
Science of Computer Programming 50 (2004) 253–270
www.elsevier.com/locate/scico

Automatic software model checking via
constraint logic

Cormac Flanagan
Computer Science Department, University of California, Santa Cruz, CA, USA

Received 4 July 2003; received in revised form 11 December 2003; accepted 18 December 2003

Abstract

This paper proposes the use of constraint logic to perform model checking of imperative,
in/nite-state programs. We present a semantics-preserving translation from an imperative lan-
guage with recursive procedures and heap-allocated mutable data structures into constraint logic.
The constraint logic formulation provides a clean way to reason about the behavior and cor-
rectness of the original program. In addition, it enables the use of existing constraint logic
implementations to perform bounded software model checking, using a combination of symbolic
reasoning and explicit path exploration.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Model checking; Constraint logic; Program veri/cation

1. Introduction

Ensuring the reliability of software systems is an important but challenging problem.
Achieving reliability through testing alone is di8cult, due to the test coverage problem.
For /nite-state systems, model checking techniques that explore all paths have been
very successful. However, verifying software systems is a harder problem because such
systems are inherently in/nite-state: many variables are (essentially) in/nite-domain and
the heap is of unbounded size.
A natural method for describing and reasoning about in/nite-state systems is to use

constraints. For example, the constraint a[i]¿y describes states in which the ith com-
ponent of a is greater than y. The close connection between constraints and program
semantics is illustrated by Dijkstra’s weakest precondition translation [10]. This transla-
tion expresses the behavior of a code fragment that does not use iteration or recursion

E-mail address: cormac@cs.ucsc.edu (C. Flanagan).

0167-6423/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.01.006

mailto:cormac@cs.ucsc.edu

254 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

as a boolean combination of constraints. Fully automatic theorem provers, such as
Simplify [9], provide an e8cient means for reasoning about the validity of such com-
binations of constraints. These techniques provide the foundation of the extended static
checkers ESC=Modula-3 [8] and ESC=Java [15].
Unfortunately, iterative and recursive constructs, such as while loops, for loops,

and recursive procedure calls, cannot be directly translated into boolean combinations
of constraints. Instead, extended static checkers rely on the programmer to supply
loop invariants and procedure speci/cations to aid in this translation. 1 The need for
invariants and speci/cations places a signi/cant burden on programmer and is perhaps
the main reason these checkers are not more widely used, even though they catch
defects and improve software quality [15].
This paper presents a variant of the extended static checking approach that avoids the

need for programmer-supplied invariants and speci/cations. Instead, we start with an
unannotated program, which may include iterative and recursive constructs as well as
assertions. We translate this program into in an extended logic called constraint logic.
Essentially, a constraint logic rule set [20–22,24] consists of a sequence of rules, each
of which de/nes a particular relation symbol as a boolean combination of constraints.
Since constraints may refer to relation symbols, these rules can be self- and mutually
recursive. By expressing iterative and recursive constructs of the original imperative
program as recursive constraint logic rules, we avoid the need for programmer-supplied
invariants and speci/cations.
This paper presents a semantics-preserving translation into constraint logic from

an imperative language that is in/nite-state and that supports global and local vari-
ables, heap-allocated mutable data structures, and recursive procedure calls. We use
this translation to illustrate the connection between imperative programs and con-
straint logic rule sets, between erroneous program executions and satis/able constraint
logic queries, and between erroneous program traces and satis/able constraint logic
derivations.
Our translation enables the use of e8cient constraint logic implementations, such

as SICStus Prolog [28], to check correctness properties of software. This implementa-
tion performs a depth-/rst search for a satisfying assignment, using e8cient constraint
solvers to symbolically reason about boolean variables, linear arithmetic, and func-
tional maps. This search strategy corresponds to explicitly exploring all program exe-
cution paths, but symbolically reasoning about data values. That is, instead of explicitly
enumerating all possible values for an integer variable x, the constraint logic imple-
mentation symbolically reasons about the consistency of a collection of constraints or
linear inequalities on x. This symbolic analysis provides greater coverage and e8cient
checking.
The depth-/rst search strategy may diverge on software with in/nitely long or in-

/nitely many execution paths. To cope with such systems, we can bound the depth
of the search, thus producing a bounded software model checker. Our translation also

1 These extended static checkers also support loops without invariants, which are handled in a manner
that is unsound but still useful.

C. Flanagan / Science of Computer Programming 50 (2004) 253–270 255

facilitates software model checking using other constraint logic implementation tech-
niques, such as breadth-/rst search, tableaux methods, or subsumption, which may
provide stronger termination and error detection properties.
The remainder of the paper proceeds as follows. Section 2 provides a review of

constraint logic. Section 3 illustrates our translation by applying it to an example
program, and uses the constraint logic representation to detect defects in the program.
Section 4 presents the imperative language that is the basis for our formal development,
and Section 5 translates this language into constraint logic. Section 6 uses the constraint
logic representation for program checking and defect detection. Section 7 discusses
related work, and we conclude in Section 8.

2. A review of constraint logic

In this section, we provide a brief review of constraint logic. We write X̃ for a
(possibly empty) sequence X1; : : : ; Xn. A term t is either a variable or the application
of a primitive function f to a sequence of terms. An atom r(̃t) is the application
of a user-de/ned relation r to a term sequence t̃ . A primitive constraint p(̃t) is the
application of a primitive predicate p to a term sequence. Constraints include primitive
constraints and their negations, conjunction, disjunction, and atoms. A rule r(̃t) :− c
provides a de/nition of the relational symbol r. For example, the rule r(x; y) :− x=y
de/nes r as the identity relation. Following Lamport [23], we sometimes use bullet-
style notation for ∧ and ∨ in large formulas for clarity.

