
Efficient Conflict Driven Learning in a  
Boolean Satisfiability Solver 

 
Lintao Zhang 

Dept. of Electrical Engineering 
Princeton University 

lintaoz@ee.princeton.edu 

Conor F. Madigan 
Department of EECS 

MIT 
cmadigan@mit.edu 

Matthew H. Moskewicz 
Department of EECS 

UC Berkeley 
moskewcz@alumni.princeton.edu

Sharad Malik 
Dept. of Electrical Engineering 

Princeton University 
malik@princeton.edu 

 
ABSTRACT 
One of the most important features of current state-of-the-art 
SAT solvers is the use of conflict based backtracking and 
learning techniques. In this paper, we generalize various 
conflict driven learning strategies in terms of different 
partitioning schemes of the implication graph. We re-examine 
the learning techniques used in various SAT solvers and 
propose an array of new learning schemes. Extensive 
experiments with real world examples show that the best 
performing new learning scheme has at least a 2X speedup 
compared with learning schemes employed in state-of-the-art 
SAT solvers. 

1. INTRODUCTION 
 

The Boolean Satisfiability problem (SAT) is one of the most 
studied NP-Complete problems because of its significance in 
both theoretical research and practical applications. Given a 
Boolean formula, the SAT problem asks for an assignment of 
variables so that the formula evaluates to true, or a 
determination that no such assignment exists. Various EDA 
applications ranging from formal verification [2][3] to ATPG 
[1] use efficient SAT solvers as the basis for reasoning and 
searching. Many dedicated solvers (e.g. GRASP [6], POSIT 
[5], SATO [8], rel_sat [7], Walksat [4], Chaff [9]) based on 
various algorithms (e.g. Davis Putnam [10], local search [4], 
Stälmark’s algorithm [11]) have been proposed to solve the 
SAT problem efficiently for practical problem instances.  

Most often, the Boolean formulae of SAT problems are 
expressed in Conjunctive Normal Form (CNF). A CNF 
formula is a logical and of one or more clauses, where each 
clause is a logical or of one or more literals. A literal is either 
the positive or the negative form of a variable. To satisfy a 
CNF Boolean formula, each clause must be satisfied 
individually. For a certain clause, if all but one of its literals 
has been assigned the value 0, then the remaining literal, 
referred to as a unit literal, must be assigned the value 1 in 
order to satisfy this clause. Such clauses are called unit 
clauses. The process of assigning the value 1 to all unit literals 
is called unit propagation. In the following, we will always 
assume that the discussed formulae are in CNF format. 

Since SAT is known to be NP-Complete, it is unlikely that 
there exists any SAT algorithm with polynomial time 
complexity. However, SAT problem instances generated from 
real world applications seem to have some structure that 
enables efficient solution. A large class of these instances can 
actually be solved in reasonable compute time. Due to recent 
advances in search pruning techniques, several very efficient 
SAT algorithms for structured problems have been developed 
(i.e. GRASP [6], rel_sat [7], SATO [8], Chaff [9]). Such 
solvers can solve many instances with tens of thousands of 
variables, which cannot be handled by other Boolean 
reasoning methods [2].  

Most of the more successful complete SAT solvers are based 
on the branch and backtracking algorithm called the Davis 
Putnam Logemann Loveland (DPLL) algorithm [10]. In 
addition to DPLL, the algorithms mentioned earlier utilize a 
pruning technique called learning. Learning extracts and 
memorizes information from the previously searched space to 
prune the search in the future. Learning is achieved by adding 
clauses to the existing clause database. Since learning plays a 
very important role in pruning the search space for structured 
SAT problems, it is very important to make it as efficient and 
effective as possible. In this paper, we will examine the 
learning schemes in more detail. Our specific focus is on 
learning that occurs as a consequence of conflicts created 
during the generation of implications. This is referred to as 
conflict driven learning. For the rest of the paper, we will use 
the term learning in only this context, without necessarily 
prefacing it each time with the “conflict driven” adjective. 

1.1 DPLL with Learning 
The basic DPLL algorithm is the basis for most of the existing 
complete SAT solvers. In [6] and [7], the authors augmented 
the DPLL algorithm with learning and non-chronological 
backtracking schemes to facilitate the pruning of the search 
space. The pseudo-code of the DPLL algorithm with learning 
is illustrated in Figure 1. 

