cut can be found. Intuitively,

this corresponds to a situation where the current assignment falsifies all conjunctions

in the DNF equivalent of the formula. Figure 3-5 gives an example of such situation,

where the partial assignment {r,¬s, q} leads to a conflict.

When conflicts arise, an examination of the hGraph can reveal their cause. Re-

member that the horizontal graph compactly encodes the set of clauses in the CNF

representation of the formula. For an assignment to be conflicting, it has to com-

pletely falsify at least one of these clauses, and it can be found by searching for an
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Figure 3-5: Conflicting assignment

horizontal path that is completely falsified. In Figure 3-5(b) for instance, the path

¬r → s→ ¬r meets that criterion. We can therefore conclude that the clause ¬r ∨ s
plays a direct role in the conflict. This is not a proper newly learnt clause, as it

was already present in the graphical encoding, but its extraction is useful for conflict

analysis: we can extend it to include a unique implicant as we saw in Chapter 2 and

then backtrack to the appropriate level, just as any other conflict clause in standard

DPLL.

3.2.3 Boolean constraint propagation

When the only acceptable cuts we can find are overlapping, we have reached a situ-

ation where some literals in the formula are logically implied by the current partial

assignment. The reason for this lies once again in the clausal encoding of the hGraph.

It can only be the case that the remaining acceptable cuts have to overlap when

there is at least one horizontal path such that all literals in it but one are falsified by

the current assignment. Indeed, if all horizontal paths contained at least two literals

which were not falsified, then one could build two cuts by following a vertical path

through precisely these literals.

Figure 3-6 shows an example where the current partial assignment {¬q} has two

new consequences p and ¬r. From both overlapping nodes containing the implied

literals, we can build a horizontal path containing only falsified literals but one, and

from these paths obtain an implicant clause. p is on the path p → q → q, yielding
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Figure 3-6: Example of Boolean implications

the clause q ∨ p, and ¬r is on the path ¬r → q, yielding the clause ¬r → q.

3.2.4 Relation to the two-watched-literal scheme

As Jain et al. properly demonstrate [19, 21], the two-watched-cut scheme, as we could

call it, is in fact a generalization of the two-watched-literal idea; indeed, the graphical

representation of a formula in CNF is as follows: the hGraph is a set of disconnect

paths, where no node as an in-degree or an out-degree greater than one, and of these

paths represents a clause. The vGraph connects each clause to exactly one another

one, meaning that all node in a clause have exactly the same incoming and outgoing

edges. The two-watched-literal scheme requires that two nodes be watched in each

clause2. The set of all watches thus necessarily forms two vertical paths in the vGraph.

An overlap of these cuts corresponds to a situation where only one watch can be put

on a non-falsified literal, meaning the literal in question is implied. The absence of

any acceptable cut on the other hand arises from a situation where a clause is entirely

falsified.

2Two literals, in fact, but it also requires that the clauses be pre-processed so that they do not
contain multiple instances of the same atom.

34



3.2.5 Algorithms

We have described the use of watched cuts to perform BCP and conflict detection.

It remains to be explained how we can find an acceptable first cut, and how we can

then proceed to find a second least-overlapping cut. We are, at the time of writing,

unaware of the implementation details in Jain’s work, however private conversations

reveal that they must be similar to what we present.

Finding a first acceptable cut is rather straightforward: we essentially perform

depth-first search on the vertical graph starting with the root nodes and proceeding

until a leaf node is encountered. Whenever we find a node containing a falsified literal,

we backtrack. Since we are working on a directed acyclic graph and not a tree, it

may be that the search traverses the same nodes several times. To avoid that, we

mark nodes containing falsified literals as “dead”, and we also do so recursively for

nodes with only dead successors. Algorithm 3 details the procedure for the vGraph of

a formula φ and a partial assignment A.

