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Projection of polyhedral sets is a fundamental operation in both geometry and symbolic 
computation. In most cases, however, it is not practically feasible to generate projections as 
the size of the output can be exponential in the size of the input. Even when the size of the 
output is manageable, we still face two serious problems: overwhelming redundancy and 
degeneracy. Here, we address these problems from a practical point of view. We discuss 
three algorithms based on algebraic and geometric techniques and we compare their 
performance in order to assess the feasibility of these approaches. 

1. Introduction 

Projection is a very basic operation in geometry, but as projection is also the 
geometric interpretation of the algebraic operat ion of variable elimination and 
of the logical operation of quantifier elimination, it is indeed a most fundamen-  
tal concept in symbolic computation (see papers and references in [11]). Fur ther  
motivations from AI and programming languages points of  view can be found in 
[14] and [8]. In principle, the projection of a polyhedral set can be easily 
achieved by quantifier (variable) elimination. In practice, the fact that the size of 
the representat ion of the projected image and of the intermediate  computations 
can be intractable is a serious limitation. 

We discuss here three algorithms for projection which do not require any 
particular hypothesis on the input polyhedral sets. The first two are algebraic in 
nature. The first one is based on modifications of the classic Fourier 's  elimina- 
tion algorithm and is efficient for small sparse systems. The second one uses a 
formulation of the problem called the Extreme Point Method [14] which works 
particularly well in dense systems (as opposed to Fourier's). The last algorithm 
exploits the geometric aspects of the projection operation. It computes the 
projection by successive approximations of the convex hull of its extreme points 
using linear programming techniques to find the points directly in the projection 
space. The complexity of this algorithm depends on the dimension and size of 
the projection and not on that of the input set. 
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In a first section we address the problem of constraints representation and 
present the concept of parametric form. Transforming an input set of con- 
straints into parametric form before starting the projection will provide some 
initial simplifications and also ensure that the input to the algorithms is a 
full-dimensional polyhedral set. As we shall see later, this can greatly simplify 
matters. 

In the next section, we describe the Fourier Variant algorithm (FV) which 
incorporates several heuristics to help reduce the number  of constraints gener- 
ated in the course of the projection by eliminating on the fly as many redundant  
constraints as possible. 

In the third section, we describe informally the Extreme Point Method (EPM) 
which is based on an algorithm to enumerate the extreme points (vertices) 
presented in [7]. One bottleneck of EPM is degeneracy; another problem is that 
the number  of vertices can be enormous even for small inputs. There are many 
vertex enumerat ion algorithms in the literature, but they require storing all 
vertices until termination and assume no degeneracy. The vertex enumeration 
algorithm used here not only minimizes the storage of the vertices but also 
integrates efficiently with Kruse's algorithm [13] to handle degeneracy. 

In the fourth section, we discuss the Convex Hull Method (CHM) [16]. A 
main feature of CHM is that it transforms the unbounded case so that it reduces 
to the conceptually simple bounded case. The projection is then computed by 
successive refinements of an initial approximation computed as the convex hull 
of a number  of extreme points of the projection along lines similar to those of 
[21]. If the size of the projection is too large to be fully computed, the algorithm 
still provides an approximation which can be an upper  or lower bound or both 
and whose size is user-defined. 

In the fifth section, we address the problem of redundancy removal. Redun- 
dancy is a very serious factor that accounts for the unmanageable size of the 
data at various stages of the projection. We show here that redundancy can be 
very efficiently removed in particular instances by using the concept of subsump- 
tion cone. The subsumption cone of a polyhedral set is a characterization of all 
constraints implied by the given set. Once the subsumption cone of the original 
polyhedral set is generated then the subsumption cone of any projected image 
can be derived directly from it. By using the subsumption cone as a filter, the 
testing of redundancy is simplified from a large linear program for each tested 
constraint to a straightforward evaluation. 

In the last section, we compare the runtime performance of the three 
algorithms on a number  of examples. It greatly depends on the type of con- 
straints given as input. In other words, no algorithms or methods are universally 
better. Issues often bypassed in the theoretical descriptions of algorithms such 
as redundancy, round-off errors and degeneracy are of paramount  importance. 
Also, we found that performance is greatly affected by code optimization, so the 
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design and implementation of a practical system is truly a major task at all 
levels. 

2. Parametric representation 

Let S = {Ax < b} be the set of inequalities describing a given polyhedral set P. 
A is the matrix of the coefficients of the variables in S and x and b are 
respectively column vectors of variables and constants. We denote Ai. the ith 
row and Aj  the j th  column of A. A constraint Ai.x < b i is an implicit equality if 
it can be replaced by Ai.x = b i without changing the semantics of S. P is 
full-dimensional if S does not contain any implicit equalities. If P is not 
full-dimensional, collecting all implicit equalities in S and applying Gauss-Jordan 
reduction give the set of equations {y = Ex' + c} which defines the affine hull of 
P. E and c are respectively a matrix and a column vector of constants. The 
variables of x', which form a subset of the variables of x, are called the 
parameters, and the variables of y are called the bound variables (y = x \ x ' ) .  By 
eliminating all the bound variables from the remaining inequalities of S, we 
obtain the parametric representation {A'x < b'} U {y = Ex' + c} where {A'x' < b'} 
is full-dimensional in the space of the parameters. 