Function decide_next_branch()chooses the branching 
variable based on various heuristics. Each decision has a 
decision level associated with it. The function deduce() 
propagates the effect of the decision variable being assigned. 



After making a decision, some clauses may become unit 
clauses. All the unit literals are assigned 1 and the assignment 
is propagated until no unit clause exists. All variables assigned 
as a consequence of implications of a certain decision will 
have the same decision level as the decision variable. If a 
conflict is encountered (i.e. a clause, called conflicting clause, 
has all its literals assigned value 0), then the 
analyze_conflicts() function is called to analyze the 
reason for the conflict and to resolve it. It also gains some 
knowledge from the current conflict, and returns a 
backtracking level so as to resolve this conflict. The returned 
backtracking level indicates the wrong branch decision made 
previously and back_track() will undo the bad branches 
in order to resolve the conflict. A zero backtracking level 
means that a conflict exists even without any branching. This 
indicates that the problem is unsatisfiable. Readers are 
referred to [6] for a more detailed discussion of the DPLL 
algorithm. 

There are a large number of different SAT solvers that differ 
mainly in how each of these functions is implemented using 
different heuristics. A lot of effort has been spent on decision-
making (e.g. [13][14][9]), and significant progress has been 
made on how efficient deduction (e.g. [9][15][8]). However, 
to our knowledge, only [7] and [6] (and its variations) have 
discussed implementation of conflict driven learning. The 
authors are not aware of any evaluation of different conflict 
driven learning schemes and their influence on the 
performance of SAT solvers.  

 

Figure 1. DPLL with Learning 

while(1) {
if (decide_next_branch()) { //Branching
while(deduce()==conflict) { //Deducing
blevel = analyze_conflicts(); //Learning
if (blevel == 0)
return UNSATISFIABLE;

else back_track(blevel); //Backtracking
}

}
else //no branch means all variables got assigned.
return SATISFIABLE;

} 

 

1.2 Implication Graph 
The implication relationships of variable assignments during 
the SAT solving process can be expressed as an implication 
graph. A typical implication graph is illustrated in Figure 2. 
An implication graph is a directed acyclic graph (DAG). Each 
vertex represents a variable assignment. A positive variable 
means it is assigned 1; a negative variable means it is assigned 
0. The incident edges of each vertex are the reasons that lead 
to the assignment. We will call the vertices that have directed 
edges to a certain vertex as its antecedent vertices. A decision 
vertex has no incident edge. Each variable has a decision level 
associated with it, denoted in the graph as a number within 

parenthesis. In an implication graph with no conflict there is at 
most one vertex for each variable. A conflict occurs when 
there is vertex for both the 0 and the 1 assignment of a 
variable. Such a variable is referred to as the conflicting 
variable. In Figure 2, the variable V18 is the conflicting 
variable. In future discussion, when referring to an implication 
graph, we will only consider the connected component that has 
the conflicting variable in it. The rest of the implication graph 
is not relevant for the conflict analysis. 
 

Figure 2. A typical implication graph 

-V5(5)

V3(5)
V1(5)

V8(2) -V6(1)

V11(5) 

-V13(2)

V16(5) 

-V12(5) 

-V10(5)

V18(5) 

-V17(1)

V19(3)

-V18(5) 

V4(3) 

-V2(5)

Conflicting Clause: (V3’+V19’+V18’)

Conflicting 
Variable 

Decision 
Variable

UIP 

 

In an implication graph, vertex a is said to dominate vertex b 
iff any path from the decision variable of the decision level of 
a to b needs to go through a. A Unique Implication Point 
(UIP) [6] is a vertex at the current decision level that 
dominates both vertices corresponding to the conflicting 
variable. For example, in Figure 2, in the sub-graph of current 
decision level 5, V10 dominates both vertices V18 and -V18, 
therefore, it is a UIP. The decision variable is always a UIP. 
Note that there may be more than one UIP for a certain 
conflict. In the example, there are three UIPs, namely, V11, V2 
and V10. Intuitively, a UIP is the single reason that implies the 
conflict at current decision level. We will order the UIPs 
starting from the conflict. In the previous example, V10 is the 
first UIP. 