The search for the minimally overlapping second cut is a little more subtle. We

essentially proceed by a depth-first search again, only this time we not only mark and

avoid the dead nodes, but also the nodes leading only to nodes which are either dead

or part of the first cut. Since we only build this second cut if we could successfully

find the first one, we know it will always be possible to complete it: in the worst case,

all nodes will be overlapping and we will simply build the first cut again. Another

important consideration is that we can reuse the markings made in the first search

to avoid spending time searching through dead nodes. With this in mind, we can

informally describe the procedure: starting with the root nodes, we try to recursively

find a successor node which is neither dead, nor leading to nodes in the first cut. If

we cannot find such a node, then there is either exactly one non-dead node, and it is

part of the first cut, or there are also non-dead nodes which are not part of the first

cut but lead only to nodes which are. If such nodes exist, we chose any of them and

continue from there, otherwise, we pick the node in the existing cut.

We take the example depicted in Figure 3-7: a first acceptable cut was found, and
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Algorithm 3 Search for an acceptable cut

1: function CutSearch(GV (φ), A)
2: (V,E,R, L, c)← GV (φ)
3: ∀vi ∈ V,marked(vi)← ⊥
4: (ok, p)← CompletePath(R, ∅)
5: if ok = > then
6: return p
7: else
8: return ⊥
9: end if

10: end function
11: function CompletePath(V , p)
12: foreach v ∈ V do
13: if marked(v) = > ∨ c(v) is false in A then
14: continue
15: end if
16: S ← {w|(v, w) ∈ E} . Successors of v in the graph
17: if S = ∅ then
18: return (>, p)
19: end if
20: (ok, p2)← CompletePath(S, p→ v)
21: if ok = > then
22: return (>, p2)
23: else
24: marked(v)← > . Marks node as dead
25: end if
26: end foreach
27: return (⊥, ∅)
28: end function
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Figure 3-7: Vertical and horizontal graphs for the formula φ = ((a∨ b)∧ (c∨ (d∧ (f ∨
(e ∧ g)))) ∧ h)

we search for the second one starting with the root nodes containing the literals a

and b. Both of these nodes are leading only to nodes in the first cut or to dead nodes.

We chose b because it is not part of the cut itself. From b, the only node we can chose

is the one containing d. From there, we once again have to choose between to nodes

leading to nodes in the cut, so we choose the one which is not part of the cut itself.

Finally we pick the last node, containing the literal g. Of the three acceptable cut we

could create, this one is the least-overlapping. Algorithm 4 details the process.

3.3 Practical considerations

We have described the theoretical aspects of Boolean constraint propagation and

conflict detection on graphs. Some details need to be mentioned in order to get a

fuller understanding of how this can be implemented in practice.

• The number of edges in vGraphs and hGraphs can grow quadratically with the

size of the formula. This problem was already mentioned in [21]. We can

observe that these graphs have certain interesting properties; for example, if a

node v1 has outgoing edges to nodes wi, . . . wj, then all other nodes vk which

have outgoing edges to one of the same nodes wl, i ≤ l ≤ j must also have
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Algorithm 4 Search for a least overlapping cut

1: function CutSearch2(GV (φ), A, C1) . C1 is the first cut
2: (V,E,R, L, c)← GV (φ)
3: ∀vi ∈ V, leading(vi)← ⊥
4: ∀vi ∈ C1, leading(vi)← >
5: return FindLeastOverlapping(R, ∅)
6: end function
7: function FindLeastOverlapping(V , p, C1)
8: (ok, p2)← FindNonOverlapping(V, p, C1)
9: if ok = > then