Although not essential in order to compute the projection, a parametric 
representation has several advantages. First, if S initially contains implicit 
equalities, these can be used to eliminate some variables in a straightforward 
manner  by selecting bound variables from the set V of the variables to eliminate. 
The projection of P is {A'x' < b'} U { y ' - E ' x ' +  c'}, where y'  is a vector of 
variables of y which are not in V. Second, transforming a parametric representa- 
tion into canonical form [18] simply requires the removal of redundancies. The 
canonical form can help substantially reduce the number  of redundant  con- 
straints generated in the course of projection. Third, we know (e.g. [15]) that if S 
is in parametric form so is its projection. As we will see later, this property will 
allow us to better exploit the subsumption cone for redundancy removal. Finally, 
because the projection of a full-dimensional polyhedral set is also full-dimen- 
sional, the construction of the initial convex hull and its incremental refinements 
in CHM are greatly simplified. 

Obviously the price to pay for obtaining a parametric representation is the 
identification of all implicit equalities. The naive way consists in running, for 
each inequality Ai.x < b i in S, the following linear program: 

minimize Ai.x 

subject to Ax < h. 

If the opt imum returned by the above program is b,, then Ai.x _< b i is an implicit 
equality. This operation is very costly because it requires running as many linear 
programs as there are inequalities in S. Furthermore if, in fact, there are no 
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implicit equalities, all this work is wasted. What we need is a test that will first 
detect the presence of implicit equalities before attempting to identify them. To 
this end, we use the following formulation called the quasi-dual proposed in 
[14]: 

minimize ATb 
subject to ATA = 0, 

Y'.A = 1, 

A>0, 

where A is a column vector of variables. This formulation, in fact, corresponds 
to Fourier's algorithm, the A's being the multiplicators of the inequalities of S 
that eliminate all variables. When the above linear program returns a minimum 
of 0, S is solvable AND contains implicit equalities (this corresponds to the case 
when Fourier generates the tautology 0 _< 0). This is a key advantage of this 
method as the search for implicit equalities will be carried out only after it is 
ascertained that there exist some. Also, the fact that it is, at the same time, a 
test for solvability is of particular importance for constraint languages design 
where the solver is a main issue. If the quasi-dual is not solvable or if the 
minimum is positive then S is solvable and does not contain implicit equalities 
(the associated polyhedral set is full-dimensional). If, during the computation, 
ATb becomes negative then S is not solvable. A detailed description of this 
property of Fourier's algorithm can be found in [17]. 

When the existence of implicit equalities is detected, that is when min(ATb)  = 

0, the indices of the non-zero Ai's in the optimal solution point to a first 
minimal subset of implicit equalities in S. 

These implicit equalities are removed from S, Gauss-Jordan reduction is 
applied and the resulting bound variables are eliminated from the remaining 
inequalities. Once this is done, the quasi-dual is applied to the updated 
inequalities. The whole process is repeated until no more implicit equalities 
remain. 

In practice, this can still be expensive as, if S contains many implicit equali- 
ties, many executions of the quasi-dual are required. One improvement consists 
in trying to derive as many alternative optimal solutions as possible each time a 
quasi-dual detects the presence of implicit equalities. For instance, in one 
experiment where S consisted of 1819 constraints over 68 variables, simplifying S 
immediately after one subset of implicit equalities was found led to 29 execu- 
tions of the quasi-dual and took a total of 259 virtual CPU seconds to find all 
implicit equalities and rewrite S into parametric representation. On the other 
hand, by looking at the coefficients of the objective function, one can find 
immediately some further solutions. In that case, the process was reduced to 
only 6 executions of the quasi-dual in 67 seconds. The affine hull contained 58 
equalities and 690 inequalities remained before redundant constraints were 
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removed. A systematic search for all optimal solutions is unfortunately impracti- 
cal. Further research in this area is in progress. 

3. Fourier's Variant 

The Fourier's Variant (FV) we present here is a modification of Fourier's 
algorithm that incorporates three heuristics. The first one, given in [1], helps 
reduce the number of redundant constraints generated at each stage by selecting 
to eliminate first the variable that gives the smallest number of combinations. 
The second one is a rule proposed by Kohler [12] that restricts each combination 
to be generated with at most n + 1 initial constraints where n is the number of 
variables already eliminated (the rule takes effect only for n > 2). Although very 
simple, Kohler's rule helps reduce dramatically the number of redundant 
constraints generated. However, it does not remove all redundancies and, as is 
shown in the next example, using arbitrarily other techniques simultaneously can 
lead to erroneous results. We project 

x + y + z < l  
x - y + z < l  

P: 
- x + y + z < l  
- x - y + z < l  

on the {z}-plane. After eliminating x, we have 

y + z < l  

PC'y.=): z < 1 
z < l  

- y + z < l  

At this stage, Kohler's rule cannot detect any redundancies since only one 
variable has been eliminated. The second and third constraints are, however, 
both redundant and are removed giving 

y + z < l  
P(Y'~J: - y  + z < 1 

Eliminating y finally gives P(~j: {z _< 1}. This only remaining constraint being a 
combination of the four original ones is identified as redundant by Kohler's rule 
and is removed. As a result, the projection becomes the empty set which is 
obviously wrong. 