In actual implementations, the implication graph is maintained 
by associating each assigned non-decision (i.e. implied) 
variable with a pointer to its antecedent clause. The 
antecedent clause of a non-decision variable is the clause that 
was unit at the time when the implication happened, and 
forced the variable to assume a certain value. By following the 
antecedent pointers, the implication graph can be constructed 
when needed.  

1.3 Conflict Analysis and Learning 
Conflict analysis is the procedure that finds the reason for a 
conflict and tries to resolve it. It tells the SAT solver that there 
exists no solution for the problem in a certain search space, 
and indicates a new search space to continue the search. 



The original DPLL algorithm proposed the simplest conflict 
analysis method. For each decision variable, the solver keeps a 
flag indicating whether it has been tried in both phases or not. 
When a conflict occurs, the conflict analysis procedure looks 
for the decision variable with the highest decision level that 
has not been flipped, marks it flipped, undoes all the 
assignments between that decision level and current decision 
level, and then tries the other phase for the decision variable. 
This naïve conflict analysis method actually works well for 
randomly generated problems, possibly because random 
problems do not have structure, and learning from a certain 
part of the search space will generally not help searches in 
other parts.  

More advanced conflict analysis relies on the implication 
graph to determine the actual reasons for the conflict. This 
kind of conflict directed backjumping [7] could back up more 
than one level of the decision stack. Thus, it is also called non-
chronological backtracking. At the same time, the conflict 
analysis engine will also add some clauses to the database. 
This process is called learning. Such learned clauses are 
called conflict clauses as opposed to conflicting clauses, 
which refer to clauses that cause the conflict. The conflict 
clauses record the reasons deduced from the conflict to avoid 
making the same mistake in the future search. These clauses 
state that certain combinations of variable assignments are not 
valid because they will force the conflicting variable to assume 
both the value 0 and 1, thus leading to a conflict. 

  
 

Figure 3. Cuts in the implication graph can be added as clauses 

Cut 2 Cut 1 

Cut 3: cut does not 
involve conflict 

-V5(5)

V3(5) 
V1(5) 

V8(2)-V6(1) 

V11(5) 

-V13(2) V16(5) 

-V12(5) 

-V10(5) 

V18(5) 

-V17(1) 

V19(3) 

-V18(5)

V4(3) 

-V2(5) Conflict  
Side 

Reason 
Side 

A conflict clause is generated by a bipartition of the 
implication graph. The partition has all the decision variables 
on one side (called reason side), and the conflicting variable 
in the other side (the conflict side). All the vertices on the 
reason side that have at least one edge to the conflict side 
comprise the reason for the conflict. We will call such a 
bipartition a cut. Different cuts correspond to different 
learning schemes. For example, in Figure 3, clause (V1’+ V3’ 
+ V5 + V17 + V19’) can be added as a conflict clause, which 

corresponds to cut 1. Similarly, cut 2 corresponds to clause 
(V2 + V4’ + V8’ + V17 + V19’).  

We will generalize the UIP concept for decision levels other 
than the current level in the context of a partition. We will call 
vertex a at decision level dl a UIP iff any path from the 
decision variable of dl to the conflicting variable needs to 
either go through a, or go through a vertex of decision level 
higher than dl that is on the reason side of the partition.  Note 
that in this definition, the UIP vertices for a certain decision 
level are determined by the partition of the vertices in decision 
levels higher than it. This is unlike the UIPs for the current 
(i.e. highest) decision level. Also note that the decision 
variables are UIPs regardless of the partition taken. As in the 
case of current decision level UIPs, we will order these UIPs 
starting from the conflicting variable as well. 

As mentioned before, each non-decision variable has an 
antecedent clause that represents the reason for the 
assignment. The antecedent clause is represented in the 
implication graph as the incoming edges of a vertex. For 
example, in Figure 3, the vertex –V2 has two incident edges, 
from –V12 and V16 respectively. Therefore, the antecedent 
clause for V2 is (V16’ + V12 + V2’). This clause is already 
present in the clause database. We can construct additional 
clauses that are consistent with the clause database by 
replacing certain literals in the antecedent clause with all of 
their antecedent literals. For example, in the above mentioned 
clause, if we replace V16’ and V12 with their antecedent 
literals, we get the clause (V2’ + V6 + V11’ + V13). In Figure 3, 
this corresponds to cut 3. We will call this kind of replacement 
a cut not involving conflicts. This clause can be used as a 
learned clause and be added to the database. However, for this 
kind of learning to be useful, there must exist some 
reconvergence in the part of the graph that is involved in the 
learning. Otherwise if the involved part of the graph is a tree 
structure, then all the information in the learned clause will 
already be present in the original database, and the learned 
clause will not be useful.  