10: return p2

11: else
12: if ∃v ∈ V (leading(v) ∧ v /∈ C1) then
13: return FindLeastOverlapping({w|(v, w) ∈ E}, p→ v, C1)
14: else
15: v ← C1 ∩ V . has to exist and be a singleton
16: return FindLeastOverlapping({w|(v, w) ∈ E}, p→ v, C1)
17: end if
18: end if
19: return (⊥, ∅)
20: end function
21: function FindNonOverlapping(V , p, C1)
22: foreach v ∈ V do
23: if marked(v) = > ∨ c(v) is false in A ∨ leading(v) = > then
24: continue
25: end if
26: S ← {w|(v, w) ∈ E}
27: if S = ∅ then
28: return (>, p)
29: end if
30: (ok, p2)← FindNonOverlapping(S, p→ v)
31: if ok = > then
32: return (>, p2)
33: else
34: if ∃s ∈ Sleading(s) = > then
35: leading(v)← >
36: else
37: marked(v)← >
38: end if
39: end if
40: end foreach
41: return (⊥, ∅)
42: end function
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outgoing edges to all the other ones. The same is true for incoming edges, and

hold both in the vertical and horizontal graphs. Using that property, we store

edges as a relation between lists of nodes rather than between nodes. Any node

list has exactly one successor list and one predecessor list, except for the roots

and leaves. Besides, any node is in exactly one node list. The similar solution

proposed in [21] is to use hyperedges between sets of nodes. It is not difficult to

see how these hyperedges can be implemented with lists.

• We mentioned that we saved the status of “dead” nodes between the search

for the first and the second cut. In fact, we also save that information during

the global DPLL search, as new assignments can only make more nodes dead.

We maintain the last decision level when a particular graph had its “dead-list”

updated, and we only revoke that list if the DPLL search backtracks beyond

that decision level.

• Another important observation is that when cuts start to overlap, they can never

be non-overlapping before backtracking returns the assignment status for the

exact same reason. In order to avoid continuously searching for non-overlapping

cuts when such a thing wouldn’t be possible, we also store the decision level

at which their intersection stopped being empty. We then don’t search for new

cuts as long they both stay acceptable.

3.4 Use as part of NC(T )

The modular architecture we propose for non-clausal SMT solvers, NC(T ), is not

based solely on the graphical representation of formulas. We do believe that the work

that has been done on clausal solvers is remarkable and needs to be leveraged. We

have already seen that the constraints extracted from the learning process during con-

flict detection are best expressed as clauses, and this alone is a sufficient motivation

to integrate the non-clausal approach together with a clausal one. Another incentive

is that many existing benchmarks are only available in CNF. Whether this is a con-
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sequence of the dominance of clausal solvers or simply a more appropriate encoding

for some problem families is unknown to us. The fact remains that using techniques

designed for clausal representations on purely clausal problems is obviously the right

decision. Finally, we noticed when we converted non-clausal examples to NNF that

about 18% of them turned out to contain some clausal constraints.

The approach we have chosen is to split the formula on top-level conjunctions

after its conversion to NNF. Clausal constraints are then treated in the conventional

way, using the two-watched-literal scheme, while non-clausal ones are watched by

cuts using the techniques we have described. Splitting top-level conjuncts has the

additional advantage that, while we have to maintain different cuts for each non-

clausal constraint, these cuts are much shorter, and when one part of them becomes

unacceptable, the search for a new is considerably shortened, as the traversed vGraph

is shallower. The approach detailed in [19] is apparently similar3, although we were

only made aware of this after our implementation was completed.

Whenever an implication or a conflict is found in one of the vGraph-hGraph pairs

corresponding to a non-clausal constraint, the implicant clause is computed by travers-

ing the hGraph, and we then add it to the set of inspected clauses. When we compute

the implications or detect the conflicts arising from a new literal assertion, we always

start by inspecting the clauses, as this is presumably faster, given that the algorithms

working on graphs are less mature. This presents the advantage that conflicts or im-

plications which were detected once in the graphs do not need to be detected again,

should they arise again after backtracking, for instance. In the case of conflicts, we

save the time of realizing that there is no acceptable cut anymore, and in the case

of implications, we save the time of searching through the horizontal graph for an

implicant clause. Finally, it is useful to record the implicants as clauses to be able to

easily recover them when they are needed to build the implication graph.

