
Annals of Mathematics and Artificial Intelligence 6 (1992) 295-316 295

Practical issues on the projection of polyhedral sets

Tien Huynh, Catherine Lassez and Jean-Louis Lassez

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, N Y 10598, USA

Projection of polyhedral sets is a fundamental operation in both geometry and symbolic
computation. In most cases, however, it is not practically feasible to generate projections as
the size of the output can be exponential in the size of the input. Even when the size of the
output is manageable, we still face two serious problems: overwhelming redundancy and
degeneracy. Here, we address these problems from a practical point of view. We discuss
three algorithms based on algebraic and geometric techniques and we compare their
performance in order to assess the feasibility of these approaches.

1. Introduction

Projection is a very basic operation in geometry, but as projection is also the
geometric interpretation of the algebraic operat ion of variable elimination and
of the logical operation of quantifier elimination, it is indeed a most fundamen-
tal concept in symbolic computation (see papers and references in [11]). Fur ther
motivations from AI and programming languages points of view can be found in
[14] and [8]. In principle, the projection of a polyhedral set can be easily
achieved by quantifier (variable) elimination. In practice, the fact that the size of
the representat ion of the projected image and of the intermediate computations
can be intractable is a serious limitation.

We discuss here three algorithms for projection which do not require any
particular hypothesis on the input polyhedral sets. The first two are algebraic in
nature. The first one is based on modifications of the classic Fourier 's elimina-
tion algorithm and is efficient for small sparse systems. The second one uses a
formulation of the problem called the Extreme Point Method [14] which works
particularly well in dense systems (as opposed to Fourier's). The last algorithm
exploits the geometric aspects of the projection operation. It computes the
projection by successive approximations of the convex hull of its extreme points
using linear programming techniques to find the points directly in the projection
space. The complexity of this algorithm depends on the dimension and size of
the projection and not on that of the input set.

�9 J.C. Baltzer A.G. Scientific Publishing Company

296 T. Huynh et al. / Projection of polyhedral sets

In a first section we address the problem of constraints representation and
present the concept of parametric form. Transforming an input set of con-
straints into parametric form before starting the projection will provide some
initial simplifications and also ensure that the input to the algorithms is a
full-dimensional polyhedral set. As we shall see later, this can greatly simplify
matters.

In the next section, we describe the Fourier Variant algorithm (FV) which
incorporates several heuristics to help reduce the number of constraints gener-
ated in the course of the projection by eliminating on the fly as many redundant
constraints as possible.

In the third section, we describe informally the Extreme Point Method (EPM)
which is based on an algorithm to enumerate the extreme points (vertices)
presented in [7]. One bottleneck of EPM is degeneracy; another problem is that
the number of vertices can be enormous even for small inputs. There are many
vertex enumerat ion algorithms in the literature, but they require storing all
vertices until termination and assume no degeneracy. The vertex enumeration
algorithm used here not only minimizes the storage of the vertices but also
integrates efficiently with Kruse's algorithm [13] to handle degeneracy.

In the fourth section, we discuss the Convex Hull Method (CHM) [16]. A
main feature of CHM is that it transforms the unbounded case so that it reduces
to the conceptually simple bounded case. The projection is then computed by
successive refinements of an initial approximation computed as the convex hull
of a number of extreme points of the projection along lines similar to those of
[21]. If the size of the projection is too large to be fully computed, the algorithm
still provides an approximation which can be an upper or lower bound or both
and whose size is user-defined.

In the fifth section, we address the problem of redundancy removal. Redun-
dancy is a very serious factor that accounts for the unmanageable size of the
data at various stages of the projection. We show here that redundancy can be
very efficiently removed in particular instances by using the concept of subsump-
tion cone. The subsumption cone of a polyhedral set is a characterization of all
constraints implied by the given set. Once the subsumption cone of the original
polyhedral set is generated then the subsumption cone of any projected image
can be derived directly from it. By using the subsumption cone as a filter, the
testing of redundancy is simplified from a large linear program for each tested
constraint to a straightforward evaluation.

In the last section, we compare the runtime performance of the three
algorithms on a number of examples. It greatly depends on the type of con-
straints given as input. In other words, no algorithms or methods are universally
better. Issues often bypassed in the theoretical descriptions of algorithms such
as redundancy, round-off errors and degeneracy are of paramount importance.
Also, we found that performance is greatly affected by code optimization, so the

T. Huynh et al. / Projection of polyhedral sets 297

design and implementation of a practical system is truly a major task at all
levels.

2. Parametric representation

Let S = {Ax < b} be the set of inequalities describing a given polyhedral set P.
A is the matrix of the coefficients of the variables in S and x and b are
respectively column vectors of variables and constants. We denote Ai. the ith
row and Aj the j th column of A. A constraint Ai.x < b i is an implicit equality if
it can be replaced by Ai.x = b i without changing the semantics of S. P is
full-dimensional if S does not contain any implicit equalities. If P is not
full-dimensional, collecting all implicit equalities in S and applying Gauss-Jordan
reduction give the set of equations {y = Ex' + c} which defines the affine hull of
P. E and c are respectively a matrix and a column vector of constants. The
variables of x', which form a subset of the variables of x, are called the
parameters, and the variables of y are called the bound variables (y = x \ x ') . By
eliminating all the bound variables from the remaining inequalities of S, we
obtain the parametric representation {A'x < b'} U {y = Ex' + c} where {A'x' < b'}
is full-dimensional in the space of the parameters.