It is, however, possible to combine Kohler's rule with some other redundancy 
removal techniques. In particular, the singular matrix rule which we describe 
next forms our third heuristic. This rule is derived from the Extreme Point 
Method presented in the next section. The idea is that a constraint is redundant 
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X 1 -[-X3--X4<_~ 

- 2 x  I + x 3 - x 4 <  
P: 

2 x  1 --x3--}-x4~_~ 

--x2--x3--x4<_~ 

- -x  1 - - x 3 - - x 4  <_~ 

Fourier's algorithm generates 
2 

if the coefficients of the eliminated variables in the parent constraints form a 
singular matrix. For example, to eliminate Xl, x 2 and x 3 from the set: 

X2"bX3--X4 <_~ 1 

1 

1 

1 

1 

1 

using the second, third, fourth and sixth constraints. This combination passes 
Kolher's rule even though it is redundant but the singular matrix rule will detect 
it: the submatrix 

i - 2  2 - 1  0 0 0 
1 - 1  - 1  
1 1 1 

which corresponds to the above combination is readily detected to be singular, 
therefore the associated constraint is redundant. The reason why both Kohler's 
and the singular matrix rules are safe and why they can be used simultaneously 
is that both rules identify as redundant constraints which fall outside the set of 
constraints Q generated by the Extreme Point Method. This set Q, which is a 
subset of the set of constraints generated by Fourier's algorithm, contains the 
projection. So, any constraint outside Q can be safely removed as it does not 
contribute to the projection. 

It should be noted that we do not attempt to identify all singular submatrices, 
only those trivially singular as the one above. The effectiveness of the singular 
matrix rule depends on the distribution of the zero entries in the matrix of the 
coefficients of the variables to be eliminated in the given constraints. Obviously, 
it performs best with sparse systems. For example, in a case of 52 constraints 
over 12 variables with only 93 non-zero coefficients, FV with this rule returns 
71142 constraints after the elimination of 10 variables. Without the rule, the size 
of the output more than doubles to 153103 constraints. 

For an application of these techniques to the case of CLP(R) see [9,10]. 

4. Extreme Point Method 

The Extreme Point Method (EPM) is based on a formulation proposed in [14] 
which generalizes the problem of linear programming. Let S = {Ax < b} and let 
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V be the set of the variables to eliminate. The formulation is as follows. Let  /t 
be the polytope: 

TA = 0 V j  s.t. xj ~ V mJ 

A: ~ Y'~A = 1 
1 

~ A > 0  
defined by the combinations of  constraints of  S that eliminate the variables of  V. 
Note that the normalization of the A's ensures that A is bounded  but  does not 
affect the projection. The remaining combinations define the function @: 

ATA = Vi s.t. x, q~ V ol i 

q~" ~ A T b _ _  f l ' '  

where A is a column vector. 
The solutions to the generalized linear program extr(~(A)), where extr( ) 

denotes  a function that computes the extreme points, determine a finite set of 
constraints which defines the projection of  S. The extreme points of q~(A) are 
images of extreme points of A. A is bounded  by definition and therefore  has a 
finite number  of  extreme points. To compute  the extreme points of  ~ ( A ) ,  we 
first compute  the extreme points of A and then map them via q~. However,  not 
all extreme points of  A map onto extreme points of  ~ ( A )  so some redundancy 
will need to be eliminated from the images. 

An interesting case occurs when A is empty, which means that the associated 
system of constraints is unsolvable. In this case, the projection is the whole 
space. This is very useful because we know immediately what the projection is. 
With FV, many, and possible all, variables of  V may have to be eliminated to 
reach the same conclusion. In the worst case, FV may exhaust all memory and 
abort  before it finds the answer even though it is a trivial one. 

The mechanism of E P M  is illustrated by the following example. Let  P be the 
polyhedral set represented by: 

12x I "~-X 2 - - 3 X  3 At-X 4 <- 1 

--  3 6 x  I - 2 x  2 + 1 8 x  3 - 1 1 x  4 _~< - 2 

18x I - x  2 + 9 x  3 - 7 x 4 < - 1  

45Xl+4X2-18x3+13x 4 <_4 
X 1 ~__0 

x 2 > 0 
and let V = {x1, x2}. The formulation of E P M  is: 

aot i = _ 3A 1 + 18A 2 + 9A 3 - 18A 4 

q~: A 1 - l lA 2 - 7A 3 + 13A 4 

A 1 - 2 A  2 - A  3 +4A 4 
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1 2 A 1 -  3 6 A 2 -  18A3 + 4 5 A 4 - A  = 0 

h I - 2 A  2 - A  3 + 4 A  4 --A6= 0 

A:  / A 1 +A 2 -t-A 3 +A4-t-A5 +A6 = 1 

tA1 >__ 0,  A 2 >__0, A 3 ~ 0,  A 4>__0, A 5 >__0, A 6 ~  0.  