The interaction with the theory is essentially not modified from DPLL(T ): the-

ory implications are computed each time a new literal is asserted or when Boolean

consequences are propagated by the clausal and non-clausal frameworks. This is

3Himanshu Jain, private communications
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implemented as a loop which terminates when no new theory-generated, clausal, or

non-clausal consequences are found.

Chapter 4 gives more details about fstp, our implementation of NC(T ) for T=
UF.

3.5 Possible improvements

Even before we analyze our results (in Chapter 5), we can notice that there is room

for improvement in the theoretical framework. Here are a few points that we believe

should be addressed or can be improved:

• Not all cuts have the same size. The formula displayed in Figure 3-7 for instance

has vertical paths of length 3, 4 and 5. While the algorithms that we have

presented to find cuts do not try to minimize their sizes, it seems reasonable

to believe this could improve the efficiency of conflict detection, the rationale

being that smalled cuts will remain acceptable longer. Rather than trying to

minimize the number of nodes, one should in fact attempt to find cuts with a

small number of different literals. This second option is more difficult to put

into practice though, as one cannot simply order the list of successor nodes.

Another possibility to consider would be to avoid cuts with literals and their

negations, as these are trivially bound to eventually become unacceptable.

• A somehow similar issue comes with the generation of implicant clauses. We

do not currently attempt to minimize the size of the clause we produce. It

is not obvious that minimizing the number of literals would necessary be the

right choice here, though. For instance, it could be beneficial when we compute

clauses that generated conflicts to try and find one with the minimal maximum

decision level among its literals. This would allow more powerful backtracking

in the global search.
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Chapter 4

Implementation

This chapter gives an overview of fstp, our implementation of the NC(T ) scheme for

T=
UF. Note that we do not describe the implementation of the theory solver, as it is

entirely based on existing literature [16, 27, 28].

fstp is written in C++. The whole system amounts to approximately 8000 lines

of code, excluding blank lines and comments. The theory solver and the Boolean

solver account for approximately 3500 lines each, with the remaining 1000 consisting

of data structures used in both parts. The Boolean solver is written using class

templates only, meaning that it could be instantiated for a new theory solver, in

effect porting the versatility of DPLL(T )/NC(T ) to the actual implementation.

Figure 4-1 shows an overview of the system. The phases depicted are standard

for a solver:

• At the entry point, arguments to fstp are parsed. Flags can be set to enable

for instance the output of a satisfying assignment at the end of the search, or

Entry point Parsing

NNF conversion Solving

Normalization

Figure 4-1: fstp system overview
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Literal selector

Clause manager NC Manager

Assignment
manager

Figure 4-2: Overview of the NC(T ) solver

to specify a random seed manually. The name of the file containing the input

formula is also read.

• The benchmark file is parsed, using a standard Flex/Bison combination, and

conforming to the standard defined by the SMT-LIB [31]. The abstract syntax

tree of the formula is built, using hash tables to share common nodes.

• The literals in the formula are then normalized, a phase where for instance it is

established that a = b and b = a describe the same literal.

• The formula is then converted to NNF, following the process described in Chap-

ter 3.

• Finally, the formula is passed to the NC(T ) solver, along with the parameters

specified at the entry point. The next section presents the components of the

solver and their interaction.

4.1 Organization of the NC(T ) solver

Figure 4-2 shows the different components of the NC(T ) solver, using arrows to denote

the circulation of information between them. We now describe each of them.
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4.1.1 Assignment manager

The assignment manager maintains at all times the assignment under consideration.

For each assigned literal, it also records the reason of the assignment, as follows. For

literals implied by Boolean constraint propagation, it stores a pointer to the clause

which triggered the implication. For theory implications, it simply sets a flag. If

the actual implicants end up being required, for instance during conflict analysis, the

theory solver can then be queried accordingly.