Although not essential in order to compute the projection, a parametric
representation has several advantages. First, if S initially contains implicit
equalities, these can be used to eliminate some variables in a straightforward
manner by selecting bound variables from the set V of the variables to eliminate.
The projection of P is {A'x' < b'} U { y ' - E ' x ' + c'}, where y' is a vector of
variables of y which are not in V. Second, transforming a parametric representa-
tion into canonical form [18] simply requires the removal of redundancies. The
canonical form can help substantially reduce the number of redundant con-
straints generated in the course of projection. Third, we know (e.g. [15]) that if S
is in parametric form so is its projection. As we will see later, this property will
allow us to better exploit the subsumption cone for redundancy removal. Finally,
because the projection of a full-dimensional polyhedral set is also full-dimen-
sional, the construction of the initial convex hull and its incremental refinements
in CHM are greatly simplified.

Obviously the price to pay for obtaining a parametric representation is the
identification of all implicit equalities. The naive way consists in running, for
each inequality Ai.x < b i in S, the following linear program:

minimize Ai.x

subject to Ax < h.

If the opt imum returned by the above program is b,, then Ai.x _< b i is an implicit
equality. This operation is very costly because it requires running as many linear
programs as there are inequalities in S. Furthermore if, in fact, there are no

298 T. Huynh et aL / Projection of polyhedral sets

implicit equalities, all this work is wasted. What we need is a test that will first
detect the presence of implicit equalities before attempting to identify them. To
this end, we use the following formulation called the quasi-dual proposed in
[14]:

minimize ATb
subject to ATA = 0,

Y'.A = 1,

A>0,

where A is a column vector of variables. This formulation, in fact, corresponds
to Fourier's algorithm, the A's being the multiplicators of the inequalities of S
that eliminate all variables. When the above linear program returns a minimum
of 0, S is solvable AND contains implicit equalities (this corresponds to the case
when Fourier generates the tautology 0 _< 0). This is a key advantage of this
method as the search for implicit equalities will be carried out only after it is
ascertained that there exist some. Also, the fact that it is, at the same time, a
test for solvability is of particular importance for constraint languages design
where the solver is a main issue. If the quasi-dual is not solvable or if the
minimum is positive then S is solvable and does not contain implicit equalities
(the associated polyhedral set is full-dimensional). If, during the computation,
ATb becomes negative then S is not solvable. A detailed description of this
property of Fourier's algorithm can be found in [17].

When the existence of implicit equalities is detected, that is when min(ATb) =

0, the indices of the non-zero Ai's in the optimal solution point to a first
minimal subset of implicit equalities in S.

These implicit equalities are removed from S, Gauss-Jordan reduction is
applied and the resulting bound variables are eliminated from the remaining
inequalities. Once this is done, the quasi-dual is applied to the updated
inequalities. The whole process is repeated until no more implicit equalities
remain.

In practice, this can still be expensive as, if S contains many implicit equali-
ties, many executions of the quasi-dual are required. One improvement consists
in trying to derive as many alternative optimal solutions as possible each time a
quasi-dual detects the presence of implicit equalities. For instance, in one
experiment where S consisted of 1819 constraints over 68 variables, simplifying S
immediately after one subset of implicit equalities was found led to 29 execu-
tions of the quasi-dual and took a total of 259 virtual CPU seconds to find all
implicit equalities and rewrite S into parametric representation. On the other
hand, by looking at the coefficients of the objective function, one can find
immediately some further solutions. In that case, the process was reduced to
only 6 executions of the quasi-dual in 67 seconds. The affine hull contained 58
equalities and 690 inequalities remained before redundant constraints were

T. Huynh et al. / Projection of polyhedral sets 299

removed. A systematic search for all optimal solutions is unfortunately impracti-
cal. Further research in this area is in progress.

3. Fourier's Variant

The Fourier's Variant (FV) we present here is a modification of Fourier's
algorithm that incorporates three heuristics. The first one, given in [1], helps
reduce the number of redundant constraints generated at each stage by selecting
to eliminate first the variable that gives the smallest number of combinations.
The second one is a rule proposed by Kohler [12] that restricts each combination
to be generated with at most n + 1 initial constraints where n is the number of
variables already eliminated (the rule takes effect only for n > 2). Although very
simple, Kohler's rule helps reduce dramatically the number of redundant
constraints generated. However, it does not remove all redundancies and, as is
shown in the next example, using arbitrarily other techniques simultaneously can
lead to erroneous results. We project

x + y + z < l
x - y + z < l

P:
- x + y + z < l
- x - y + z < l

on the {z}-plane. After eliminating x, we have

y + z < l

PC'y.=): z < 1
z < l

- y + z < l

At this stage, Kohler's rule cannot detect any redundancies since only one
variable has been eliminated. The second and third constraints are, however,
both redundant and are removed giving

y + z < l
P(Y'~J: - y + z < 1

Eliminating y finally gives P(~j: {z _< 1}. This only remaining constraint being a
combination of the four original ones is identified as redundant by Kohler's rule
and is removed. As a result, the projection becomes the empty set which is
obviously wrong.

