1 Forward Analysis

Each variable maps to a store. Each store maps a field to a constant.

1.1 Standard Constant Propagation lattice

For constants, we use the following lattice:

where
x ifxr=yory=_1
rUy=14 vy ifr =1
? otherwise
x fr=yory=T
zMNy=<¢ y fx=T
1 otherwise
1l C
r C T
z L y<=aox=y

1.1.1 Interpretation

For the entry point and initial store .5;, we have:

lentryls = A f.cy

Where ¢y is the value of field f in the current state. For an S; not an
initial store, we have

[entry]s = Af.L
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For a variable assignment, with Sy, being the value of store S in the
previous state:

[[.I' = y]]S = Sprev

For a new instance creation, if S is the store associated with instances at
this label:

[x :=new]s = Af.L

For every other store, nohing changes.
For a field assignment where xRS, x is related to S:

[z.f = a]s = Spreo[f — [a] 4]

For an unrelated field assignment:

[.f = a]ls = Sprev
For an assume statement:

Sprev  if Jcond]s € {1, %}

d|s = i
[assume con ]]S | otherwise

For an arithmetic expression:

| axce if [a]aUprer = 1 and [az] AUpren = 2
[ar * ax]a = { ? otherwise

For x € {+,—,-,/}
[z.fla= | SU)
(I,S)eRprev

And finally, for relations:

! if [ai1]a =7 or [as]a =7

_ 2
[a1Ras]p = { [a1]aR[az] 4 otherwise

For R € {=,#,<,<,>,>}



1.2 Store lattice

A store S is a function from a field name to a constant. S; : Flields —
Constants. Stores are identified by their definition point ¢. We define U as
follows:

S1U Sy = Af.S1(f) U Sa(f)
Also, define S[f — c] to be the store where field f points to value c.
S1 E Sy & VI Si(f) E Sa(f)

We will have multiple stores, one per program point and one per store
heap object) at the entry vertex, mapping to the current values.
J y g

L =Afl
T =\f.?

1.3 Relation between variables and stores

RC X x SHIFIL|

Where X are the variable names, H are the stores at the entry point and
L are the edges where an instance can be created.

L=90

T = X x SHIHIE
Where C is C, Llis U and M is N.

1.3.1 Interpretation

For a variable assignment:

[z :=ylr = (Rprev U{(x, 9|y, 9) € Rprev}) \{(z,9)|(y,S) & Rprev}
For a new instance at label (:
[ :=new]r = (Rprev U {(z, S)}) \ {(z, 9)|S # Si}

Nothing changes for field assignment or assume.
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1.4 Pointwise

Now we are able to define a lattice for a program point. It is just a product
lattice between a relation R and SHIFILl stores:

((R, SN D)
where

(R1, 511, S1m) E (Rg, Sa1,...,82n) = RIE Ry A N\ 51 E Sy

1€1,...,n

LI, M are also defined pointwise.