There are two other types of assigned literals, which neither require the storage

of extra information: asserted literals, and literals which are directly implied by the

structure of the formula —for instance because it contains a top-level conjunction with

some single literals. All the other components of the solver refer to the assignment

manager to determine the status of literals, for instance when examining watches in

clauses or cuts in the non-clausal manager. They also communicate new implications

directly to the assignment manager.

4.1.2 NC manager and clause manager

The NC manager does Boolean constraint propagation and conflict detection on the

set of non-clausal constraints, as described in Chapter 3. Whenever it discovers a

new implication, it computes an implicant clause and communicates it to the clause

manager.

The clause manager performs BCP and conflict detection on the clausal con-

straints using the two-watched-literal scheme, as described in Chapter 2. It differen-

tiates between clauses which are part of the original formula and learnt clauses, as

the latter could be soundly removed after some time to alleviate the memory con-

sumption, while the former cannot. We have however not yet implemented any form

of clause set simplification. We believe this lack to be a major problem in our current

implementation (see Chapter 5).
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4.1.3 Literal selector

The literal selector simply maintains the list of unassigned literals constantly sorted by

their VSIDS score (see Chapter 2). This is implemented as follows: the data structure

used for the list is an STL linked list. When the score of a literal is incremented, it is

removed from the list and reinserted at the correct new position, in a way similar to a

bubble sort algorithm. When a literal gets assigned, either because it was asserted or

because it was found to be implied, it is removed from the list as well as its negation,

and inserted into a stack containing all assigned literals and their negations. The size

of that stack is stored for each decision level. At backtracking, the proper number of

elements is popped from the stack and re-inserted into the linked list using a merge

sort.

When requested to return the literal with the highest score, the literal selector

simply starts from the beginning of the linked list. If more than one literals have the

same maximum score, one of them is picked randomly.

4.1.4 Core

We now turn to the core of the NC(T ) solver, which implements the main loop of the

search algorithm. The operations taking place in the core are depicted in Figure 4-3.

• The preprocessing step splits the main formula into single literals, clausal con-

straints and non-clausal constraints. Single literals are immediately communi-

cated to the assignment manager, clauses are sent to the clause manager and

non-clausal constraints to the NC manager.

• The first step of the search loop is literal selection, which is essentially done by

a simple query to the literal selector.

• After the selection, the new literal is passed to the theory solver, which either

returns new implications or reports itself as being in a conflicting state.
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Figure 4-3: Overview of the solving process

• If no conflict was found, the newly selected literal and the theory implications

are passed to the clause manager which performs BCP and conflict detection

using these new facts. Just like the theory solver, this can result in potential

new implications or a conflicting state.

• If still no conflict was found, the set comprising the asserted literal, the theory

implications and the Boolean implications is passed to the NC manager which

analyzes the non-clausal constraints in the light of the new assignments and itself

returns potential new consequences or establish that a conflict has occurred.

• If any new implications were found and if the solver is not in a conflicting state,

the feedback loop returns to the theory solver, then to the clause manager and

finally to the NC manager until no new implication is found. The solver then

increments the decision level, picks a new literal and reiterates the process.

• Whenever a conflict arises, an implicant clause is computed, either by querying

the theory solver in the case of a theory conflict, of by traversing the implication

graph otherwise. The clause in question is then transformed to include a first

unique implicant, and the solver backtracks to the appropriate decision level
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(see Chapter 2).

The NC(T ) solver returns sat if during literal selection it is found that all literals

have been assigned a value, or unsat if during conflict analysis it is found that the

conflict is not resolvable.
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Chapter 5

Experimental Results

We tested fstp, our implementation of the NC(T ) framework for T=
UF on a large set

of examples available through SMT-LIB [31]. We split the test cases into two classes,

separating the problems for which the NNF conversion yields a formula in CNF from

the other, non-clausal ones.