It is, however, possible to combine Kohler's rule with some other redundancy
removal techniques. In particular, the singular matrix rule which we describe
next forms our third heuristic. This rule is derived from the Extreme Point
Method presented in the next section. The idea is that a constraint is redundant

300 T. Huynh et al. / Projection of polyhedral sets

X 1 -[-X3--X4<_~

- 2 x I + x 3 - x 4 <
P:

2 x 1 --x3--}-x4~_~

--x2--x3--x4<_~

- -x 1 - - x 3 - - x 4 <_~

Fourier's algorithm generates
2

if the coefficients of the eliminated variables in the parent constraints form a
singular matrix. For example, to eliminate Xl, x 2 and x 3 from the set:

X2"bX3--X4 <_~ 1

1

1

1

1

1

using the second, third, fourth and sixth constraints. This combination passes
Kolher's rule even though it is redundant but the singular matrix rule will detect
it: the submatrix

i - 2 2 - 1 0 0 0
1 - 1 - 1
1 1 1

which corresponds to the above combination is readily detected to be singular,
therefore the associated constraint is redundant. The reason why both Kohler's
and the singular matrix rules are safe and why they can be used simultaneously
is that both rules identify as redundant constraints which fall outside the set of
constraints Q generated by the Extreme Point Method. This set Q, which is a
subset of the set of constraints generated by Fourier's algorithm, contains the
projection. So, any constraint outside Q can be safely removed as it does not
contribute to the projection.

It should be noted that we do not attempt to identify all singular submatrices,
only those trivially singular as the one above. The effectiveness of the singular
matrix rule depends on the distribution of the zero entries in the matrix of the
coefficients of the variables to be eliminated in the given constraints. Obviously,
it performs best with sparse systems. For example, in a case of 52 constraints
over 12 variables with only 93 non-zero coefficients, FV with this rule returns
71142 constraints after the elimination of 10 variables. Without the rule, the size
of the output more than doubles to 153103 constraints.

For an application of these techniques to the case of CLP(R) see [9,10].

4. Extreme Point Method

The Extreme Point Method (EPM) is based on a formulation proposed in [14]
which generalizes the problem of linear programming. Let S = {Ax < b} and let

T. Huynh et al. / Projection o f polyhedral sets 301

V be the set of the variables to eliminate. The formulation is as follows. Let /t
be the polytope:

TA = 0 V j s.t. xj ~ V mJ

A: ~ Y'~A = 1
1

~ A > 0
defined by the combinations of constraints of S that eliminate the variables of V.
Note that the normalization of the A's ensures that A is bounded but does not
affect the projection. The remaining combinations define the function @:

ATA = Vi s.t. x, q~ V ol i

q~" ~ A T b _ _ f l ' '

where A is a column vector.
The solutions to the generalized linear program extr(~(A)), where extr()

denotes a function that computes the extreme points, determine a finite set of
constraints which defines the projection of S. The extreme points of q~(A) are
images of extreme points of A. A is bounded by definition and therefore has a
finite number of extreme points. To compute the extreme points of ~ (A) , we
first compute the extreme points of A and then map them via q~. However, not
all extreme points of A map onto extreme points of ~ (A) so some redundancy
will need to be eliminated from the images.

An interesting case occurs when A is empty, which means that the associated
system of constraints is unsolvable. In this case, the projection is the whole
space. This is very useful because we know immediately what the projection is.
With FV, many, and possible all, variables of V may have to be eliminated to
reach the same conclusion. In the worst case, FV may exhaust all memory and
abort before it finds the answer even though it is a trivial one.

The mechanism of E P M is illustrated by the following example. Let P be the
polyhedral set represented by:

12x I "~-X 2 - - 3 X 3 At-X 4 <- 1

-- 3 6 x I - 2 x 2 + 1 8 x 3 - 1 1 x 4 _~< - 2

18x I - x 2 + 9 x 3 - 7 x 4 < - 1

45Xl+4X2-18x3+13x 4 <_4
X 1 ~__0

x 2 > 0
and let V = {x1, x2}. The formulation of E P M is:

aot i = _ 3A 1 + 18A 2 + 9A 3 - 18A 4

q~: A 1 - l lA 2 - 7A 3 + 13A 4

A 1 - 2 A 2 - A 3 +4A 4

302 7". Huynh et al. / Projection of polyhedral sets

1 2 A 1 - 3 6 A 2 - 18A3 + 4 5 A 4 - A = 0

h I - 2 A 2 - A 3 + 4 A 4 --A6= 0

A: / A 1 +A 2 -t-A 3 +A4-t-A5 +A6 = 1

tA1 >__ 0, A 2 >__0, A 3 ~ 0, A 4>__0, A 5 >__0, A 6 ~ 0.

A has six extreme points:

~A {1-~ ' 0 , 0 , 0 , 6 _- ~ ,1} ,

~ B = { 3 , 1 1 ~, 0, 0, 0, ~},
1 1 ~ c = { l o , ~ o o ~}

{ , 9 5}
A D = 0, 0 , 0 , 50' 10' 25 '

1 2 ~E = {o, ~ ,o , 4 , 0 , ~},

~'F = {0, 0 , 1 1 ~, ~,o, ~},
which give:

3
~ (~ Z) ~--- {0~3 = 14' Of4~--- 1~, ~ = 1-~},

() { ~ =1}

I[~(~) { 9 11 1}
C ~--- 0~3~- '6 ' 0~4 ~--" 6 ' ~ = 6 '

~ (~) { 18 13 5~}
D = 0 / 3 = 50' 0 ~ 4 : ~ ' ~ = '

4 () { 1~ 3 6}
A E = 0 ~ 3 = ~ ' a 4 = 15' ~ = '

9

respectively. The projection of P on the {x3, x4}-plane is represented by

- - 3 x 3 +X 4< 1

9 x 3 --8x4_~< 1

9 x 3 - l l x 4 < 1

-- 1 8 x 3 + 1 3 x 4 < 4

6x 3 - -x 4 < 2

9x 3 -- 9x 4 < 3

As we remarked earlier, in general, not all extreme points of A map onto an
extreme point of ~ (A) ; some correspond to redundant constraints, like 9 X 3 - -

9 x 4 ~ 3 , and must be removed.
The key operation of EPM is clearly the computation of the extreme points.