The learning process plays a very important role in pruning 
the search space of SAT problems. Some state-of-the-art SAT 
solvers, (e.g. [9]), utilize a technique called random restarts 
[16] to help the solver from falling into difficult search regions 
because of bad decisions in the early decision stages. Random 
restarting periodically undoes all the decisions and restarts the 
search from the very beginning. As noted in [12], frequent 
restarting actually does not hurt the solving process even for 
the unsatisfiable instances. The knowledge of the searched 
space is already recorded in the learned clauses. Therefore, 
discarding all the searched spaces and restarting is not a waste 
of the previous effort as long as the recorded clauses are still 
present. 

2. Different Learning Schemes 
 



In this section, we will take a look at different learning 
schemes employed in the existing SAT solvers, and propose 
some new schemes based on different cuts of the implication 
graph. 
Rel_sat [7] is one of the first SAT solvers to incorporate 
learning and non-chronological backtracking. The rel_sat 
conflict analysis engine generates the conflict clause by 
recursively resolving the conflicting clause with its antecedent, 
until the resolved clause includes only decision variables of 
the current decision level and variables assigned at decision 
levels smaller than the current level. 

In the implication graph representation, the rel_sat engine will 
put all variables assigned at the current decision level, except 
for the decision variable, on the conflict side; and put all the 
variables assigned prior to the current level and the current 
decision variable on the reason side. In our example, the 
conflict clause added would be: 

(V11 ’+ V6  + V13 + V4 ’+ V8 ’ + V17 + V19’) 

We will call this learning scheme rel_sat scheme. 
 

Reason 
Side 

Figure 4. Different cuts  

Last UIP Cut 

First UIP Cut 

Cut 3: cut does not 
involve conflict 

-V5(5) 

V3(5)
V1(5)

V8(2) -V6(1) 

V11(5) 

-V13(2) V16(5) 

-V12(5) 

-V10(5) 

V18(5) 

-V17(1) 

V19(3)

-V18(5)

V4(3) 

-V2(5) Conflict 
Side 

By adding a conflict clause, the reason for the conflict is 
stated. The maximum decision level of the variables (except 
the current decision level variable) in this conflict clause is the 
decision level to backtrack. After backtracking, the conflict 
clause will become a unit clause, and since the current 
decision variable is the unit literal, it is forced to flip. Such a 
clause that causes a flip of the variable is called an asserting 
clause. It is always desirable for a conflict clause to be an 
asserting clause. The unit variable in the asserting clause will 
be forced to assume a value and take the search to a new space 
to resolve the current conflict. To make a conflict clause an 
asserting clause, the partition needs to have one UIP of the 
current decision level on the reason side, and all vertices 
assigned after this UIP on the conflict side. Thus, after 
backtracking, the UIP vertex will become a unit literal, and 
make the clause an asserting clause. 

Another learning scheme is implemented in GRASP [6]. 
GRASP’s learning scheme is different from rel_sat’s in the 
sense that it tries to learn as much as possible from a conflict. 
There are two cases when a conflict occurs in GRASP’s 
learning engine. If the current decision variable is a real 
decision variable (explained later), the GRASP learning 
engine will add each reconvergence between UIPs in current 
decision level as a learned clause. In our example, if V11 is a 
real decision (i.e. it has no antecedent), when the conflict 
occurs, the GRASP engine will add one clause into the 
database corresponding to the UIP reconvergences shown in 
Figure 4. This corresponds to the clause (V2’ + V6 + V11’ + 
V13). 

Moreover, GRASP will also include a conflict clause that 
corresponds to the partition where all the variables assigned at 
the current decision level after the first UIP will be put on the 
conflict side. The rest of the vertices will be put on the reason 
side. This corresponds to the FirstUIP cut as shown in figure 
3. The clause added will be (V10 + V8’ + V17 + V19’). 