Constraint logic syntax

(terms) t ::= x | f(̃t)
(constraints) c ::= p(̃t) | ¬p(̃t) | c∧ c | c∨ c | r(̃t)
(rules) R ::= r(̃t) :− c
(variables) x
(constants) k ∈ {0; 1; 2; : : :}
(primitive fns) f ∈ {k;+;−; select; store}
(primitive preds) p ∈ {true; false;=; 	=;¡; : : :}
(relation names) r

Primitive functions include binary functions for addition and subtraction, nullary
constants, and the select and store operations, which are explained in Section 5.
Primitive predicates include equality, disequality, inequalities, and the nullary predicates
true and false. We sometimes write binary function and predicate applications using
in/x instead of pre/x notation.
A constraint logic rule set R̃ is a collection of rules. These rules may be self- or

mutually recursive, and so the rule set R̃ may yield multiple models. We are only
interested in the least model of R̃ that is compatible with the intended interpretation D
of the primitive functions and predicates. In particular, we are interested in the question
of whether this least D-compatible model of R̃ implies a particular goal or atom r(̃t),

256 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

which we write as R̃ |=D ∃̃ r(̃t), where the symbol ∃̃ existentially quanti/es over all
free variables in r(̃t).
Much work on the implementation and optimization of constraint logic queries has

focused on answering such queries e8ciently. In the following section, we exploit this
eKort to check correctness properties of an example program, without the need for
procedure speci/cations or loop invariants.

3. Overview

To illustrate our method, consider the example program shown in Fig. 1, column 1,
which is a variant of the locking example used to illustrate the BLAST checker [19].
The procedures lock and unlock acquire and release the lock l, respectively, where
l=1 if the lock is held, and l=0 if the lock is not held. The correctness properties

Program Transfer relations Error relations

lock() {
assert l = 0;
l := 1;

}

unlock() {
assert l = 1;
l := 0;

}

main() {
loop();
unlock();

}

loop() {
lock();
d := n;
unl();
if (n != d) {

loop();
} else {

// skip
}

}

unl() {
if (*) {

unlock();
// n++;

}
}

Tlock(l; n; d; l1; n; d) :−
∧ l = 0
∧ l1 = 1

Tunlock(l; n; d; l1; n; d) :−
∧ l = 1
∧ l1 = 0

Tmain(l; n; d; l2; n2; d2) :−
∧Tloop(l; n; d; l1; n1; d1)
∧Tunlock(l1; n1; d1; l2; n2; d2)

Tloop(l; n; d; l4; n4; d4) :−
∧Tlock(l; n; d; l1; n1; d1)
∧ d2 = n1
∧Tunl(l1; n1; d2; l3; n3; d3)
∧ ∨ ∧ n3 �= d3

∧Tloop(l3;n3;d3;l4;n4;d4)
∨ ∧ n3 = d3

∧ l4 = l3
∧ n4 = n3
∧ d4 = d3

Tunl(l; n; d; l1; n1; d1) :−
∨Tunlock(l; n; d; l1; n1; d1)
∨ ∧ l1 = l

∧ n1 = n
∧ d1 = d

Elock(l; n; d) :−
l �= 0

Eunlock(l; n; d) :−
l �= 1

Emain(l; n; d) :−
∨Eloop(l; n; d)
∨ ∧Tloop(l; n; d; l1; n1; d1)

∧Eunlock(l1; n1; d1)

Eloop(l; n; d) :−
∨Elock(l; n; d)
∨ ∧Tlock(l; n; d; l1; n1; d1)

∧ d2 = n1
∧ ∨Eunl(l1; n1; d2)

∨ ∧Tunl(l1;n1;d2;l3;n3;d3)
∧ n3 �= d3
∧Eloop(l3; n3; d3)

Eunl(l; n; d) :−
Eunlock(l; n; d)

Fig. 1. The example program and the corresponding error and transfer relations.

C. Flanagan / Science of Computer Programming 50 (2004) 253–270 257

we wish to check are that:

(1) the procedure lock is never called when the lock is already held, and
(2) the procedure unlock is never called unless the lock is already held.

These correctness properties are expressed as assertions in the lock and unlock pro-
cedures. Hence, checking these properties reduces to checking whether the example
program goes wrong by violating either of these assertions.
The example contains three other routines, which manipulate two additional variables,

n and d. Thus, the state of the store is captured by the triple 〈l; n; d〉. The example
uses the notation if (*) ... to express nondeterministic choice.
Our method translates each procedure m into two constraint logic relations:

(1) the error relation Em(l; n; d), which describes pre-states 〈l; n; d〉 from which the
execution of m goes wrong by failing an assertion; and

(2) the transfer relation Tm(l; n; d; l′; n′; d′), which describes the relation between pre-
states 〈l; n; d〉 and post-states 〈l′; n′; d′〉 of executions of m that terminate normally
(without failing an assertion).

The transfer and error relations for the example program are shown in Fig. 1, columns
2 and 3, respectively. The relation Elock says that lock goes wrong if l is not initially
0, and Tlock says that lock terminates normally if l is initially 0, where l=1 and n and
d are unchanged the post-state. The relation Emain says that main goes wrong if either
loop goes wrong or loop terminates normally and unlock goes wrong in the post-
state of loop. The de/nitions of the other relations are similarly intuitive. Automatically
generating these de/nitions from the program source code is straightforward.
We use these relation de/nitions to check if an invocation of main may go wrong

by checking the satis/ability of the constraint logic query Emain(l; n; d). This query is
satis/able in the case where l=1, indicating that the program may go wrong if the
lock is held initially; an inspection of the source code reveals that this is indeed the
case.
If we provide the additional precondition that the lock is not initially held, then

the corresponding constraint logic query l=0 ∧ Emain(l; n; d) is still satis/able via the
following derivation:

Emain(0; n; d)
Tloop(0; n; d; 0; n; d)
Tlock(0; n; d; 1; n; d)
Tunl(1; n; d; 0; n; d)
Tunlock(1; n; d; 0; n; d)

Eunlock(0; n; d)

This derivation corresponds to the following execution trace: main calls loop; loop
calls lock; lock returns to loop; loop calls unl; unl calls unlock; unlock returns
to unl; unl returns to loop; loop returns to main; main calls unlock; and unlock
fails its assertion, since there are two calls to unlock without an intervening call to
lock.