In consequence, its efficiency will depend largely on the extreme point enumera-
tion algorithm chosen.

T. Huynh et al. / Projection of polyhedral sets 303

A natural algorithm for enumerating the vertices of A is based on the
Simplex tableau. Degeneracy is a well-known problem, and as the number of
extreme points can be enormous even with inputs of small size, this creates a
serious bottleneck problem for EPM particularly when the matrix of A is sparse.
For example, to eliminate x and y from

x+ y+z< _ 1

- x - y +z < 1
P:

- y + z < _ 1

- x +z < 1

we formulate

A 1 - A - A 4 - - 0

A" A 1 - A 2 - A 3 = 0

A I + A E + A 3 + A 4 = 1

A 1 >__ 0, A 2 ~__ 0, '~3 ~-- 0, A 4 ~ 0.

A has two extreme points, h A {1, 1 1 = 7 ,0 ,0} and hB = {3, 0, 7, 7}. hA is a
degenerate extreme point; there are more than one basis associated with it (we
call these different bases variants). In general, when the matrix of A is sparse
there will be many degenerate extreme points.

There are a number of algorithms designed for extreme point enumerat ion
such as those given in the survey of [19]. Unfortunately, they cannot be applied
directly for EPM, because they assume no degeneracy and require maintaining
the list of all extreme points until termination. This is not feasible in our
situation, as it has been shown that the number of variants caused by degeneracy
can be enormous [5]. In [7] we proposed an algorithm tailored for EPM.
Similarly to the one proposed in [2], it starts with an arbitrary basis as the root
and constructs a spanning tree of the edge-vertex graph in a breadth-first
search manner. But because we efficiently utilize the indices of the basic
variable associated with each node, we substantially reduce the storage required
and bypass completely the complex adjacency test used in [2]. Furthermore, this
algorithm integrates efficiently the algorithm proposed in [13] to minimize the
number of variants in case of degeneracy. For more details see [7].

5. Convex Hull Method

The two previous algorithms are based on algebraic manipulations of the
constraints; the Convex Hull Method (CHM) proposed in [16] takes a more
geometric approach. It works directly in the projection space and the projection

304 T. Huynh et al. / Projection of polyhedral sets

is incrementally built by successive refinements of an initial approximation given
by the convex hull of a number of its extreme points.

In the case of a polytope (bounded polyhedral set) one could use algorithms
from computational geometry [3]. That is, first generate the set of extreme
points of the polytope, project this set, eliminate the redundant projections and
finally construct the convex hull of the remaining points. A natural generaliza-
tion of this method to the unbounded case, however, leads to a far more
complex algorithm (see [6]). This is due to the fact that, in general, an
unbounded polyhedral set cannot be fully described as the convex hull of its
low-dimension faces such as extreme points and extreme rays whose projections
are easy to compute. Also we face two potential combinatorial explosions in the
generation of extreme points and in the generation of the intermediate faces
during the construction of the convex hull.

A main feature of CHM is that it transforms the unbounded case so that it
reduces to the conceptually simple bounded case. This is done b~r using the dual
formulation presented for EPM. This reformulation can also be used in the
bounded case as it leads to an alternative approximation when the size of the
output is unmanageable. Linear programming techniques are used to find the
extreme points in the projection space. Thus the complexity of the algorithm
depends essentially on the dimension of the output not the size of the input.
Furthermore, when the size of the projection is too large, we still get an
approximation which can be an upper or lower bound or both and whose size
can be user-defined.

It is important to state that contrary to many algorithms in computational
geometry, we do not make any assumptions on the structure of the input set.
CHM tests the input and performs necessary transformations so that the
projection proper is carried out on a solvable, bounded and full-dimensional set.
In the bounded case, CHM works directly in the projection space and the output
consists of the constraints corresponding to the facets of the projection without
any redundancy (the left-hand side of each inequality defines a hyperplane
supporting a facet; the equalities determine the affine hull of the projection).

Basically, there are two phases: the construction of an initial approximation
and the successive refinements. The initial approximation is a minimal full-di-
mensional convex hull of extreme points of the projection. The first two extreme
points are obtained by first minimizing and maximizing, subject to the input set
of constraints, an arbitrary variable of the projection space and then computing
the corresponding extreme points of the projection. Subsequent points are
obtained by optimizing the left-hand side of the equation of an arbitrary
hyperplane containing the already computed points. Once d + 1 distinct ex-
treme points are found, where d is the dimension of the projection space, the
initial convex hull is constructed, giving a first full-dimensional approximation.
Because at this stage, CHM works on a full-dimensional set of constraints, the

T. Huynh et al. / Projection of polyhedral sets 305

required full-dimensional first approximation of the projection can always be
computed with at most d + 1 points.

In the second phase, this initial approximation is refined by adding new
extreme points, if any. To search for new extreme points, each facet of the initial
convex hull is swept outward in search of new extreme points; that is, the left
hand side of the associated constraint is maximized subject to the input
constraints, and if a new point is found, the corresponding extreme point of the
projection is computed. Each time such a point is found, the associated con-
straint is removed and the constraints corresponding to the new facets of the
convex hull are added. If no new points are found, the constraint is marked
terminal, meaning that it corresponds to an actual facet of the projection and
does not require further processing. This process is repeated until all constraints
are found to be terminal.

For instance, we consider again the first example in the previous section
where the variables of the projection space are {x3, x4}. Maximizing and
minimizing x 3 give the two extreme points:

{X 3 -----2'1 X4 ~--- 1} a n d {x 3 = 2,1 x4 = 1 } .

The hyperplane (unique here) passing through these two points is:

- 6 x 3 + 4x 4 = 1.