After backtracking, the conflict clause will be an asserting 
clause, which forces V10 to flip. Note that V10 was not a 
decision variable before. In GRASP, such a decision is a fake 
decision. The decision level of V10 remains unchanged. This 
essentially means that we are not done at the current decision 
level yet. We will call this mode of the analysis engine flip 
mode. 

If the deduction found that flipping the decision variable still 
leads to a conflict, the GRASP conflict analysis engine will 
enter backtracking mode. Besides the clauses that have to be 
added in the flip mode, it also adds another clause called the 
back clause. The cut for the back clause will put all the 
vertices at the current decision level (including the fake 
decision variable) on the conflict side, and all other vertices on 
the reason side. For our example, suppose the decision 
variable V11 is actually a fake decision variable, with 
antecedent clause (V21 + V20 + V11’). Then, besides the two 
clauses added before, the GRASP engine will add another 
clause  

(V21 + V20  + V6 + V13 + V4’ + V8’ + V17 + V19’) 

This clause is a conflicting clause, and it only involves 
variables assigned before the current decision level. The 
conflict analysis engine will continue to resolve this conflict, 
and bring the solver to an earlier decision level. We will call 
this learning scheme the GRASP scheme. 

Besides these two learning schemes, many more options exist. 
One obvious learning scheme is to add only the decision 
variables involved in the conflict to the conflict clause. In our 
implication graph representation, this corresponds to making 
the cut such that only the decision variables are in the reason 
side, and all the other variables are in the conflict side. We 
will call this scheme Decision scheme. Note that it is no good 
to include all the decision variables of the current search tree 
in the conflict clause, because such a combination of decisions 



will never occur again in the future unless we restart. Thus the 
learned clause will hardly help prune any search space at all. 

The decision variables are the last UIPs for each decision 
level. A more careful study of the Decision scheme suggests 
making a partition not limited at decision variables, but after 
any UIPs of each of the decision levels. One of the choices is 
to make a partition after the first UIP of each decision level.  
We will call this scheme the All UIP scheme. Because UIPs of 
a lower level depend on the partition, we need to do the 
partition from the current decision level up to decision level 1. 
More precisely, the solver needs to find the first UIP of the 
current decision level, then all variables of current decision 
level assigned after it that have a path to the conflicting 
variable will be on the conflict side; the rest will be on the 
reason side. Then the solver will proceed to the decision level 
prior to current one, and so on, until reaching decision level 1. 

Another learning scheme is to make the conflict clause as 
small as possible. This corresponds to the problem that given 
an implication graph, remove the smallest number of variables 
(may include decision variables, but not the conflicting 
variable) from the implication graph so that there exist no path 
from the decision variables to the conflicting variable. This is 
a typical vertex min-cut problem, which can be transformed 
into an edge min-cut problem and solved with maxflow-
mincut algorithms.  

It may also be desirable to make the conflict clause as relevant 
to the current conflict as possible. Therefore, we may want to 
make the partition closer to the conflicting variable. As we 

mentioned earlier, to make the conflict clause an asserting 
clause, we need to put one UIP of the current decision level on 
the reason side. Therefore, if we put all variables assigned 
after the first UIP of current decision level that have paths to 
the conflicting variable on the conflict side, and everything 
else on the reason side, we get a partition that is as close to the 
conflict as possible. We will call this 1 UIP scheme. 

The 1 UIP scheme is different from the All UIP scheme in that 
we only require the current decision level have its first UIP at 
the reason side just before the partition. We may also require 
that the immediately previous decision level have its first UIP 
on the reason side just before the partition. This will make the 
conflict have only one variable that was assigned at the 
immediate previous decision level. We will call this the 2 UIP 
scheme, similarly, we can have 3 UIP scheme etc., up to All 
UIP, which makes the conflict clause have only one variable 
for any decision level involved. 

Other than the min-cut scheme, all the other above-mentioned 
learning schemes can be implemented by a traversal of the 
implication graph. The time complexity of the traversal is 
O(V+E). Here V and E are the number of vertices and edges 
of the implication graph respectively. The time complexity for 
finding a min-cut of the implication graph can be implemented 
in O(VElg(V2/E)) time [17]. 