258 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

The reason for this bug is that the increment operation n++ in unl is commented
out. After uncommenting this increment operation, the modi/ed transfer relation for
unl is:

Tunl(l; n; d; l1; n2; d1) :−
∨ ∧Tunlock(l; n; d; l1; n1; d1)

∧ n2 = n1 + 1
∨ ∧ l1 = l

∧ n2 = n
∧d1 = d

The query l=0 ∧ Emain(l; n; d) is now unsatis/able, indicating that the /xed program
satis/es the desired correctness properties.

4. The source language: syntax and semantics

We now formalize the approach outlined above, and begin by presenting the syntax
and semantics of the imperative language that we use as the basis for our formal
development.

4.1. Syntax

A program is a sequence of procedure de/nitions. Each procedure de/nition consists
of a procedure name m and a sequence of formal parameters, which are bound in the
procedure body, and can be �-renamed in the usual fashion. The procedure body is
an expression. Expressions include variable reference and assignment, let-expressions,
application of primitive functions f and user-de/ned procedures m, conditionals, and
assertions. To illustrate the handling of heap-allocated data structures, the language in-
cludes mutable pairs, and provides operations to create pairs and to access and update
each /eld i of a pair, for i=1; 2. Although our language does not include iterative
constructs such as while or for loops, they can be encoded as tail-recursive pro-
cedures. In addition to local variables bound by let-expressions and parameter lists,
programs may also manipulate the global variables g̃ . For simplicity, the language is
untyped, although we syntactically distinguish boolean expressions, which are formed
by applying a primitive predicate p to an argument sequence.

Programming language syntax

(programs) P ::= D̃
(de/nitions) D ::= m(̃x) {e}
(expressions) e ::= x | x := e | let x= e in e

| f(̃e) | m(̃e) | if p(̃e) e e | assert p(̃e)
| 〈e; e〉 | e:i | e:i := e

(procedure names) m
(global variables) g̃
(special variables) h̃ = h:h1:h2

C. Flanagan / Science of Computer Programming 50 (2004) 253–270 259

Throughout this paper, we assume the original program and the desired correctness
property have already been combined into an instrumented program, which includes
assert statements that check that the correctness property is respected by the program.
We say an execution of the instrumented program goes wrong if it fails an assertion
because the original program fails the desired correctness property. The focus of this
paper is to statically determine if the instrumented program can go wrong.

Notation. We use X̃ · Ỹ to denote sequence concatenation and � to denote the empty
sequence. We sometimes interpret sequences as sets, and vice versa. If M is a (par-
tial) map, then the map M [X :=Y] maps X to Y and is otherwise identical to M ,
and the map M [−X] is unde/ned on X and is otherwise identical to M . The opera-
tions M [X̃ := Ỹ] and M [−X̃] are de/ned analogously. We use X̃ = Ỹ to abbreviate
X1 =Y1 ∧ · · · ∧ Xn=Yn. We use e1 ; e2 to abbreviate let x= e1 in e2, where x is
not free in e2. We sometimes enclose expressions in parentheses for clarity.

4.2. Semantics

We formalize the meaning of programs using a “big step” operation semantics. A
store is a partial mapping from variables to values. The judgment e; P→ v; ′ states
that, when started from a store , the evaluation of expression e may terminate normally
yielding a result value v and resulting store ′. In this judgment, program P provides
the de/nitions of procedures that may be called by e. The related judgment ẽ ; P→ ṽ ; ′

extends this semantics to expression sequences, whose evaluation yields a sequence of
values.
The rules de/ning these judgments are shown in Fig. 2. The rule [EVAL VAR] re-

trieves the value of a variable x from the store. The rule [EVAL ASSIGN] for x := e /rst
evaluates e to yield a new store ′ and a value v, and then produces an updated store
 ′[x := v] that records v as the current value for x. The rule [EVAL FN] relies on the
functions Mf :Value

∗ →Value to de/ne the meaning of each primitive function f.
The rules [EVAL IF] and [EVAL ASSERT] rely on the relations Mp ⊆Value∗ to de/ne
the meaning of each primitive predicate p. The rule [EVAL CALL] for a procedure call
m(̃e) ensures that the formal parameters are not already bound in the store (using im-
plicit �-renaming, if necessary), evaluates the actual parameter list ẽ , updates the store
to map the formal parameters to the resulting argument values, and then evaluates the
procedure body in the extended store.
To represent pairs, the store also maps three special variables, h, h1, and h2,

to maps. The map (h) describes which locations have been allocated, and (h1) and
 (h2) describe the components of allocated pairs. For any heap location l, if (h)(l)= 0
then the location l is not allocated, otherwise the components of the pair at location
l are given by (h1)(l) and (h2)(l), respectively. This representation of pairs signi/-
cantly simpli/es the correspondence proof between imperative programs and constraint
logic rule sets. The rule [EVAL PAIR] for 〈e1; e2〉 picks an unallocated location l with
 (h)(l)= 0, and updates the store to indicate that the location is allocated and to record
the two /elds values of the pair. The rules [EVAL FIELD REF] and [EVAL FIELD ASSIGN]
retrieve and update a /eld of a pair, respectively.

