1 Forward Analysis

Each variable maps to a store. Each store maps a field to a constant.

1.1 Standard Constant Propagation lattice

For constants, we use the following lattice:

where

$$
\begin{aligned}
& x \sqcup y=\left\{\begin{array}{cc}
x & \text { if } x=y \text { or } y=\perp \\
y & \text { if } x=\perp \\
? & \text { otherwise }
\end{array}\right. \\
& x \sqcap y=\left\{\begin{array}{cc}
x & \text { if } x=y \text { or } y=\top \\
y & \text { if } x=\top \\
\perp & \text { otherwise }
\end{array}\right. \\
& \perp \\
& \hline
\end{aligned}
$$

1.1.1 Interpretation

For the entry point and initial store S_{i}, we have:

$$
\llbracket e n t r y \rrbracket_{\mathcal{S}}=\lambda f . c_{f}
$$

Where c_{f} is the value of field f in the current state. For an S_{i} not an initial store, we have

$$
\llbracket e n t r y \rrbracket_{\mathcal{S}}=\lambda f . \perp
$$

For a variable assignment, with $S_{\text {prev }}$ being the value of store S in the previous state:

$$
\llbracket x:=y \rrbracket_{\mathcal{S}}=S_{\text {prev }}
$$

For a new instance creation, if S is the store associated with instances at this label:

$$
\llbracket x:=\text { new } \rrbracket_{\mathcal{S}}=\lambda f . \perp
$$

For every other store, nohing changes.
For a field assignment where $x R S$, x is related to S :

$$
\llbracket x . f:=a \rrbracket_{\mathcal{S}}=S_{\text {prev }}\left[f \rightarrow \llbracket a \rrbracket_{\mathcal{A}}\right]
$$

For an unrelated field assignment:

$$
\llbracket x . f:=a \rrbracket_{\mathcal{S}}=S_{\text {prev }}
$$

For an assume statement:

$$
\llbracket \text { assume cond } \rrbracket_{\mathcal{S}}=\begin{array}{cc}
S_{\text {prev }} & \text { if } \llbracket c o n d \rrbracket_{\mathcal{B}} \in\left\{1, \frac{1}{2}\right\} \\
\perp & \text { otherwise }
\end{array}
$$

For an arithmetic expression:

$$
\llbracket a_{1} * a_{2} \rrbracket_{\mathcal{A}}=\left\{\begin{array}{cc}
c_{1} * c_{2} & \text { if } \llbracket a_{1} \rrbracket_{\mathcal{A}} U_{\text {prev }}=c_{1} \text { and } \llbracket a_{2} \rrbracket_{\mathcal{A}} U_{\text {prev }}=c_{2} \\
? & \text { otherwise }
\end{array}\right.
$$

For $* \in\{+,-, \cdot, /\}$

$$
\llbracket x . f \rrbracket_{\mathcal{A}}=\bigsqcup_{(x, S) \in R_{\text {prev }}} S(f)
$$

And finally, for relations:

$$
\llbracket a_{1} \mathcal{R} a_{2} \rrbracket_{\mathcal{B}}=\left\{\begin{array}{cc}
\frac{1}{2} & \text { if } \llbracket a_{1} \rrbracket_{\mathcal{A}}=? \text { or } \llbracket a_{2} \rrbracket_{\mathcal{A}}=? \\
\llbracket a_{1} \rrbracket_{\mathcal{A}} \mathcal{R} \llbracket a_{2} \rrbracket_{\mathcal{A}} & \text { otherwise }
\end{array}\right.
$$

For $\mathcal{R} \in\{=, \neq, \leq,<,>, \geq\}$

1.2 Store lattice

A store S is a function from a field name to a constant. $S_{i}:$ Fields \rightarrow Constants. Stores are identified by their definition point i. We define \sqcup as follows:

$$
S_{1} \sqcup S_{2}=\lambda f . S_{1}(f) \sqcup S_{2}(f)
$$

Also, define $S[f \rightarrow \mathbf{c}]$ to be the store where field f points to value \mathbf{c}.

$$
S_{1} \sqsubseteq S_{2} \Leftrightarrow \forall f . S_{1}(f) \sqsubseteq S_{2}(f)
$$

We will have multiple stores, one per program point and one per store (heap object) at the entry vertex, mapping to the current values.

$$
\begin{gathered}
\perp=\lambda f . \perp \\
\top=\lambda f . ?
\end{gathered}
$$

1.3 Relation between variables and stores

$$
R \subseteq X \times S^{|H|+|L|}
$$

Where X are the variable names, H are the stores at the entry point and L are the edges where an instance can be created.

$$
\begin{gathered}
\perp=\emptyset \\
\top=X \times S^{|H|+|L|}
\end{gathered}
$$

Where \sqsubseteq is \subseteq, \sqcup is \cup and \sqcap is \cap.

1.3.1 Interpretation

For a variable assignment:

$$
\llbracket x:=y \rrbracket_{\mathcal{R}}=\left(R_{\text {prev }} \cup\left\{(x, S) \mid(y, S) \in R_{\text {prev }}\right\}\right) \backslash\left\{(x, S) \mid(y, S) \notin R_{\text {prev }}\right\}
$$

For a new instance at label l :

$$
\llbracket x:=\text { new } \rrbracket_{\mathcal{R}}=\left(R_{\text {prev }} \cup\left\{\left(x, S_{l}\right)\right\}\right) \backslash\left\{(x, S) \mid S \neq S_{l}\right\}
$$

Nothing changes for field assignment or assume.

1.4 Pointwise

Now we are able to define a lattice for a program point. It is just a product lattice between a relation R and $S^{|I|+|L|}$ stores:

$$
\left(\left(R, S^{|I|+|L|}\right), \sqsubseteq\right)
$$

where

$$
\left(R_{1}, S_{11}, \ldots, S_{1 n}\right) \sqsubseteq\left(R_{2}, S_{21}, \ldots, S_{2 n}\right)=R_{1} \sqsubseteq R_{2} \wedge \bigwedge_{i \in 1, \ldots, n} S_{1 i} \sqsubseteq S_{2 i}
$$

\sqcup, \sqcap are also defined pointwise.