A good learning scheme should reduce the number of 
decisions needed to solve certain problems as much as 
possible.  The effectiveness of a learning scheme is very hard 
to determine a priori. Generally speaking, a shorter clause 

Microprocessor Formal Verification[19]         Bounded Model Checking [18]     
Decision 
Strategy 

  
  fvp-unsat.1.0(4) sss.1.0(48) sss.1.0a(9) barrel (8) longmult(16) queueinvar(10) satplan(20) 

 1uip 532.8 24.56 10.63 1012.62 2887.11 6.58 39.34

 2uip 746.87 27.32 16.96 641.64 2734.57 16.37 41.37

S 3uip 2151.26 69.12 47.66 656.56 2946.73 19.44 57.16

D
 

alluip 0.68(3) 1746.27(2) 79.09 1081.57(1) 11160.25 18.07 71.86

I rel_sat 2034.09 193.93 82.51 292.33(1) 5719.73 14.4 96.61

S mincut 1612.74(2) 2293.18 11.15 4119.34(1) 7321.69(5) 100.94 43.84

V grasp 2224.44 94.64 33.99 654.54 6196.82 97.82 309.03

 decision* 0(4)  1022.57(17) 227.37(3)  541.96(2) 1421.35(4) 334.39(4) 193.36(3)

 1uip_f 11.36(3) 15307.13(3) 2997.37 281.48(1) 3141.8 817.07(5) 18(2)

 2uip_f 23.07(3) 18844.51(3) 2646.99 344.34(1) 4279.07 777.2(5) 29.51(2)

D
 

3uip_f 40.75(3) 3985.23(9) 4109.86 432.77(1) 4440.49 860.3(5) 37.62(2)

E alluip_f 0(4) 4063.44(25) 0.28(8) 699.42(1) 11375.32 2025.08(5) 1136.44(2)

X relsat_f 80.94(3) 3114.83(16) 4261.25(4) 293.09(1) 4396.73 478.37(6) 3323.71(3)

I mincut_f 0(4) 5619.4(15) 590.79(4) 3408.28(1) 5232.69(5) 3206.36(4) 373.78(2)

F grasp_f 22.51(3) 6497.99(8) 3382.47 326.46(1) 5597.1 792.12(5) 149.8(2)
 decision_f* 0(4) 415.76(42) 40.57(8) 479.61(1) 1006.58(6) 1.27(8) 600.87(10)

 * timeout set to 600s instead of 3600s 

Table 1. Run time for different learning schemes



contains more information than a longer clause. Therefore, a 
common belief is that the shorter the learned clause, the more 
effective the learning scheme. However, SAT solving is a 
dynamic process. It has complex interplay between the 
learning schemes and the search process. Therefore, the 
effectiveness of certain searching schemes can only be 
determined by empirical data for the entire solution process.  

3. Experimental Results and Discussions 
 

In this section, we empirically compare the learning schemes 
discussed in previous sections. We have implemented all the 
above-mentioned learning schemes in the SAT solver zChaff 
(an independent implementation that shares several features 
with the Chaff SAT solver [9]). zChaff utilizes the highly 
optimized Chaff Boolean Constraint Propagation (BCP) 
engine and VSIDS decision heuristic, thus making the 
evaluation more interesting because some large benchmarks 
can be evaluated in reasonable amount of time.  

 zChaff’s default branching scheme VSIDS depends on the 
added conflict clauses and literal counts for making branching 
decisions. Therefore, different learning schemes may also 
affect the decision strategy. To make a fair comparison, we 
also implemented a fixed branching strategy, which will 
branch on the first unassigned variable with the smallest 
variable index. The variables indices are predetermined for a 
given problem instance. Default values are used for all other 
settings.  

Our test suite consists of benchmarks from bounded model 
checking [18] and microprocessor formal verification [19]. 
We also included a benchmark from the AI planning 
community to cover a wider range of applications. The 
experiments were conducted on dual Pentium III 833Mhz 
machines running Linux, with 2G bytes physical memory. 
Each CPU has 32k L1 cache and 256k L2 cache. The time out 
limit for each SAT instance is 3600 seconds. For the Decision 
learning scheme, because of the large number of aborts, the 
time out limit was set to 600 seconds to reduce total 
experiment time.   