A has six extreme points: 

~A {1-~ ' 0 ,  0 ,  0 ,  6 _- ~ ,1} ,  

~ B = { 3 ,  1 1 ~, 0, 0, 0, ~}, 
1 1 ~ c = { l o , ~  o o ~} 

{ , 9  5} 
A D = 0,  0 ,  0 ,  50' 10' 25 ' 

1 2 ~E = {o, ~ ,o ,  4 , 0 ,  ~}, 

~'F = {0, 0 ,  1 1 ~, ~,o, ~}, 
which give: 

3 
~ ( ~ Z )  ~--- {0~3 = 14' Of4~--- 1~, ~ = 1-~}, 

( ) { ~ =1} 

I[~(~ ) { 9 11 1} 
C ~--- 0~3~- '6 '  0~4 ~--" 6 ' ~ = 6 ' 

~ ( ~  ) { 18 13 5~} 
D = 0 / 3 =  50' 0 ~ 4 : ~ '  ~ = ' 

4 (  ) { 1~ 3 6}  
A E  = 0 ~ 3 = ~ '  a 4 =  15' ~ = ' 

9 

respectively. The projection of P on the {x3, x4}-plane is represented by 

- - 3 x  3 +X 4< 1 

9 x  3 --8x4_~< 1 

9 x 3 -  l l x 4 <  1 

-- 1 8 x 3 +  1 3 x 4 <  4 

6x  3 - -x  4 < 2 

9x  3 -- 9x  4 <  3 

As we remarked earlier, in general, not all extreme points of A map onto an 
extreme point of ~ (A) ;  some correspond to redundant constraints, like 9 X  3 - -  

9 x  4 ~ 3 ,  and must be removed. 
The key operation of EPM is clearly the computation of the extreme points. 

In consequence, its efficiency will depend largely on the extreme point enumera- 
tion algorithm chosen. 
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A natural algorithm for enumerating the vertices of A is based on the 
Simplex tableau. Degeneracy is a well-known problem, and as the number  of 
extreme points can be enormous even with inputs of small size, this creates a 
serious bottleneck problem for EPM particularly when the matrix of A is sparse. 
For example, to eliminate x and y from 

x+ y+z< _  1 

- x - y  +z  < 1 
P: 

- y + z < _  1 

- x  +z  < 1 

we formulate 

A 1 - A  - A 4 - - 0  

A" A 1 - A 2 - A 3  = 0  

A I + A E + A 3 + A 4  = 1 

A 1 >__ 0, A 2 ~__ 0, '~3 ~-- 0, A 4 ~ 0. 

A has two extreme points, h A {1, 1 1 = 7 ,0 ,0}  and hB = {3, 0, 7, 7}. hA is a 
degenerate extreme point; there are more than one basis associated with it (we 
call these different bases variants). In general, when the matrix of A is sparse 
there will be many degenerate extreme points. 

There are a number of algorithms designed for extreme point enumerat ion 
such as those given in the survey of [19]. Unfortunately, they cannot be applied 
directly for EPM, because they assume no degeneracy and require maintaining 
the list of all extreme points until termination. This is not feasible in our 
situation, as it has been shown that the number of variants caused by degeneracy 
can be enormous [5]. In [7] we proposed an algorithm tailored for EPM. 
Similarly to the one proposed in [2], it starts with an arbitrary basis as the root 
and constructs a spanning tree of the edge-vertex graph in a breadth-first 
search manner. But because we efficiently utilize the indices of the basic 
variable associated with each node, we substantially reduce the storage required 
and bypass completely the complex adjacency test used in [2]. Furthermore,  this 
algorithm integrates efficiently the algorithm proposed in [13] to minimize the 
number  of variants in case of degeneracy. For more details see [7]. 

5. Convex Hull Method 

The two previous algorithms are based on algebraic manipulations of the 
constraints; the Convex Hull Method (CHM) proposed in [16] takes a more 
geometric approach. It works directly in the projection space and the projection 
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is incrementally built by successive refinements of an initial approximation given 
by the convex hull of a number of its extreme points. 

In the case of a polytope (bounded polyhedral set) one could use algorithms 
from computational geometry [3]. That is, first generate the set of extreme 
points of the polytope, project this set, eliminate the redundant  projections and 
finally construct the convex hull of the remaining points. A natural generaliza- 
tion of this method to the unbounded case, however, leads to a far more 
complex algorithm (see [6]). This is due to the fact that, in general, an 
unbounded polyhedral set cannot be fully described as the convex hull of its 
low-dimension faces such as extreme points and extreme rays whose projections 
are easy to compute. Also we face two potential combinatorial explosions in the 
generation of extreme points and in the generation of the intermediate faces 
during the construction of the convex hull. 