Maximizing - 6x 3 + 4 x 4 gives another extreme point:

X 3

As d = 2, there are now enough points for the initial convex hull which is:

6x 3 - 4 x 4 < - 1
p~. 9

-- ~X 3 "l- ~ X 4 _~ 1

- 3x 3 +x 4 < 1

The left-hand side of the first constraint is maximized giving the new extreme
point:

{X3 ~--" 1-~, X 4 = ~3}.

The constraint is therefore discarded and the convex hull augmented by:
1

3x 3 - ~x 4 < 1 and 21x 3 - 23x 4 < 1,
9 generated with the new point. Repeat ing this process, - ~x 3 + ~ x 4 < 1, - 3 x 3

+x4 < 1 and 3x 3 1 _ - ~x 4 < 1 are found to be terminal. Maximizing 21x 3 - 23x 4
does give the new extreme point:

1 = 0}. X = ~, X4

21x 3 - 23x 4 < 1 is removed and

9X 3 -- l l x 4_< 1 and 9x 3 - - 8 X 4 _~ 1

306 T. Huynh et al. / Projection of polyhedral sets

are added which are found to be terminal. Consequently, the projection is:

- 18x3+ 13x4< 4

- 3 x 3 -}-X 4 _~ 1

P{'/3,x,): 6x 3 --X4_~ 2

9x 3 - l l x 4_< 1

9X 3 --8X4_~ 1

which contains no redundancy and has five extreme points.
When the projection is not bounded, C H M works on the dual formulation

used for EPM. The combined set of constraints defining ~ and A which is
bounded by definition (see previous section) forms the input set. C H M can now
be applied to that set as in the bounded case, the lambda's being the variables to
eliminate. As we saw above, C H M computes the constraints defining the
projection but in the process it also computes the extreme points o f the projection.
In the unbounded case, as we work in a dual space, it is those extreme points
that determine the constraints defining the projection as illustrated by the
following example. Let

--X -[-X 2 --X 3-{-X 4 - X 5 m_ 1

--X1-- 2X2-- 2X3 +Xa--X5 <_ 1

S: 2x 1 +XE+2X3--X4+X5 <_]

2X 1 '{-X 2 --X3-[-Xa--X5<_~ 1

- x 1 - x 2 + 2x 3 + x 4 - x 5 < 1

be the input set and V = {x 1, x 2} the set of variables to eliminate from S. S
represents an unbounded polygon and its projection on {x3, x4, x 5} is also
unbounded. The corresponding E P M formulation is:

-- A 1 - 2A 2 + 2A 3 -- A 4 + 2A 5 = a

-]-A 1 q--A 2 -Aa--[-A 4 -I-A5= fl

~ : A1 - A 2 q - A 3 - A 4 - A 5 = ' Y

A 1 "[-A 2 --[-A3-{--A4 + A s = b

--h - A 2 + 2 A 3 + 2 A a - A 5 0

Al_2A2 +A 3 + A 4 - A s = 0 A.
] A1 +A 2 +A 3 + A 4 + A s = l
/

~AI>---0, A2>---0, A3>__0 , A 4 ~ 0 , A5 ~-~ 0.

C H M actually computes the projection of the system consisting of the con-
straints of q~ and /t on the space of {a,/3, 7, b}. This, in fact, corresponds to

T. Huynh et al. / Projection of polyhedral sets 307

computing the image of A by ~ see [14]. The extreme points computed by
CHM are:

{ 3 1 1 1 } { _ _ 1 - - 1} {_4 _ 1} { 3 3 ' 3, 1, 1, 1, 1, 1 1 1 1}
3 ' 3 ' ~ ' ' 3 '

from which the constraints:
3 1 1
~X 3 "[- -~X 4 - - -~X 5 _~ 1

1
- - ~ X 3 -]-X 4 - - X 5_~ 1

4
~X 3 -[-X 4 - - X 5~__ 1

1 1 1
3X3 + -xX4 -- gX 5 _< 1

which define the projection are derived.
In practice, CHM works well when the dimension of the projection space is

small and the projection is bounded. As the dimension of the projection space
increases, the cost of constructing the intermediate convex hulls increases as
well. In particular, when the projection contains many extreme points the
situation becomes worse. For example, if d = 7 and the facet giving a new point
already has 30 extreme points, building all the new facets requires consideration
of (63~ = 593775 possible combinations!

Still, a main advantage of CHM is that it can be used to generate an
approximation of the projection if the number of facets becomes unmanageable.
Furthermore, if the projection is bounded, by storing the facets of the interme-
diate convex hulls in a queue, the approximation can be made to grow evenly in
all directions. In the unbounded case, however, we have no control over how the
approximation develops.

6. Redundancy removal via subsumption cone

Redundancy is a major problem in the computation of projections particularly
in FV and EPM. It can be so severe that the projection becomes unmanageable
due to the overwhelming number of redundant constraints generated during the
process. A naive way to remove redundancy is to test each constraint with a
linear program. If the set of constraints is large, however, this approach is
impractical. Also, because these tests must wait until all the constraints are
generated, memory may be exhausted beforehand. Here we introduce another
technique to remove redundancy on the fly, which utilizes the concept of the
subsumption cone described in [14]. The subsumption cone is essentially the
polar cone [20] but defined in a constructive manner (differences between the
two definitions appear in cases such as unsolvability which are not relevant
here). The cost of this technique depends mainly on the cost of generating the
subsumption cone. The theoretical limitations of this method are far more
severe than for the naive method, because it is a projection problem rather than

308 T. Huynh et aL / Projection of polyhedral sets

a linear programming problem. When the subsumption cone can be efficiently
generated, however, the problem of removing redundancy becomes far simpler.