The run times of different learning schemes on the 
benchmarks are shown in Table 1. Each benchmark class has 

multiple instances, shown in the parentheses following each 
benchmark name. In the result section, the times shown are the 
total time spent on the solved instances only. The number of 
aborted instances is shown in the parentheses following run 
time. If there is no such number, all the instances are solved. 
For example, fvp-unsat-1.0 has 4 instances. Using the default 
VSIDS decision strategy, the min-cut learning scheme took 
1612.74 seconds to solve two of them, and aborted on the 
other two.  

From the experiment data we can see that for both default and 
fixed branching heuristics, the 1UIP learning scheme clearly 
outperforms other learning schemes. Contrary to general 
belief, the decision schemes that generate small clauses, e.g. 
min-cut, all UIP and Decision do not perform as well.  

We selected the best of our proposed schemes, i.e. the 1UIP 
scheme, and compared it with the learning schemes employed 
in other state-of-the-art SAT solvers, i.e. the GRASP scheme 
and the rel_sat scheme. We selected three difficult test cases 
from three classes of the benchmark suites. Detailed solver 
statistics for these schemes are presented in Table 2. The 
branching heuristic employed was VSIDS. From this table we 
find that the results are quite interesting. As we mentioned 
before, the GRASP scheme tries to learn as much as possible 
from conflicts. Actually, it will learn more than one clause for 
each conflict. For a given conflict, the clause leaned by 1UIP 
scheme is actually also learned by the GRASP scheme. 
Therefore, in most of the cases, the GRASP scheme needs a 
smaller number of branches to solve the problem. However, 
because the GRASP scheme records more clauses, the BCP 
process is slowed down. Therefore, the total run time of the 
GRASP scheme is more than 1UIP scheme. On the other hand, 
though rel_sat and 1UIP both learn one clause for each 
conflict, the learned clause of rel_sat scheme is not as 
effective as 1UIP as it needs more branches. 

4. Conclusions and Future Research 
 

This paper explores the conflict driven learning techniques 
widely used in current state-of-the-art Boolean satisfiability 
solvers. We have examined the strength and weaknesses of 
current learning schemes employed in various SAT solvers. 

 

9vliw_bp_mc 
( unsat, 19148 vars ) 

longmult10 
( unsat, 4852 vars ) 

sat/bw_large.d.cnf 
( sat, 6325 vars ) 

 1UIP rel_sat GRASP 1UIP rel_sat GRASP 1UIP rel_sat GRASP 
Branches(x10e6) 1.91 4.71 1.07 0.13 0.19 0.12 0.019 0.046 0.027
Added Clauses(x10e6) 0.18 0.76 1.06 0.11 0.17 0.36 0.011 0.030 0.071
Added Literals (x10e6) 73.13 292.08 622.96 17.16 28.07 77.47 0.56 1.61 6.12
Added lits/cls 405.08 384.31 587.41 150.17 162.96 213.43 50.87 52.94 86.19
Num. Implications(x10e6) 69.85 266.21 78.49 71.72 108.00 74.83 7.23 17.84 16.81
Runtime 522.26 1996.73 2173.14 339.99 612.64 762.94 23.44 52.64 124.13

Table 2. Detailed information on three large test cases for three learning schemes using VSIDS branching heuristic 



We have generalized conflict driven learning into a problem 
of partitioning the implication graph, and have proposed some 
new learning schemes. These learning schemes were 
implemented in the SAT solver zChaff and extensive 
experiments were conducted. We have found that different 
learning schemes can affect the behavior of the SAT solver 
significantly. The learning scheme based on the first Unique 
Implication Point of the implication graph has proved to be 
quite robust and effective in solving SAT problems in 
comparison with other schemes.  

For future research, it would be interesting to explore the 
possibility of mixing different learning schemes in a single run 
of the SAT solving process. As the SAT solving process 
progresses, the number of literals in the learned clauses grows 
quickly. For some of the problems, in the later stages of the 
solving process each learned clause may have several 
thousand literals. The clause database may become tens of 
times larger than the original size; very quickly making the 
solving process memory limited. It would be interesting to 
explore the possibility of using different learning schemes 
during different stages of the solution process. This can lead to 
better control of the size of the learned clause. 