A main feature of CHM is that it transforms the unbounded case so that it 
reduces to the conceptually simple bounded case. This is done b~r using the dual 
formulation presented for EPM. This reformulation can also be used in the 
bounded case as it leads to an alternative approximation when the size of the 
output  is unmanageable.  Linear programming techniques are used to find the 
extreme points in the projection space. Thus the complexity of the algorithm 
depends essentially on the dimension of the output  not the size of the input. 
Furthermore,  when the size of the projection is too large, we still get an 
approximation which can be an upper  or lower bound or both and whose size 
can be user-defined. 

It is important to state that contrary to many algorithms in computational 
geometry, we do not make any assumptions on the structure of the input set. 
CHM tests the input and performs necessary transformations so that the 
projection proper is carried out on a solvable, bounded and full-dimensional set. 
In the bounded case, CHM works directly in the projection space and the output  
consists of the constraints corresponding to the facets of the projection without 
any redundancy (the left-hand side of each inequality defines a hyperplane 
supporting a facet; the equalities determine the affine hull of the projection). 

Basically, there are two phases: the construction of an initial approximation 
and the successive refinements. The initial approximation is a minimal full-di- 
mensional convex hull of extreme points of the projection. The first two extreme 
points are obtained by first minimizing and maximizing, subject to the input set 
of constraints, an arbitrary variable of the projection space and then computing 
the corresponding extreme points of the projection. Subsequent points are 
obtained by optimizing the left-hand side of the equation of an arbitrary 
hyperplane containing the already computed points. Once d + 1 distinct ex- 
treme points are found, where d is the dimension of the projection space, the 
initial convex hull is constructed, giving a first full-dimensional approximation. 
Because at this stage, CHM works on a full-dimensional set of constraints, the 
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required full-dimensional first approximation of  the projection can always be 
computed with at most d + 1 points. 

In the second phase, this initial approximation is refined by adding new 
extreme points, if any. To search for new extreme points, each facet of the initial 
convex hull is swept outward in search of  new extreme points; that is, the left 
hand side of  the associated constraint is maximized subject to the input 
constraints, and if a new point is found, the corresponding extreme point of  the 
projection is computed.  Each time such a point is found, the associated con- 
straint is removed and the constraints corresponding to the new facets of the 
convex hull are added. If no new points are found, the constraint is marked 
terminal, meaning that it corresponds to an actual facet of the projection and 
does not require further processing. This process is repeated  until all constraints 
are found to be  terminal. 

For  instance, we consider again the first example in the previous section 
where the variables of the projection space are {x3, x4}. Maximizing and 
minimizing x 3 give the two extreme points: 

{X 3 -----2'1 X4 ~--- 1} a n d  {x 3 = 2,1 x4  = 1 } .  

The hyperplane (unique here) passing through these two points is: 

- 6 x  3 + 4x 4 = 1. 

Maximizing - 6x 3 + 4 x  4 gives another  extreme point: 

X 3 

As d = 2, there are now enough points for the initial convex hull which is: 

6x 3 - 4 x 4 <  - 1 
p~. 9 

-- ~X 3 "l- ~ X  4 _~ 1 

- 3x 3 +x  4 < 1 

The left-hand side of the first constraint is maximized giving the new extreme 
point: 

{X3 ~--" 1-~, X 4 =  ~3}. 

The constraint is therefore discarded and the convex hull augmented  by: 
1 

3x 3 - ~x 4 < 1 and 21x 3 - 23x 4 < 1, 
9 generated with the new point. Repeat ing this process, - ~x 3 + ~ x  4 < 1, - 3 x  3 

+x4  < 1 and 3x 3 1 _ - ~x 4 < 1 are found to be terminal. Maximizing 21x 3 - 23x 4 
does give the new extreme point: 

1 = 0}. X = ~,  X4 

21x 3 - 23x 4 < 1 is removed and 

9X 3 -- l l x  4_< 1 and 9x 3 - -  8 X  4 _~ 1 
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are added which are found to be terminal. Consequently, the projection is: 

- 18x3+ 13x4< 4 

- 3 x  3 -}-X 4 _~ 1 

P{'/3,x,): 6x 3 --X4_~ 2 

9x 3 -  l l x  4_< 1 

9X 3 --8X4_~ 1 

which contains no redundancy and has five extreme points. 
When  the projection is not bounded,  C H M  works on the dual formulation 

used for EPM. The combined set of constraints defining ~ and A which is 
bounded  by definition (see previous section) forms the input set. C H M  can now 
be applied to that set as in the bounded  case, the lambda's  being the variables to 
eliminate. As we saw above, C H M  computes  the constraints defining the 
projection but  in the process it also computes the extreme points o f  the projection. 
In the unbounded  case, as we work in a dual space, it is those extreme points 
that determine the constraints defining the projection as illustrated by the 
following example. Let  

--X -[-X 2 --X 3-{-X 4 - X  5 m_ 1 

--X1-- 2X2-- 2X3 +Xa--X5 <_ 1 

S: 2x 1 +XE+2X3--X4+X5 <_ ] 

2X 1 '{-X 2 --X3-[-Xa--X5<_~ 1 

- x  1 - x  2 + 2x 3 + x  4 - x  5 < 1 

be the input set and V = {x 1, x 2} the set of variables to eliminate from S. S 
represents  an unbounded  polygon and its projection on {x3, x4, x 5} is also 
unbounded.  The corresponding E P M  formulation is: 

-- A 1 - 2A 2 + 2A 3 -- A 4 + 2A 5 = a 

-]-A 1 q--A 2 -Aa--[-A 4 -I-A5= fl 

~ :  A1 - A  2 q - A 3 - A  4 - A  5 = ' Y  

A 1 "[-A 2 --[-A3-{--A4 + A s = b  

--h - A 2 + 2 A 3 + 2 A a - A  5 0 

Al_2A2 +A 3 + A 4 - A s = 0  A. 
] A1 +A 2 +A 3 + A 4 + A s = l  
/ 

~AI>---0, A2>---0, A3>__0 , A 4 ~ 0 ,  A5 ~-~ 0. 