Applying the NC(T ) approach on the examples in CNF is essentially similar to

using DPLL(T ) alone, as the non-clausal conflict detection and Boolean constraint

propagation parts are never used. This class, comprising approximately 600 test cases,

thus provides us with a reasonably accurate way of measuring how our DPLL(T )

implementation compares with existing tools.

The number of available non-clausal examples is significantly larger. To keep our

measurement procedure within reasonable time constraints, we cut it down to a figure

similar to the number of clausal ones. We did this by simply ordering the examples

alphabetically and picking every tenth of them. A tacit naming convention in the

SMT-LIB seems to be sufficiently well followed, implying that this simple technique

allowed us to gather a subset of examples representative of the complete collection in

terms of families and sizes. Table 5.1 shows the breakdown of selected benchmarks

by classes and problem families. For the non-clausal instances, the total available

number is shown in parentheses.

We compared fstp to BarcelogicTools 1.2 [26], which was the latest available

version when we started working on NC(T ). While it is not the best solver available
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Clausal Non-clausal

NEQ 48 (none)
PEQ 48 (none)
SEQ 56 (none)
QG classification 430 548 (5526)
QG/loops6 16 42 (432)
eq diamond 1 9 (99)

Total 599 599 (5958)

Table 5.1: Breakdown of benchmarks by classes and families

for T=
UF, we felt the comparison would be adequate considering our implementation of

the theory solver is entirely based on theirs. We compared both these implementations

by solving purely conjunctive formulas, in which the Boolean structure played no part

in the solving process, and found them to be roughly on par. This was not the case

with Yices [14], for instance. We acknowledge fstp is not mature enough to be

competing among the best, considering it has been developed from scratch over a

period of only a few months. Nevertheless, the comparison against a DPLL(T )-based

tool can still give some insight about the potential of the NC(T ) approach.

5.1 Running times

We ran all our benchmarks with both solvers on a 2 quad-core Xeon 2.66GHz with

16GB of RAM, running Debian GNU/Linux (64bit). Neither solver uses paralleliza-

tion though, and we observed comparable results on a standard desktop machine.

Table 5.2 shows the time required to solve each family. (Note that much higher num-

ber of timeouts using fstp renders the comparison of the running time meaningless.)

Table 5.3 shows the timings for the subset of benchmarks that were solved in less than

a minute by both solvers. Note that for fstp these times are identical, since there

are no examples solved within the time limit by fstp but not by BarcelogicTools.

The time measurements and the difference in the number of timeouts already show

that the performance of fstp is rather poor compared to the chosen competing tool.

Figure 5-1 and Figure 5-2 show all clausal and non-clausal benchmarks respectively,
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bclt fstp

Clausal

NEQ 952 (6) 178 (38)
PEQ 2652 (23) 6.0 (47)
SEQ 691 (6) 3.6 (45)
QG classification 2735 (15) 870 (154)
QG/loops6 1.3 (0) 0.9 (5)
eq diamond 0.0 (0) 0.0 (0)

Non-clausal
QG classification 519 (4) 1441 (85)
QG/loops6 21 (0) 58 (5)
eq diamond 41 (6) 0.3 (7)

Table 5.2: Comparison of running times of fstp and BarcelogicTools, by benchmark
family. All times are indicated in seconds. The timeout is set to 60 seconds. The
numbers in parentheses indicate the number of timeouts. The solving time does not
include timeouts.

N bclt fstp

Clausal

NEQ 10 3.3 178
PEQ 1 0.2 6.0
SEQ 11 1.4 3.6
QG classification 276 338 870
QG/loops6 11 0.8 0.9
eq diamond 1 0.0 0.0

Non-clausal
QG classification 463 200 1441
QG/loops6 36 16 58
eq diamond 2 0.0 0.3

Table 5.3: Comparison of running times of fstp and BarcelogicTools, including only
benchmarks where both solvers finish on time. N indicates the number of examples
considered in each family.
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Figure 5-1: Running times for clausal benchmarks, compared to BarcelogicTools 1.2

represented as points on a scatter plot where the x axis indicates the time required to

solve them using BarcelogicTools, and the y axis using fstp. Points above the x = y

diagonal therefore represent instances solved faster using BarcelogicTools.

