
1 Forward Analysis

Each variable maps to a store. Each store maps a field to a constant.

1.1 Standard Constant Propagation lattice

For constants, we use the following lattice:

⊥

... -2 -1 0 1 2 ...

?
!!!!!!!!

"
"

"
"

""

�
�
��

aaaaaaaa

b
b
b
b
bb

A
A
AA

aa
aa

aa
aa

b
b
b

b
bb

A
A
AA

!!
!!

!!
!!

"
"
"
"
""

�
�
��

where

x t y =


x if x = y or y = ⊥
y ifx = ⊥
? otherwise

x u y =


x if x = y or y = >
y if x = >
⊥ otherwise

⊥ v x
x v >
x v y ⇐ x = y

1.1.1 Interpretation

For the entry point and initial store Si, we have:

JentryKS = λf.cf

Where cf is the value of field f in the current state. For an Si not an
initial store, we have

JentryKS = λf.⊥

1

For a variable assignment, with Sprev being the value of store S in the
previous state:

Jx := yKS = Sprev

For a new instance creation, if S is the store associated with instances at
this label:

Jx := newKS = λf.⊥

For every other store, nohing changes.
For a field assignment where xRS, x is related to S:

Jx.f := aKS = Sprev[f → JaKA]

For an unrelated field assignment:

Jx.f := aKS = Sprev

For an assume statement:

Jassume condKS =
Sprev if JcondKB ∈ {1, 1

2
}

⊥ otherwise

For an arithmetic expression:

Ja1 ∗ a2KA =

{
c1 ∗ c2 if Ja1KAUprev = c1 and Ja2KAUprev = c2

? otherwise

For ∗ ∈ {+,−, ·, /}

Jx.fKA =
⊔

(x,S)∈Rprev

S(f)

And finally, for relations:

Ja1Ra2KB =

{
1
2

if Ja1KA =? or Ja2KA =?
Ja1KARJa2KA otherwise

For R ∈ {=, 6=,≤, <,>,≥}

2

1.2 Store lattice

A store S is a function from a field name to a constant. Si : Fields →
Constants. Stores are identified by their definition point i. We define t as
follows:

S1 t S2 = λf.S1(f) t S2(f)

Also, define S[f → c] to be the store where field f points to value c.

S1 v S2 ⇔ ∀f. S1(f) v S2(f)

We will have multiple stores, one per program point and one per store
(heap object) at the entry vertex, mapping to the current values.

⊥ = λf.⊥

> = λf.?

1.3 Relation between variables and stores

R ⊆ X × S|H|+|L|

Where X are the variable names, H are the stores at the entry point and
L are the edges where an instance can be created.

⊥ = ∅

> = X × S|H|+|L|

Where v is ⊆, t is ∪ and u is ∩.

1.3.1 Interpretation

For a variable assignment:

Jx := yKR = (Rprev ∪ {(x, S)|(y, S) ∈ Rprev}) \ {(x, S)|(y, S) 6∈ Rprev}

For a new instance at label l:

Jx := newKR = (Rprev ∪ {(x, Sl)}) \ {(x, S)|S 6= Sl}

Nothing changes for field assignment or assume.

3

1.4 Pointwise

Now we are able to define a lattice for a program point. It is just a product
lattice between a relation R and S|I|+|L| stores:

((R, S|I|+|L|),v)

where

(R1, S11, . . . , S1n) v (R2, S21, . . . , S2n) = R1 v R2 ∧
∧

i∈1,...,n

S1i v S2i

t, u are also defined pointwise.

4