Let S = {Ax < b} where A is an m x n matrix. The subsumption cone of SC(P)
of the polyhedral set P associated with S, is obtained by eliminating all Ai's and
the variable q from the system:

a = ATA

/3 = ATb "4- q

a > 0
q > 0

where a and ~t are column vectors of dimension n and m respectively and/3 is
a variable.

To compute SC(P), we first apply Gauss-Jordan reduction to the system of
homogeneous equations:

A T A - a = 0

ATb + q - /3 = 0

to derive the row-reduced echelon form with A,'s and q being the fixed variables
(a fixed variable has the first non-zero coefficient in a row after Gauss-Jordan
reduction). Because q appears only in the last equation, we can assume that it is
always a fixed variable. As for the Ai's, some may stay free after the reduction
depending on the matrix A. To eliminate the fixed variables we substitute them
into the inequalities A > 0 and q > 0 and then discard the equalities where they
are fixed. If any A,'s stay free, we have to eliminate them from the subsequent
system of inequalities via projection. The resulting system contains a set of
relations between the a i ' S and /3 which characterize all the constraints implied
byP .

For example, the subsumption cone of the polyhedral set P given as the first
example in section 4 is:

1 5 2 - - 13,'~
- - ~0~ 1 - - ~-0~ 3 - - ~ a 4 "1- y / J ~__ 0

1 1 " 4 - / 3 > 0

1 2 + 2 / 3 > 0 - - g a 3 - - gO/4

1 1 7 SC(P): "~OL 3 -~- ~ a 4 + ~-fffl >___ 0

1 ' 0

- - a 2 + / 3 > _ 0
1

i g a 3 "4- 1 / 3 >_> 0

To use the subsumption cone to remove redundancy from the description of a
projection P ' of P, we need to generate SC(P'). The formulation to compute

T. Huynh et aL / Projection of polyhedral sets 309

SC(P') is:

:~TA.i = 0 Vi s.t. x, ~ V

,~TA.j -- aj = 0 Vj s.t. xj ff V

ATb + q - f l = 0

a > O
~q>_O

where V is the set of variables to be eliminated. If SC(P) has already been
computed however, SC(P') can be obtained directly using the following result
that:

The subsumption cone SC(P') is derived from the subsumption cone SC(P)
of P by setting to zero, in the constraints of SC(P), the coefficient a,
corresponding to each variable x i to be eliminated.

This result, whose proof is straightforward from the construction of SC(P), is
very useful when P is projected on various subspaces. For instance, from the
subsumption cone given above we can derive immediately the subsumption cone
of the projection on the {x 3, x 4} plane as

sc(I"){x3,x,):

5 2 - - 13r'~
- - "60~3 - - g ~ 4 -I- y p __)2_ 0

1 "Jr > 0 - - ~O/3

1 2 2
- - ~ O l 3 - ~ O ~ 4 +~f l~__ 0

1 1 + + >_ 0

1 1 ..~ 2 ~ > 0
-ffa 3 + "~0~ 4

/3>0

3 + >__ 0

We know that if P is full-dimensional then each extreme ray of SC(P) is
associated with a constraint which defines a facet of P. Therefore, to test
whether a constraint in the description of a projection P ' is redundant, one
simply tests if that constraint can be derived from an extreme ray of SC(P'). If P
is not full-dimensional then SC(P) is not pointed and is not the convex closure
of its extreme rays. For example, if we are given:

x - y < O

- x + y <_ 0
P:

x < 1

- x _< 0

310 T. Huynh et aL / Projection of polyhedral sets

then the subsumption cone of P is:

sc(P): <_ o

which is an unbounded wedge. This case, which we will not address here,
requires more complex rules in order to use the subsumption cone to detect
redundancy. We find it easier to use the parametric representation.

Although the constraints defining a subsumption cone may consist of both
equalities and inequalities, the equalities are ignored in the course of testing
redundancy because they are satisfied by all points. If the dimension of a
subsumption cone is d, an extreme ray is defined by d - 1 inequalities of rank
d - 1. This can result in an expensive operation if it is applied systematically.
Instead, we use here a simpler and far cheaper test at the expense of complete-
ness. It simply counts the number of inequalities in the subsumption cone which
are satisfied as equalities by the coefficients and the right-hand-side constant of
the tested constraint. It is based on the remark that a constraint is redundant if
its coefficients and right-hand-side constant do not satisfy at least d - 1 of these
inequalities as equalities. For instance, in the first example given in section 4,

9

does not belong to any facet of SC(Pc'x3,x41) so it is redundant.
Note that in principle some points may satisfy this test and still correspond to

redundant constraints, even though it occurs only rarely in practice (see next
paragraph). Another main advantage of this technique is that redundancy can be
tested on the fly while the constraints are being generated. This reduces
significantly the memory usage as we will see later.

As a final remark, one could use the above result to improve Fourier's
algorithm. Once we have the subsumption cone for P, we have all the subsump-
tion cones for the intermediate projections generated by Fourier's algorithm.
Therefore, we can use these subsumption cones to remove redundancy at each
intermediate step. Even though there are cases where this method is very
efficient, in general it does not remove enough redundancy to avoid combinato-
rial explosions during the Fourier's steps. This is due to the type of redundan-
cies generated by Fourier's algorithm.