C H M  actually computes  the projection of the system consisting of  the con- 
straints of  q~ and /t on the space of  {a,/3,  7, b}. This, in fact, corresponds to 
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computing the image of A by ~ see [14]. The extreme points computed by 
CHM are: 

{ 3 1  1 1 }  { _ _ 1  - -  1} {_4  _ 1} { 3 3 '  3, 1, 1, 1, 1, 1 1 1 1} 
3 '  3 '  ~ '  ' 3 '  

from which the constraints: 
3 1 1 
~X 3 "[- -~X 4 - -  -~X 5 _~ 1 

1 
- - ~ X  3 -]-X 4 - - X  5_~ 1 

4 
~X 3 -[-X 4 - - X  5~__ 1 

1 1 1 
3X3 + -xX4 -- gX 5 _< 1 

which define the projection are derived. 
In practice, CHM works well when the dimension of the projection space is 

small and the projection is bounded. As the dimension of the projection space 
increases, the cost of constructing the intermediate convex hulls increases as 
well. In particular, when the projection contains many extreme points the 
situation becomes worse. For example, if d = 7 and the facet giving a new point 
already has 30 extreme points, building all the new facets requires consideration 
of (63~ = 593775 possible combinations! 

Still, a main advantage of CHM is that it can be used to generate an 
approximation of the projection if the number of facets becomes unmanageable.  
Furthermore,  if the projection is bounded, by storing the facets of the interme- 
diate convex hulls in a queue, the approximation can be made to grow evenly in 
all directions. In the unbounded case, however, we have no control over how the 
approximation develops. 

6. Redundancy removal via subsumption cone 

Redundancy is a major problem in the computation of projections particularly 
in FV and EPM. It can be so severe that the projection becomes unmanageable 
due to the overwhelming number  of redundant  constraints generated during the 
process. A naive way to remove redundancy is to test each constraint with a 
linear program. If the set of constraints is large, however, this approach is 
impractical. Also, because these tests must wait until all the constraints are 
generated, memory may be exhausted beforehand. Here we introduce another 
technique to remove redundancy on the fly, which utilizes the concept of the 
subsumption cone described in [14]. The subsumption cone is essentially the 
polar cone [20] but defined in a constructive manner  (differences between the 
two definitions appear in cases such as unsolvability which are not relevant 
here). The cost of this technique depends mainly on the cost of generating the 
subsumption cone. The theoretical limitations of this method are far more 
severe than for the naive method, because it is a projection problem rather than 
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a linear programming problem. When the subsumption cone can be efficiently 
generated, however, the problem of removing redundancy becomes far simpler. 

Let S = {Ax < b} where A is an m x n matrix. The subsumption cone of SC(P) 
of the polyhedral set P associated with S, is obtained by eliminating all Ai's and 
the variable q from the system: 

a = ATA 

/3 = ATb "4- q 

a > 0  
q > 0  

where a and ~t are column vectors of dimension n and m respectively and/3 is 
a variable. 

To compute SC(P), we first apply Gauss-Jordan reduction to the system of 
homogeneous equations: 

A T A -  a = 0 

ATb + q - /3  = 0  

to derive the row-reduced echelon form with A,'s and q being the fixed variables 
(a fixed variable has the first non-zero coefficient in a row after Gauss-Jordan 
reduction). Because q appears only in the last equation, we can assume that it is 
always a fixed variable. As for the Ai's, some may stay free after the reduction 
depending on the matrix A. To eliminate the fixed variables we substitute them 
into the inequalities A > 0 and q > 0 and then discard the equalities where they 
are fixed. If any A,'s stay free, we have to eliminate them from the subsequent 
system of inequalities via projection. The resulting system contains a set of 
relations between the a i ' S  and /3 which characterize all the constraints implied 
byP .  