260 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

e; P→ v; ′

[EVAL VAR]

x; P→ (x);

[EVAL ASSIGN]

e; P→ v; ′

(x := e); P→ v; ′[x := v]

[EVAL LET]

e1;
P→ v1; ′

x �∈ dom(′)
e2; ′[x := v1]

P→ v2; ′′

(let x= e1 in e2);
P→ v2; ′′[−x]

[EVAL FN]

ẽ ; P→ ṽ ; ′

f(̃e); P→ Mf (̃v);
′

[EVAL CALL]

ẽ ; P→ ṽ ; ′

m(̃x) {e} ∈ P
x̃ ∩ dom(′) = ∅

e; ′ [̃x := ṽ] P→ v; ′′

m(̃e); P→ v; ′′[−x̃]

[EVAL IF]

ẽ ; P→ ṽ ; ′

i = (if Mp (̃v) then 1 else 2)

ei; ′ P→ v; ′′

(if p(̃e) e1 e2);
P→ v; ′′

[EVAL ASSERT]

ẽ ; P→ ṽ ; ′

Mp (̃v) = true

(assert p(̃e)); P→ 0;

[EVAL PAIR]

(e1:e2);
P→ (v1:v2); ′ ′(h)(l) = 0

 ′′ = ′[h := ′(h)[l := 1]; hi := ′(hi)[l := vi]i∈1;2]

〈e1; e2〉; P→ l; ′′

[EVAL FIELD REF]

e; P→ l; ′

e:i; P→ (hi)(l); ′

[EVAL FIELD ASSIGN]

(e1:e2);
P→ (v1:v2); ′

 ′′ = ′[hi := ′(hi)[v1 := v2]]

(e1:i := e2);
P→ v2; ′′

ẽ ; P→ ṽ ; ′

[EVAL NONE]

�; P→ �;

[eval some]

e; P→ v; ′ ẽ ; ′ P→ ṽ ; ′′

(e:̃e); P→ (v:̃v); ′′

Fig. 2. Evaluation rules: normal semantics.

In addition to terminating normally, the evaluation of an expression may also go
wrong by failing an assertion. The judgment e; P→ wrong states that, when started
from a store , the evaluation of expression e may go wrong. Similarly, the judgment

C. Flanagan / Science of Computer Programming 50 (2004) 253–270 261

ẽ ; P→ wrong states that the evaluation of the expression sequence ẽ from store
may go wrong. The rules de/ning the error semantics of the language are shown in
Fig. 3.

5. Translating imperative programs into constraint logic

We now describe the translation of imperative programs into constraint logic rule
sets via symbolic forward execution. At each step in the translation, the environment
" maps each program variable x into a constraint logic term that provides a symbolic
representation of the value of x. Given the initial environment " for an expression e,
the judgment

" � e : 〈w; n"′; t〉
describes the behavior of e. The wrong condition w is a constraint describing initial
states from which e may go wrong by failing an assertion. For example, the wrong
condition of assert x=0 is "(x) 	=0, i.e., the assertion goes wrong if x is not initially
0. Similarly, the normal condition n describes the initial states from which e may
terminate normally. In this case, the environment "′ describes values of variables in the
post-state, and the term t is a symbolic representation of the result of e. The judgment
" � ẽ : 〈w; n; "′; t̃ 〉 behaves in a similar manner on expression sequences, which may
go wrong or may terminate normally producing a value sequence represented by t̃ .
The rules de/ning these judgments are shown in Fig. 4. The rule [TR VAR] states that

a variable access x never goes wrong and always terminates normally without changing
the program state. The rule retrieves a symbolic representation "(x) for the value of
x from the environment. The rule [TR ASSIGN] for an assignment x := e determines a
symbolic representation t for e, and updates the environment to record that t represents
of the current value of x. The rule [TR LET] states that let x= e1 in e2 goes wrong
if either e1 goes wrong or if e1 terminates normally and e2 goes wrong.
Some translation rules are more complicated. For example, the rule [TR IF] for the

conditional if p(̃e) e1 e2 needs to merge the environments "i produced by the trans-
lation of ei, for i=1; 2. To accomplish this merge, the rule determines the set ỹ of
variables assigned in either e1 or e2, and introduces an environment "′′ that maps ỹ to
fresh variables. Then, having determined that the branch ei of the conditional is exe-
cuted, the rule asserts that the "′′(ỹ)="i(ỹ), thus recording that the representation of
ỹ in the resulting environment "′′ comes from the branch ei. This translation of con-
ditionals avoids the exponential blow-up of traditional VC generation algorithms [10],
and is analogous to the compact VC generation algorithm of ESC=Java [16].
Our translation for pairs relies on the primitive functions select and store, where

store(a; i; v) extends a functional map a at index i with value v, and select(a; i)
selects the element at index i from map a. These two functions satisfy the select-of-
store axioms:

select(store(a; i; v); i) = v
i 	= j ⇒ select(store(a; i; v); j) = select(a; j)

262 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

e; P→ wrong

[WRONG ASSIGN]

e; P→ wrong

(x := e); P→ wrong

[WRONG FN]

ẽ ; P→ wrong

f(̃e); P→ wrong

[WRONG LET 1]

e1;
P→ wrong

(let x= e1 in e2);
P→ wrong

[WRONG LET 2]

e1;
P→ v1; ′ x �∈ dom(′)

1e2; ′[x := v1]
P→ wrong

(let x= e1 in e2);
P→ wrong

[WRONG CALL 1]

ẽ ; P→ wrong

m(̃e); P→ wrong

[WRONG IF 1]

ẽ ; P→ wrong

(if p(̃e) e1 e2);
P→ wrong

[WRONG CALL 2]

ẽ ; P→ ṽ ; ′

m(̃x) {e} ∈ P x̃ ∩ dom(′) = ∅
e; ′ [̃x := ṽ] P→ wrong

m(̃e); P→ wrong

[WRONG IF 2]