5.1.1 Clausal benchmarks

We attribute the large difference in performance on clausal instances to the lack of

tuning and the missing features of our DPLL(T ) implementation. While this may

sound obvious, considering that most DPLL(T )-based solvers are based on similar,

well-known features, here are the main points that we believe we should address in

future improvements to the DPLL engine of our tool:

• The current single most important issue seems to be that we do not do any

sort of minimization on the set of learnt clauses and as a result, let it grow to

unreasonable proportions during the search, significantly affecting the rate of

decisions per second on problems which take a long time to solve. We do not

delete clauses, nor do we attempt to reduce or merge existing ones. The former
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Figure 5-2: Running times for non-clausal benchmarks, compared to BarcelogicTools
1.2

technique is a common feature of SAT and SMT solvers [25, 29] while the latter

has been shown to be efficient on some hard SAT instances [33]. Furthermore,

Ryan [32] links the performance of the VSIDS heuristic to clause resolution,

postulating that its real power comes from the resolution-prone clauses that

are generated when in use, rather than simply from the fact that it drives the

search towards literals that satisfy the most recently learnt clauses, as originally

suggested in [25].

• We do not treat binary clause differently that longer clauses. This is known to

be inefficient and better techniques exist [32].

• We have not yet fine-tuned the VSIDS heuristic. We have observed that the

solving time for some instances could immensely vary when we ran the search

with different random seeds. We postulate that this is because we do not add

transient randomness to the literal selection procedure after restarts as sug-

gested in [25], however this requires further investigation.
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• We have not experimented sufficiently with the restart sequences, which can

play a decisive part in the efficiency of search-based solvers [18]. We use a

policy based on [24] as do other solvers [30], although we have gathered no

evidence that would determine whether this is the best choice for us.

5.1.2 Non-clausal benchmarks

Considering the low performance of our DPLL(T ) implementation, a direct compar-

ison of our results on non-clausal examples with BarcelogicTools makes little sense.

Indeed, we have already stressed the capital importance that the DPLL(T ) part plays

in the broader NC(T ) framework; the non-clausal reasoning creates a substantial num-

ber of clauses which are then treated by the DPLL engine, as it is presumably more

efficient. It is therefore reasonable to link the observed performance on non-clausal

examples at least partially to the performance on clausal ones.

To get a better sense of the potential of the NC(T ) approach, we did the following

experiment: we converted every problem in the non-clausal set to CNF using the

straightforward Tseitin encoding [35]. We then compared the number of clauses

generated with this method with the number of clauses generated by NC(T ) during

the search. Measurements confirm the intuition that the size of the clause set should

be smaller in the latter cases, as clauses are extracted by the non-clausal reasoning

part only when they play a role in the search. Figure 5-3 shows the comparison

between these figures. We can observe that the ratio is in general even more in favor

of NC(T ) for sat instances. This is expected, as the search in this case does not go

through every possible assignment and therefore triggers less conflicts and implication.

We should note that when counting the number of clauses generated using the

Tseitin encoding, we excluded binary clauses which would dramatically and unreal-

istically increase the figure. Indeed, a large number of binary clauses results from

that encoding, but as previously mentioned, state-of-the-art solvers handle them very

efficiently.