For example, the subsumption cone of the polyhedral set P given as the first 
example in section 4 is: 

1 5 2 - -  13,'~ 
- -  ~0~ 1 - -  ~-0~ 3 - -  ~ a  4 "1- y / J  ~__ 0 

1 1 " 4 - / 3 > 0  

1 2 + 2 / 3 > 0  - -  g a  3 - -  gO/4 

1 1 7 SC(P): "~OL 3 -~- ~ a  4 + ~-fffl >___ 0 

1 ' 0 

- - a  2 + / 3 > _ 0  
1 

i g a 3  "4- 1 / 3  >_> 0 

To use the subsumption cone to remove redundancy from the description of a 
projection P '  of P, we need to generate SC(P').  The formulation to compute 
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SC(P')  is: 

:~TA.i = 0 Vi s.t. x, ~ V 

,~TA.j -- aj = 0 Vj s.t. xj ff V 

ATb + q - f l  = 0  

a > O  
~q>_O 

where V is the set of variables to be eliminated. If SC(P) has already been 
computed however, SC(P')  can be obtained directly using the following result 
that: 

The subsumption cone SC(P')  is derived from the subsumption cone SC(P) 
of P by setting to zero, in the constraints of SC(P), the coefficient a, 
corresponding to each variable x i to be eliminated. 

This result, whose proof is straightforward from the construction of SC(P), is 
very useful when P is projected on various subspaces. For instance, from the 
subsumption cone given above we can derive immediately the subsumption cone 
of the projection on the {x 3, x 4} plane as 

sc(I"){x3,x,): 

5 2 - -  13r'~ 
- -  "60~3 - -  g ~ 4  -I- y p  __)2_ 0 

1 "Jr > 0 - -  ~O/3 

1 2 2 
- - ~ O l  3 - ~ O ~  4 +~f l~__  0 

1 1 + + >_ 0 

1 1 ..~ 2 ~  > 0 
-ffa 3 + "~0~ 4 

/3>0 

3 + >__ 0 

We know that if P is full-dimensional then each extreme ray of SC(P) is 
associated with a constraint which defines a facet of P. Therefore, to test 
whether a constraint in the description of a projection P '  is redundant,  one 
simply tests if that constraint can be derived from an extreme ray of SC(P').  If P 
is not full-dimensional then SC(P) is not pointed and is not the convex closure 
of its extreme rays. For example, if we are given: 

x - y < O  

- x + y  <_ 0 
P: 

x < 1  

- x  _< 0 
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then the subsumption cone of P is: 

sc(P): <_ o 

which is an unbounded wedge. This case, which we will not address here, 
requires more complex rules in order to use the subsumption cone to detect 
redundancy. We find it easier to use the parametric representation. 

Although the constraints defining a subsumption cone may consist of both 
equalities and inequalities, the equalities are ignored in the course of testing 
redundancy because they are satisfied by all points. If the dimension of a 
subsumption cone is d, an extreme ray is defined by d - 1 inequalities of rank 
d - 1. This can result in an expensive operation if it is applied systematically. 
Instead, we use here a simpler and far cheaper test at the expense of complete- 
ness. It simply counts the number of inequalities in the subsumption cone which 
are satisfied as equalities by the coefficients and the right-hand-side constant of 
the tested constraint. It is based on the remark that a constraint is redundant  if 
its coefficients and right-hand-side constant do not satisfy at least d - 1 of these 
inequalities as equalities. For instance, in the first example given in section 4, 

9 

does not belong to any facet of SC(Pc'x3,x41) so it is redundant.  
Note that in principle some points may satisfy this test and still correspond to 

redundant  constraints, even though it occurs only rarely in practice (see next 
paragraph). Another  main advantage of this technique is that redundancy can be 
tested on the fly while the constraints are being generated. This reduces 
significantly the memory usage as we will see later. 

As a final remark, one could use the above result to improve Fourier's 
algorithm. Once we have the subsumption cone for P, we have all the subsump- 
tion cones for the intermediate projections generated by Fourier's algorithm. 
Therefore, we can use these subsumption cones to remove redundancy at each 
intermediate step. Even though there are cases where this method is very 
efficient, in general it does not remove enough redundancy to avoid combinato- 
rial explosions during the Fourier's steps. This is due to the type of redundan- 
cies generated by Fourier's algorithm. 

7. Performance evaluation 

We now compare the performance of the three methods discussed in this 
paper. We have implemented all three algorithms in C. The computations are 
carried out on an IBM RS/6000  model 530 operating under  AIX version 3. The 
measurements  are given in virtual CPU seconds. Each timing is the total time of 
preprocessing and computing the projection. Note that, because of the nature of 
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the input (randomly generated sets of constraints) both FV and EPM give the 
same set of constraints as output.  To construct examples where FV generates 
more constraints than EPM, one only needs to have FV generate a combination 
of d + 1 (d is the number of variables to be eliminated) constraints which 
corresponds to a non-trivially singular submatrix in the system of A. 

The first test deals with sparse systems; that is, the matrix of the coefficients 
of the variables to be eliminated is sparse. For this purpose we use the 
interesting geometry application of constructing the convex hull of a given set of 
points. The formulation of the problem comes form the observation that a point 
with coordinates ( x  a, x 2 , . . . ,  x n) is in the convex hull of a set of m given points 

{(0/1,1, 0 / 1 , 2 , ' ' ' ' 0 / 1 , n ) ,  (0/2,1, a2,2 . . . .  , 0/2,n) . . . . .  (o/m,1, 0/m,2 . . . .  ,0/m,n)} 

iff there exist A,'s such that the system 

X 1 = ~ 0/1,iAi 
i=1 
m 

X2 =" E 0/2,tI~i 
i=1 

m 

Xn "~" E 0/n,i~l 
i=1 

m 

E A i = I  
/=1 
a,>__0 Vi 

is satisfied. The convex hull of the given points is an equivalent set of relations 
solely between the xi's. It can be obtained by eliminating all the a,'s in the 
above system. Hence, if m points are given then m variables are to be 
eliminated. We can view this problem as computing the projection of the 
polyhedral set represented by the above system on the {x 1, x2 , . . . ,  xn}-space. 
Clearly from the formulation of the problem, if m is large the matrix of the 
coefficients of the constraints becomes very sparse. 