ẽ ; P→ ṽ ; ′

i = (if Mp (̃v) then 1 else 2)

ei; ′ P→ wrong

(if p(̃e) e1 e2);
P→ wrong

[WRONG ASSERT 1]

ẽ ; P→ wrong

(assert p(̃e)); P→ wrong

[WRONG ASSERT 2]

ẽ ; P→ ṽ ; ′ Mp (̃v) = false

(assert p(̃e)); P→ wrong

[WRONG PAIR]

(e1:e2);
P→ wrong

〈e1; e2〉; P→ wrong

[WRONG FIELD REF]

e; P→ wrong

e:i; P→ wrong

[WRONG FIELD ASSIGN]

(e1:e2);
P→ wrong

(e1:i := e2);
P→ wrong

ẽ ; P→ wrong

[WRONG FIRST]

e; P→ wrong

(e:̃e); P→ wrong

[WRONG REST]

e; P→ v; ′ ẽ ; ′ P→ wrong

(e:̃e); P→ wrong

Fig. 3. Evaluation rules: error semantics.

C. Flanagan / Science of Computer Programming 50 (2004) 253–270 263

" � e : 〈w; n; "′; t〉

[TR VAR]

" � x : 〈false; true; "; "(x)〉

[TR ASSIGN]
" � e : 〈w; n; "′; t〉

" � x := e : 〈w; n; "′[x := t]; t〉

[TR LET]
" � e1 : 〈w1; n1; "1; t1〉

"1[x := t1] � e2 : 〈w2; n2; "2; t2〉
" � let x= e1 in e2 : 〈w1 ∨ (n1 ∧ w2); n1 ∧ n2; "2[−x]; t2〉

[TR CALL]
" � ẽ : 〈w; n; "′; t̃ 〉

z; g̃′ ; h̃′ fresh
w′ ≡ w∨ (n ∧ Em (̃t ; "′ (̃g); "′ (̃h)))
n′ ≡ n ∧ Tm (̃t ; "′ (̃g); "′ (̃h); g̃′ ; h̃′ ; z)

"′′ ≡ "′ [̃g := g̃′ ; h̃ := h̃′]
" � m(̃e) : 〈w′; n′; "′′; z〉

[TR IF]
" � ẽ : 〈w; n; "′; t̃ 〉 "′ � ei : 〈wi; ni ; "i; ti〉

z fresh ỹ = {y | "1(y) �= "2(y)}
"′′(x) = (if x ∈ ỹ then fresh var else "1(x))
w′ ≡ w∨ (n∧p(̃t)∧w1)∨ (n∧ ¬p(̃t)∧w2)

n′
1 ≡ n∧ p(̃t) ∧ n1 ∧ z = t1 ∧ "′′(ỹ) = "1(ỹ)

n′
2 ≡ n ∧ ¬p(̃t) ∧ n2 ∧ z = t2 ∧ "′′(ỹ) = "2(ỹ)

" � if p(̃e) e1 e2 : 〈w′; (n′
1 ∨ n′

2); "
′′; z〉

[TR ASSERT]
" � ẽ : 〈w; n; "′; t̃ 〉

" � assert p(̃e) : 〈w∨ (n ∧ ¬p(̃t)); n ∧ p(̃t); "′; 0〉

[TR FN]
" � ẽ : 〈w; n; "′; t̃ 〉

" � f(̃e) : 〈w; n; "′; f(̃t)〉

[TR PAIR]
" � (e1:e2) : 〈w; n; "′; (t1:t2)〉

"′′ ≡ "′[h := store("′(h); l; 1); hi := store("′(hi); l; ti)i∈1;2]
l fresh n′ ≡ n ∧ select("′(h); l) = 0

" � 〈e1; e2〉 : 〈w; n′; "′′; l〉

[TR FIELD REF]
" � e : 〈w; n; "′; t〉

" � e:i : 〈w; n; "′; select("′(hi); t)〉

[TR FIELD ASSIGN]
" � e1:e2 : 〈w; n; "′; t1:t2〉

"′′ ≡ "′[hi := store("′(hi); t1; t2)]
" � e1:i := e2 : 〈w; n; "′′; t2〉

" � ẽ : 〈w; n; "′; t̃ 〉

[TR NONE]

" � � : 〈false; true; "; �〉

[TR SOME]
" � e : 〈w; n; "′; t〉 "′ � ẽ : 〈w′; n′; "′′; t̃ 〉
" � (e:̃e) : 〈w∨ (n ∧ w′); n ∧ n′; "′′; (t:̃t)〉

Fig. 4. Translation rules for expressions.

To aid in the translation, the environment " maps the special variables h; h1; h2 into
constraint logic terms that symbolically model of the current state of the heap. The
rule [TR PAIR] for the pair creation expression 〈e1; e2〉 introduces a fresh variable l and
asserts that select("(h); l)= 0, which means that the location l is not yet allocated.

264 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

� D : Re; Rt

[TR DEF]
dom(") = {̃x ; g̃ ; h̃ }

rng(") = fresh variables
" � e : 〈w; n; "′; t〉

� m(̃x) {e} :
Em("(̃x); "(̃g); "(̃h)) :−w;
Tm("(̃x); "(̃g); "(̃h); "′ (̃g); "′ (̃h); t) :− n

� P : R̃

[TR DEFS]
P = D1: · · · :Dn � Di : Rei ; R

t
i

� P : Re1; : : : ; R
e
n; R

t
1; : : : ; R

t
n

Fig. 5. Translation rules for procedure de/nitions.