7. Performance evaluation

We now compare the performance of the three methods discussed in this
paper. We have implemented all three algorithms in C. The computations are
carried out on an IBM RS/6000 model 530 operating under AIX version 3. The
measurements are given in virtual CPU seconds. Each timing is the total time of
preprocessing and computing the projection. Note that, because of the nature of

T. Huynh et al. / Projection of polyhedral sets 311

the input (randomly generated sets of constraints) both FV and EPM give the
same set of constraints as output. To construct examples where FV generates
more constraints than EPM, one only needs to have FV generate a combination
of d + 1 (d is the number of variables to be eliminated) constraints which
corresponds to a non-trivially singular submatrix in the system of A.

The first test deals with sparse systems; that is, the matrix of the coefficients
of the variables to be eliminated is sparse. For this purpose we use the
interesting geometry application of constructing the convex hull of a given set of
points. The formulation of the problem comes form the observation that a point
with coordinates (x a, x 2 , . . . , x n) is in the convex hull of a set of m given points

{(0/1,1, 0 / 1 , 2 , ' ' ' ' 0 / 1 , n) , (0/2,1, a2,2 , 0/2,n) (o/m,1, 0/m,2 ,0/m,n)}

iff there exist A,'s such that the system

X 1 = ~ 0/1,iAi
i=1
m

X2 =" E 0/2,tI~i
i=1

m

Xn "~" E 0/n,i~l
i=1

m

E A i = I
/=1
a,>__0 Vi

is satisfied. The convex hull of the given points is an equivalent set of relations
solely between the xi's. It can be obtained by eliminating all the a,'s in the
above system. Hence, if m points are given then m variables are to be
eliminated. We can view this problem as computing the projection of the
polyhedral set represented by the above system on the {x 1, x2 , . . . , xn}-space.
Clearly from the formulation of the problem, if m is large the matrix of the
coefficients of the constraints becomes very sparse.

Table 1 summarizes the results of running these algorithms to compute the
convex hull of 12 samples of randomly generated points in two, three, and four
dimensions. The first row shows the number of given points. The second row
shows the number of constraints (facets) in the convex hull generated by all
three methods. Usually the outputs of both FV and EPM contain redundancy,
but due to the special structure of the matrix in this specific application they
both generate only non-redundant constraints. The fourth row gives the number
of vertices of the convex hull (this information is obtained as a by-product of
CHM only). The last three rows record the execution times for each method.

312 T. Huynh et al. / Projection of polyhedral sets

Table 1
Results of the convex hull problem

2 dimensions 3 dimensions 4 dimensions

Points 100 200 300 400 100 200 300 400 100 200 300 400
Facets 12 14 18 18 52 88 94 108 218 391 489 592
Vertices 12 14 18 18 28 46 49 56 47 79 94 115

FV 1.9 14.5 44.5 99.8 4.3 30.9 70.8 173.4 19.0 153.0 437.3 874.9
EPM 1.1 5.1 16.2 29.1 2.6 26.9 65.7 131.4 7.4 106.8 288.6 609.4
CHM 1.2 8.8 30.0 54.0 2.9 31.8 85.1 189.7 5.8 82.8 216.9 454.7

For sets of low dimension (2 or 3), EPM is the most efficient. This is because
the matrix associated with A (as defined in section 4) is nearly square: the
number of rows in the matrix of /t is equal to the number of points less the
dimension of the points space, and the number of columns is the number of
points; therefore, when the dimension is small, the matrix is nearly square. As
the dimension increases the number of columns also increases with respect to
the number of rows. Hence, the number of submatrices in /t grows accordingly.
This, together with the problem of degeneracy, slows down EPM when com-
pared to CHM as shown in the last four columns of the table (4 dimensions).

In the next test, we consider a set of constraints for which the associated
matrix is dense. This set is randomly generated and consists of 20 constraints
over 7 variables, and all the coefficients in the constraints are non-zero. It is
bounded and consequently so are its projections. Table 2 summarizes the results
of eliminating 2 to 5 variables by all three methods. The first row shows the
number of variables eliminated in each test. The second and third rows give
respectively the number of facets and the number of vertices in each projection.
The fourth row gives the number of constraints generated by CHM. Since the
projections are bounded, the output of CHM does not contain any redundancy,
which explains why the numbers in this row and in row 2 are identical. The fifth
row gives the number of constraints generated by both FV and EPM, which

Table 2
Results of projection where the input contains 20 constraints and 7 variables

Variables eliminated 2 3 4 5

Facets 170 158 99 26
Vertices 352 223 109 26
Constraints generated by CHM 170 158 99 26
Constraints generated by F V / E P M 300 669 1188 1462

FV 0.6 1.3 3.0 5.3
EPM 0.8 1.6 3.1 3.8
CHM 43.4 4.2 0.5 0.1

T. Huynh et al. / Projection of polyhedral sets 313

obviously contain many redundant constraints. The last three rows give the
execution times.

These results show that when only 2 or 3 variables are eliminated, FV and
EPM perform better than CHM and FV is the most efficient one. As mentioned
in section 5, it is very costly to construct convex hulls when the dimension of the
space is high. In this case, the dimension of the projection space is 5 (or 4) when
2 (or 3) variables are eliminated. Hence, CHM takes a long time to construct the
convex hull. Although CHM has the advantage of not generating any redundant
constraints, FV and EPM can achieve the same result in less time using the
subsumption cone, as will be shown next. As more variables are eliminated and
the dimension of the projection space decreases, CHM performance improves.
This is evident in the last two columns of the table. For instance, when 5
variables are eliminated CHM is 38 times faster than EPM and 53 times faster
than FV. CHM is at its best when the dimension of the projection is small; this
is well illustrated in [8] by examples of spatial reasoning where one is particu-
larly interested in projecting onto the 3-dimensional space of the coordinates.