Figure 5-4 shows the evolution of the size of the clause set as the search progresses,

giving an indication on the proportion of conflict and NC(T )-derived clauses. We have
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Figure 5-3: Clauses generated by fstp using NC(T ) compared to equivalent Tseitin
encoding
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found this pattern to be typical: while the number of conflict clauses grows linearly

with the number of decisions, the rate of clauses added from implications found in the

NC(T ) part decreases with time. We believe this constitutes evidence that NC(T )

can be a worthy addition to DPLL(T ), as it works as an incremental translation to

CNF, progressively converting a non-clausal problem into one that can be handled

by efficient solvers, rather than translating it entirely upfront.
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Chapter 6

Related work

We have already referred to [21], which constitutes research in progress and was

generously shared with us. A complete account of Jain’s work is about to be published

as his PhD thesis [19]. Jain et al. already published some of their earlier work in [20],

where they present a graph-based non-clausal SAT solver.

Rather than using a DPLL-like recursive search, the approach they propose there

consists in searching directly for a vertical path, while collecting conflict clauses from

the horizontal graph. The number of vertical paths to be explored is further pruned

down by the learning of local conflict clauses which are attached to nodes and con-

strains the paths going through them.

[34] presents another attempt at a non-clausal SAT solver. The approach chosen

by Thiffault et al. doesn’t require conversion to NNF and works by adapting the

two-watched literal idea to arbitrary formulas represented as directed acyclic graphs,

by watching literals in conjunctions and disjunctions and propagating relevant infor-

mation to both parent and child nodes.

Problems arising from common computer-aided design tasks generally have the

structure of Boolean circuits. Standard DPLL-based SAT solvers have proved suc-

cessful in these tasks. However, there are also advantages to working directly with

formulas encoded as directed acyclic graphs containing only negations and conjunc-

tions [7, 22].

[2] presents a generalization of the DPLL algorithm for non-clausal formulas. The
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search space is pruned down by adapting the pure literal and unit literal rules of

DPLL to the non-clausal case. It is also mentioned that the procedure can be applied

to checking validity of formulas in quantifier-free first-order logics, provided that a

decision procedure exists for testing the satisfiability of a partial assignment in these

logics. The principle described is the same as the one that led to the DPLL(T )

scheme, although no mention of communication from the theory decision procedure

to the Boolean solver is made. As far as we know, this technique has only been

evaluated on random test cases.

Overall, we believe that NC(T ) presents a new point in the design space of efficient

algorithms for SAT and SMT.
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Chapter 7

Conclusion

We have presented NC(T ), our proposal for an extension of the DPLL(T ) scheme to

include reasoning on non-clausal constraints, as well as our implementation of NC(T )

for the quantifier-free theory of uninterpreted function symbols and predicates with

equality, and have shown some experimental results.

Our overall impression is that the NC(T ) scheme has not yet shown its full poten-

tial. We acknowledge that our practical results do not place fstp among the existing

state-of-the-art SMT solvers for T=
UF, and we attribute this largely to an immature

implementation, in particular of the DPLL(T ) scheme itself. The points which are

particularly affected by the lack of maturity are the management of learnt clauses

and the untuned state of the various heuristics.

We have shown however how our non-clausal extension to DPLL(T ) can act as an

alternative to upfront translation to conjunctive normal form, by providing in effect

an incremental translation as the search progresses. We have demonstrated that the

number of clauses generated this way is often substantially smaller than the number

of equivalent non-binary clauses resulting from Tseitin encoding, particularly on sat

instances where the search doesn’t traverse all possible assignments.

Our future work will focus on improving our implementation, in an attempt to

bring the DPLL part to a competitive level, thus enabling us to then verify our

hypothesis that NC(T ) can be a beneficial addition to it. We have already mentioned

in the previous chapter what we believe to be the main bottlenecks and will focus on
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these points.

We also believe additional research needs to be done on literal selection in the

context of SMT solving. Existing implementations seem to rely on the assumption

that techniques which have been developed for SAT will work equally well in the

context of DPLL(T ). While no data seems to currently contradict that hypothesis,

we postulate that literal selection could be improved by implying the theory solver in

decisions and plan to investigate that idea.
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