The rule then updates the environment (1) to map h to store("(h); l; 1), indicating
that location l is now allocated, and (2) to map each hi to store("(hi); l; ti), where
the term ti represents the value of ei, for i=1; 2. Thus, the rule records the contents
of the pair in the new terms for h1 and h2. The rules for accessing and updating pairs
operate in a similar manner.
The most novel aspect of our translation concerns its handling of procedure calls.

Earlier approaches translated procedure calls using user-supplied speci/cations. How-
ever, since writing speci/cations for all procedures imposes a signi/cant burden on
the programmer, we use a diKerent approach that exploits the ability to de/ne relation
symbols recursively in constraint logic.
We translate each procedure de/nition m(̃x) {e} into two constraint logic rules

according to the rule [TR DEF] in Fig. 5. The /rst rule de/nes an error relation Em
that describes pre-states from which an invocation of m may go wrong; the second
rule de/nes a transfer relation Tm that, in situations where m terminates normally,
describes the pre-state/post-state relation of m. The arguments to the error relation Em
are the formal parameters x̃ , the global variables g̃ , plus the three special variables
h̃ = h · h1 · h2 that model the heap. The arguments to Tm are again the formal parameters
x̃ , the globals g̃ , the special variables h̃ , followed by g̃′ , which represents the post-
state of the global variables, followed by h̃′ = h′ · h1′ · h2′, which represents the post
heap state, followed by a term t representing the return value of m. The rule [TR CALL]
for a procedure call m(̃e) generates a wrong condition that uses Em to express states
from which the execution of m(̃e) may go wrong, and generates a normal condition
that uses Tm to describe how m(̃e) may terminate normally.
Since a program is a sequence of procedure de/nitions, the rule [TR DEFS] translates

a program into a sequence of constraint logic rules simply by combining the constraint
logic rules for each procedure in the program.

C. Flanagan / Science of Computer Programming 50 (2004) 253–270 265

To motivate our least /xpoint interpretation of constraint logic rule sets, consider
following the self-recursive, divergent procedure:

void m() { m(); }
whose corresponding transfer relation is

Tm(̃g; h̃′; g̃′; h̃′; r) : −Tm(̃g; h̃′; g̃′; h̃′; r)

This relation de/nition is also self-recursive, and therefore yields diKerent meanings
under the least /xpoint and greatest /xpoint interpretations. Under our least /xpoint
interpretation, this transfer relation is false for all argument tuples, correctly rePecting
the fact that there are no terminating executions of the procedure m().

5.1. Correctness of the translation

Given an imperative program P, we translate it into error and transfer relations R̃
according to the translation rule � P : R̃ . For any expression e, the judgment:

" � e : 〈w; n; "′t〉
describes the behavior of that expression from any initial state that is compatible with
", i.e., where dom(")⊆ dom() and |=D ∃̃ (∼"). Here, the symbol ∃̃ existentially
quanti/es over the free variables of (∼"), and we use the notation (∼") to abbre-
viate

∧
x∈dom(") (x)="(x), where (x) means the ground term representing the value

 (x). The following theorem formalizes the connection between program evaluations
and constraint logic queries.

Theorem 1. Suppose � P : R̃ and " � e : 〈w; n; "′; t〉 and |=D ∃̃ (∼").

(1) If e; P→ v; ′ then R̃ |=D ∃̃ ((∼") ∧ n ∧ (′ ∼"′) ∧ v= t).

(2) If e; P→ wrong then R̃ |=D ∃̃ ((∼") ∧ w).

The correctness of the above theorem follows from the following theorem, which
introduces a stronger hypothesis to facilitate an inductive proof.

Theorem 2. Let X be any constraint logic formula.
(1) Suppose � P : R̃ and " � e : 〈w; n; "′; t〉 and R̃ |=D ∃̃ (X ∧ (∼")).

(a) If e; P→ v; ′ then R̃ |=D ∃̃ (X ∧ (∼") ∧ n ∧ (′ ∼"′) ∧ v= t).

(b) If e; P→ wrong then R̃ |=D ∃̃ (X ∧ (∼") ∧ w).
(2) Suppose � P : R̃ and " � ẽ : 〈w; n; "′; t̃ 〉 and R̃ |=D ∃̃ (X ∧ (∼")).

(a) If ẽ ; P→ ṽ ; ′ then R̃ |=D ∃̃ (X ∧ (∼") ∧ n ∧ (′ ∼"′) ∧ ṽ = t̃).

(b) If ẽ ; P→ wrong then R̃ |=D ∃̃ (X ∧ (∼") ∧ w).

Proof. The proof of all four cases is by simultaneous structural induction on the deriva-
tion for the evaluation of e (or ẽ) and by case analysis on the /rst rule used in that
derivation.

266 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

Thus, to check if the initial procedure main of a program P goes wrong, we /rst
generate the corresponding relations R̃ according to the rule � P : R̃ , and then consider
the constraint logic query

R̃ |=D|= ∃̃Emain(̃g; h̃):
If this query is satis/able, the constraint logic implementation returns a satisfying
assignment for g̃ and h̃ , describing initial values for the global variables and the heap
that yields an erroneous execution. If the implementation also returns a constraint logic
derivation, then this derivation corresponds in a fairly direct manner to a trace of this
erroneous execution.

6. An application

We next consider the example program shown in Fig. 6, which, for clarity, is pre-
sented using Java syntax. This class implements rational numbers, where a rational is
represented as a pair of integers for the numerator and denominator. The class contains
a constructor for creating rationals and a method trunc for converting a rational to
an integer. The example also contains a test harness, which reads in two integers, n
and d, ensures that d is not zero, creates a corresponding rational, and then repeatedly
prints out the truncation of the rational.

class Rational {

int num, den;

Rational(int n, int d) {
num = n;
den = d;

}

int trunc() {
assert den != 0;
return num/den;

}

public static void main() {
int n = readInt(), d = readInt();
if(d == 0) return;
Rational r = new Rational(d,n);
for(int i=0; i<10000; i++) {

print(r.trunc());
}

}
}

Fig. 6. The example program Rational.