Finally, we test the feasibility of using the subsumption cone to remove
redundancy in the projections. We use the polyhedral set of the previous
example as input and we run EPM with and without the subsumption cone to
generate the projections. The subsumption cone of the input set has 404
inequalities. Table 3 records the results. The first row shows the number of
variables eliminated. The second row shows the number of constraints with
redundancy generated by EPM. The third row shows the number of constraints
remaining after the subsumption cone was used to remove the redundant ones.
The fourth row gives the timings of EPM alone. The last row gives the total
timings of EPM plus generating the subsumption cone and using it to remove
redundancy. From the table one can see that a substantial amount of redun-
dancy is removed with the subsumption cone. In fact, here, all the redundant
constraints generated are removed. When compared with table 2, the first two
columns indicate that EPM can achieve the same results as CHM but in lesser
time even with the extra computation required for the subsumption cone. This
would be true for FV as well if we use the subsumption cone to remove
redundancy at the end. As an interesting remark, it is not true that removing
redundant constraints always costs more time than ignoring them. In fact

Table 3
Results of EPM with and without subsumption cone

Variables eliminated 2 3 4 5

Constraints generated with redundancy 300 669 1188 1462
Constraints generated without redundancy 170 158 99 26

EPM 0.8 1.6 3.1 3.8
EPM + subsumption cone 1.6 2.8 4.9 6.0

314 T. Huynh et al. / Projection of polyhedral sets

somet imes it is even faster . F o r example , we have one case w h e re E P M a lone
takes 17.2 seconds to gene ra t e 3155 cons t ra in ts in the pro jec t ion , whereas E P M
plus subsumpt ion cone gene ra t e s the same pro jec t ion wi thou t r e d u n d a n c y
(r e d u c e d to 50 const ra ints) in only 17 seconds. This is because the subsumpt ion
cone de tec t s r e d u n d a n t cons t ra in ts as soon as they are g e n e r a t e d and hence ,
e l iminates the t ime to a l locate m e m o r i e s for s tor ing them.

References

[1] R.J. Duffin, On Fourier's analysis of linear inequality systems, Math. Progr. Study 1 (1974)
71-95.

[2] M.E. Dyer and L.G. Proll, An algorithm for determining all extreme points of a convex
polytope, Math. Progr. 12 (1977) 81-96.

[3] H. Edelsbrunner, Algorithms in Computational Geometry (Springer, 1987).
[4] J.B.J. Fourier, reported in: Analyse des travaux de l'Acad6mie Royale des Sciences, pendant

l'ann6e 1824, Partie math6matique, Histoire de l'Acaddmie Royale des Sciences de l'Institut de
France 7 (1827) pp. 47-55. (Partial English translation in: D.A. Kohler, Translation of a
Report by Fourier on his work on Linear Inequalities, Opsearch 10 (1973) 38-42.

[5] T. Gal, On the structure of the set bases of a degenerate point, J. Optim. Theory Appl. 45
(1985) 577-589.

[6] I. Golan, Direct polyhedron projection algorithm, IBM Research Report, T.J. Watson
Research Center, RC 16969 (1991).

[7] T. Huynh and J.-L. Lassez, Extreme point enumeration applied to projection of polyhedral
sets, in preparation.

[8] T. Huynh, L. Joskowicz, C. Lassez and J.-L. Lassez, Reasoning about linear constraints using
parametric queries, in: Foundations of Software Technology and Theoretical Computer Science,
Lecture Notes in Computer Sciences vol. 472 (Springer, 1990).

[9] J. Jaffar, M.J. Maher, P.J. Stuckey and R.H.C. Yap, Output in CLP(R), to appear, FGCS'92.
[10] J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C. Yap, The CLP(R) language and system, to

appear, TOPLAS'92.
[11] Special issue on: Algorithms in Real Algebraic Geometry, J. Symbol. Comput. 5 (1988).
[12] D.A. Kohler, Projections of convex polyhedral sets, Operational Research Center Report,

ORC 67-29, University of California, Berkeley (1967).
[13] H.-J. Kruse, Degeneracy Graphs and the Neighborhood Problem, Lecture Notes in Economics

and Mathematical Systems No. 260 (Springer, 1986).
[14] J.-L. Lassez, Querying constraints, Proc. ACM Conf. on Principles of Database Systems,

Nashville (1990).
[15] J.-L. Lassez, T. Huynh and K. McAloon, Simplification and elimination of redundant

arithmetic constraints, Logic Programming: Proc. North American Conf. (MIT Press, 1989).
[16] C. Lassez and J.-L. Lassez, Quantifier elimination for conjunctions of linear constraints via a

convex hull algorithm, IBM Research Report, T.J. Watson Research Center, RC 16779
(1991), also in: Symbolic and Numerical Computation - Towards Integration, eds. Kapur and
Mundy (Academic Press).

[17] J.-L. Lassez and M.J. Maher, On Fourier's algorithm for linear arithmetic constraints, IBM
Research Report, T.J. Watson Research Center, RC 14114 (1988), to appear in J. Autom.
Reasoning.

[18] J.-L. Lassez and K. McAloon, A canonical form for generalized linear constraints, IBM
Research Report, T.J. Watson Research Center, RC 15004 (1989), to appear in J. Symbol.
Comput.

T. Huynh et al. / Projection of polyhedral sets 315

[19] T.H. Matheiss and D.S. Rubin, A survey and comparison of methods for finding all vertices
of convex polyhedral sets, Math. Oper. Res. 5 (1980) 167-185.

[20] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization (Wiley, 1988).
[21] R.H. Taylor and V.T. Rajan, The efficient computation of uncertainty spaces for sensor-based

robot planning IBM Research Report, T.J. Watson Research Center, RC 13998 (1988).