As pointed out before, learning is very important to the 
success of the SAT solvers, but there is still little work on 
learning in current research of SAT solving algorithms. In 
fact, there is very little insight about why learning is useful and 
what makes one learning scheme better than the other. For 
example, relevance based learning and clause length bounded 
learning are common practices in current SAT algorithms, but 
not much attention has been given to choosing optimal 
parameters for different problems. As SAT based methods 
becomes more and more popular in a wide range of 
applications, it is increasingly important for us to answer these 
questions in a systematic way. This paper represents a step in 
that direction. 

5. REFERENCES 
 

[1] P. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Combinational Test Generation Using 
Satisfiability,” IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 15, 1167-
1176, 1996. 

[2] M. Velev, and R. Bryant, “Effective Use of Boolean 
Satisfiability Procedures in the Formal Verification of 
Superscalar and VLIW Microprocessors,” Proceedings of 
the Design Automation Conference, July 2001.  

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. “Symbolic 
Model Checking without BDDs,” Tools and Algorithms for 
the Analysis and Construction of Systems (TACAS'99), 
number 1579 in LNCS. Springer-Verlag, 1999.) 

[4] B. Selman, H. Kautz, and B. Cohen. “Local Search 
Strategies for Satisfiability Testing.” DIMACS Series in 

Discrete Mathematics and Theoretical Computer Science, 
vol. 26, AMS, 1996. 

[5] J. W. Freeman, “Improvements to Propositional 
Satisfiability Search Algorithms,” Ph.D. Dissertation, 
Department of Computer and Information Science, 
University of Pennsylvania, May 1995. 

[6] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A 
Search Algorithm for Propositional Satisfiability,” IEEE 
Transactions on Computers, vol. 48, 506-521, 1999. 

[7] R. Bayardo, and R. Schrag, “Using CSP look-back 
techniques to solve real-world SAT instances,” Proceedings 
of the 14th Nat. (US) Conf. on Artificial Intelligence (AAAI-
97), AAAI Press/The MIT Press, 1997. 

[8] H. Zhang. “SATO: An efficient propositional prover,” 
Proceedings of the International Conference on Automated 
Deduction, July 1997. 

[9] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. 
Malik. “Chaff: Engineering an efficient SAT Solver,” 
Proceedings of the Design Automation Conference, July 
2001. 

[10] M. Davis, G. Logemann, and D. Loveland. “A machine 
program for theorem proving.,” Communications of the 
ACM, (5):394-397, 1962. 

[11] G. Stalmarck, “A system for determining prepositional 
logic theorems by applying values and rules to triplets that 
are generated from a formula,” Technical report, European 
Patent N 0403 454 (1995), US Patent N 5 27689. 

[12] M. Moskewicz, L. Zhang, Y. Zhao, S. Malik and C. 
Madigan, “Chaff: A Fast SAT Solver for EDA 
Applications”, Presented at the Dagstuhl seminar on SAT 
v.s. BDD, March 2001. Dagstuhl, Germany.  

[13] J. P. Marques-Silva, “The Impact of Branching Heuristics 
in Propositional Satisfiability Algorithms,” Proceedings of 
the 9th Portuguese Conference on Artificial Intelligence 
(EPIA), September 1999. 

[14] Chu Min Li and Anbulagan, “Heuristics based on unit 
propagation for satisfiability problems,” Proceedings of the 
fifteenth International Joint Conference on Artificial 
Intelligence (IJCAI’97), Pages 366-371, Nagoya (Japan), 
1997 

[15] Chu Min Li, “Integrating equivalency reasoning into 
Davis-Putnam Procedure,” Proceedings of AAAI 2000, 
2000. 

[16] C. P. Gomes, B. Selman, and H. Kautz, “Boosting 
Combinatorial Search Through Randomization”, 
Proceedings of AAAI-98, Madison, WI, 1998. 

[17] A. Goldberg, R. Tarjan. “A new approach to the 
maximum flow problem,” Proceedings of the eighteenth 
annual ACM Symposium on Theory of Computing, 1986. 

[18] Bounded Model Checking benchmarks available at 
http://www.cs.cmu.edu/~modelcheck/bmc/bmc-
benchmarks.html 

[19] M. N. Velev, Microprocessor Formal Verification 
Benchmarks, available at http://www.ece.cmu.edu/~mvelev 