C. Flanagan / Science of Computer Programming 50 (2004) 253–270 267

We wish to check that a division-by-zero error never occurs. We express this cor-
rectness property as an assertion in the trunc method, and translate the instrumented
program into constraint logic rules. The constraint logic query Emain() is satis/able,
indicating an error in the program. An investigation of the satisfying derivation reveals
the source of the error: the arguments are passed to the Rational constructor in the
wrong order. Note that since both arguments are integers, Java’s type system does not
catch this error.
After /xing this bug, the query Emain() is now unsatis/able, indicating that a

division-by-zero error cannot occur. However, the constraint logic implementation that
we use, SICStus Prolog [28], requires several seconds to answer this query, since its
depth-/rst search strategy explicitly iterates through the loop in main 10,000 times.
To avoid this ine8ciency, we are currently developing a constraint logic imple-

mentation optimized towards software model checking. This implementation uses lazy
predicate abstraction and counter-example driven abstraction re/nement. Our prototype
implementation determines the unsatis/ability of the Rational example in just two
iterations. We are currently extending this implementation to handle more realistic
benchmarks.

7. Related work

This paper can be viewed as a synthesis of ideas from extended static checking [8,15]
and model checking [5,26,3,25]. An extended static checker translates the given pro-
gram into a combination of constraints over program variables, and uses sophisticated
decision procedures to reason about the validity of these constraints, thus performing a
precise, goal-directed analysis. However, the translation of (recursive) procedure calls
requires programmer-supplied speci/cations. We build on top of the ESC approach,
but avoid the need for procedure speci/cations by targeting constraint logic, in which
we can express recursion directly.
The software checkers SLAM [1] and BLAST [19] use a combination of predicate

abstraction [17] and automatic predicate inference to avoid false alarms and the need
for programmer-supplied abstractions, though they may not terminate. These tools have
been successfully applied to a number of device drivers. Both tools abstract the given
imperative program to a /nite-state boolean program, which is then model-checked.
This paper suggests that constraint logic may also provide a suitable framework for
such tools.
Delzanno and Podelski [7] explore the use of constraint logic for model checking,

and the performance of their approach is promising. They focus on concurrent systems
expressed in the guarded-command speci/cation language proposed by Shankar [27],
which does not provide explicit support for dynamic allocation or recursion. The con-
nection between constraint logic rule sets and imperative programs has also been ex-
plored by Gotlieb et al. [18], although the main focus of their work has been to infer
appropriate inputs to test the program’s execution over certain control-Pow paths.
The depth-/rst search of standard constraint logic implementations [28] corresponds

to explicit path exploration, much like that performed by software model checkers such

268 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

as Bandera [11]. However, whereas Bandera relies on programmer-supplied abstractions
to abstract (in/nite-state) data variables, the constraint logic implementation reasons
about data values using collections of constraints, thus providing a form of automatic
data abstraction. The programmer-supplied abstractions of Bandera do provide stronger
termination guarantees, but may yield false alarms. Other approaches based on model
checking include [2,29,30].
De Moura et al. [6] explore e8cient methods for bounded model checking of in/nite-

state transition systems based on lazy theorem proving. Since these transition systems
are a subset of constraint logic rule sets, their approach may suggest e8cient techniques
for checking the constraint logic rule sets generated by our work.
Instead of avoiding the need for loop invariants and speci/cations, another ap-

proach is to infer such annotations automatically. The Houdini annotation inference
system [14,13] re-uses ESC=Java as a subroutine in a generate-and-test approach to an-
notation inference. Daikon uses an empirical approach to /nd probable invariants [12].
Symbolic execution is the underlying technique of the successful bug-/nding tool

PRE/x for C and C++ programs [4]. For each procedure in the given program, PRE/x
synthesizes a set of execution paths, called a model. Models are used to reason about
calls, which makes the process somewhat modular, except that /xpoints of models are
approximated iteratively for recursive and mutually recursive calls.

8. Conclusion

This paper explores the connection between two programming paradigms: the tradi-
tional imperative paradigm and the constraint logic programming paradigm. We express
the correctness of imperative programs in terms of constraint logic satis/ability, based
on a semantics-preserving translation from imperative programs to constraint logic rule
sets. The constraint logic formulation provides a clean way to reason about the behavior
and correctness of the original imperative program.
This connection has immediate practical applications: it enables us to use existing

constraint logic implementations to check correctness properties of imperative programs.
For depth-/rst constraint logic implementations, this approach yields an e8cient method
for bounded model checking of software, using a combination of symbolic reasoning
for data values and explicit path exploration.
In addition, constraint logic is well-studied [20–22,24], and provides optimizations

and implementation techniques such as tableaux methods and subsumption [24], which
oKer the promise of complete model checking on certain classes of in/nite-state pro-
grams. More experience on practical examples is certainly necessary, and may provide
insight and motivation to develop specialized constraint logic implementations opti-
mized for software model checking.

Acknowledgements

This work was started at HP Systems Research Center; it was also partly supported
by faculty research funds granted by the University of California, Santa Cruz.

C. Flanagan / Science of Computer Programming 50 (2004) 253–270 269

References

[1] T. Ball, S.K. Rajamani, Automatically validating temporal safety properties of interfaces, in: Model
Checking Software, 8th Internat. SPIN Workshop, Lecture Notes in Computer Science, vol. 2057,
Springer, Berlin, 2001, pp. 103–122.

[2] D. Bruening, Systematic testing of multithreaded Java programs, Master’s Thesis, Massachusetts Institute
of Technology, 1999.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model checking: 1020 states
and beyond, Inform. Comput. 98 (2) (1992) 142–170.

[4] W.R. Bush, J.D. Pincus, D.J. SielaK, A static analyzer for /nding dynamic programming errors,
Software—Practice & Experience 30 (7) (2000) 775–802.

[5] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching-time
temporal logic, in: Workshop on Logic of Programs, Lecture Notes in Computer Science, vol. 131,
Springer, Berlin, 1981, pp. 52–71.

[6] L. de Moura, H. RueT, M. Sorea, Lazy theorem proving for bounded model checking over in/nite
domains, in: Proc. 18th Internat. Conf. Automated Deduction, Lecture Notes in Computer Science, vol.
2392, Springer, Berlin, 2002, pp. 438–455.

[7] G. Delzanno, A. Podelski, Model checking in CLP, in: Proc. 5th Internat. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer Science, vol. 1579, Springer,
Berlin, 1999, pp. 223–239.

[8] D.L. Detlefs, K.R.M. Leino, G. Nelson, J.B. Saxe, Extended static checking, Research Report 159,
Compaq Systems Research Center, December 1998.

[9] D.L. Detlefs, G. Nelson, J.B. Saxe, Simplify: a theorem prover for program checking, Technical Report
HPL-2003-148, HP Labs, 2003.

[10] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood CliKs, NJ, 1976.
[11] M. Dwyer, J. HatcliK, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser, H. Zheng,

Tool-supported program abstraction for /nite-state veri/cation, in: Proc. 23rd Internat. Conf. Software
Engineering, Toronto, Canada, 2001.

[12] M.D. Ernst, A. Czeisler, W.G. Griswold, D. Notkin, Quickly detecting relevant program invariants, in:
Proc. 22nd Internat. Conf. Software Engineering, Limerick, Ireland, June 2000.

[13] C. Flanagan, R. Joshi, K.R.M. Leino, Annotation inference for modular checkers, Inform. Process. Lett.
77 (2–4) (2001) 97–108.

[14] C. Flanagan, K.R.M. Leino, Houdini, an annotation assistant for ESC/Java, in: J.N. Oliveira, P. Zave
(Eds.), FME 2001: Formal Methods for Increasing Software Productivity, Berlin, Germany, Lecture
Notes in Computer Science, vol. 2021, Springer, Berlin, 2001, pp. 500–517.

[15] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, R. Stata, Extended static checking for
Java, in: Proc. Conf. Programming Language Design and Implementation, June 2002, pp. 234–245.

[16] C. Flanagan, J.B. Saxe, Avoiding exponential explosion: generating compact veri/cation conditions, in:
Conf. Record of the 28th Annual ACM Symposium on Principles of Programming Languages, London,
UK, January 2001, pp. 193–205.

[17] S. Graf, H. SaWXdi, Construction of abstract state graphs via PVS, in: Computer Aided Veri/cation, 9th
Internat. Conf., Lecture Notes in Computer Science, vol. 1254, Springer, Berlin, 1997, pp. 72–83.

[18] E. Gunter, D. Peled, Tracing the executions of concurrent programs, in: K. Havelund, G. Rosu (Eds.),
Electronic Notes in Theoretical Computer Science, vol. 70, Elsevier, Amsterdam, 2002.

[19] T.A. Henzinger, R. Jhala, R. Majumdar, Lazy abstraction, in: Proc. 29th Symp. Principles of
Programming Languages, London, UK, January 2001, pp. 28–70.

[20] J. JaKar, J.L. Lassez, Constraint logic programming, in: Proc. ACM SIGPLAN Symp. Principles of
Programming Languages, Munich, Germany, January 1987, pp. 111–119.

[21] J. JaKar, M.J. Maher, Constraint logic programming: a survey, J. Logic Programming 19/20 (1994)
503–581.

[22] J. JaKar, M.J. Maher, K. Marriott, P.J. Stuckey, The semantics of constraint logic programs, J. Logic
Programming 37 (1–3) (1998) 1–46.

[23] L. Lamport, How to Write a Long Formula, Technical Report 119, DEC Systems Research Center,
1994.

270 C. Flanagan / Science of Computer Programming 50 (2004) 253–270

[24] M.J. Maher, A logic programming view of CLP, in: Internat. Conf. Logic Programming, Budapest,
Hungary, 1993, pp. 737–753.

[25] K.L. McMillan, Symbolic Model Checking: An Approach to the State-Explosion Problem, Kluwer
Academic Publishers, Dordrecht, 1993.

[26] J.-P. Queille, J. Sifakis, Speci/cation and veri/cation of concurrent systems in CESAR, in: 5th Internat.
Symp. Programming, Lecture Notes in Computer Science, vol. 137, Springer, Berlin, 1982, pp. 337–351.

[27] A.U. Shankar, An introduction to assertional reasoning for concurrent systems, Comput. Surveys 25 (3)
(1993) 225–302.

[28] SICStus Prolog, On the web at http://www.sics.se/sicstus/.
[29] S. Stoller, Model-checking multi-threaded distributed Java programs, in: Proc. 7th Internat. SPIN

Workshop on Model Checking and Software Veri/cation, Lecture Notes in Computer Science, vol.
1885, Springer, Berlin, 2000, pp. 224–244.

[30] E. Yahav, Verifying safety properties of concurrent Java programs using 3-valued logic, in: Proc. 28th
Symp. Principles of Programming Languages, London, UK, January 2001, pp. 27–40.

http://www.sics.se/sicstus/

	Automatic software model checking via constraint logic
	Introduction
	A review of constraint logic
	Overview
	The source language: syntax and semantics
	Syntax
	Semantics

	Translating imperative programs into constraint logic
	Correctness of the translation

	An application
	Related work
	Conclusion
	Acknowledgements
	References