Table 1 summarizes the results of running these algorithms to compute the 
convex hull of 12 samples of randomly generated points in two, three, and four 
dimensions. The first row shows the number  of given points. The second row 
shows the number  of constraints (facets) in the convex hull generated by all 
three methods. Usually the outputs of both FV and EPM contain redundancy, 
but due to the special structure of the matrix in this specific application they 
both generate only non-redundant  constraints. The fourth row gives the number  
of vertices of the convex hull (this information is obtained as a by-product of 
CHM only). The last three rows record the execution times for each method.  
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Table 1 
Results of the convex hull problem 

2 dimensions 3 dimensions 4 dimensions 

Points 100 200 300 400 100 200 300 400 100 200 300 400 
Facets 12 14 18 18 52 88 94 108 218 391 489 592 
Vertices 12 14 18 18 28 46 49 56 47 79 94 115 

FV 1.9 14.5 44.5 99.8 4.3 30.9 70.8 173.4 19.0 153.0 437.3 874.9 
EPM 1.1 5.1 16.2 29.1 2.6 26.9 65.7 131.4 7.4 106.8 288.6 609.4 
CHM 1.2 8.8 30.0 54.0 2.9 31.8 85.1 189.7 5.8 82.8 216.9 454.7 

For sets of low dimension (2 or 3), EPM is the most efficient. This is because 
the matrix associated with A (as defined in section 4) is nearly square: the 
number  of rows in the matrix of /t is equal to the number  of points less the 
dimension of the points space, and the number of columns is the number of 
points; therefore, when the dimension is small, the matrix is nearly square. As 
the dimension increases the number of columns also increases with respect to 
the number of rows. Hence, the number of submatrices in /t grows accordingly. 
This, together with the problem of degeneracy, slows down EPM when com- 
pared to CHM as shown in the last four columns of the table (4 dimensions). 

In the next test, we consider a set of constraints for which the associated 
matrix is dense. This set is randomly generated and consists of 20 constraints 
over 7 variables, and all the coefficients in the constraints are non-zero. It is 
bounded and consequently so are its projections. Table 2 summarizes the results 
of eliminating 2 to 5 variables by all three methods. The first row shows the 
number of variables eliminated in each test. The second and third rows give 
respectively the number of facets and the number of vertices in each projection. 
The fourth row gives the number  of constraints generated by CHM. Since the 
projections are bounded,  the output  of CHM does not contain any redundancy, 
which explains why the numbers in this row and in row 2 are identical. The fifth 
row gives the number  of constraints generated by both FV and EPM, which 

Table 2 
Results of projection where the input contains 20 constraints and 7 variables 

Variables eliminated 2 3 4 5 

Facets 170 158 99 26 
Vertices 352 223 109 26 
Constraints generated by CHM 170 158 99 26 
Constraints generated by F V / E P M  300 669 1188 1462 

FV 0.6 1.3 3.0 5.3 
EPM 0.8 1.6 3.1 3.8 
CHM 43.4 4.2 0.5 0.1 
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obviously contain many redundant constraints. The last three rows give the 
execution times. 

These results show that when only 2 or 3 variables are eliminated, FV and 
EPM perform better than CHM and FV is the most efficient one. As mentioned 
in section 5, it is very costly to construct convex hulls when the dimension of the 
space is high. In this case, the dimension of the projection space is 5 (or 4) when 
2 (or 3) variables are eliminated. Hence, CHM takes a long time to construct the 
convex hull. Although CHM has the advantage of not generating any redundant 
constraints, FV and EPM can achieve the same result in less time using the 
subsumption cone, as will be shown next. As more variables are eliminated and 
the dimension of the projection space decreases, CHM performance improves. 
This is evident in the last two columns of the table. For instance, when 5 
variables are eliminated CHM is 38 times faster than EPM and 53 times faster 
than FV. CHM is at its best when the dimension of the projection is small; this 
is well illustrated in [8] by examples of spatial reasoning where one is particu- 
larly interested in projecting onto the 3-dimensional space of the coordinates. 

Finally, we test the feasibility of using the subsumption cone to remove 
redundancy in the projections. We use the polyhedral set of the previous 
example as input and we run EPM with and without the subsumption cone to 
generate the projections. The subsumption cone of the input set has 404 
inequalities. Table 3 records the results. The first row shows the number of 
variables eliminated. The second row shows the number of constraints with 
redundancy generated by EPM. The third row shows the number of constraints 
remaining after the subsumption cone was used to remove the redundant ones. 
The fourth row gives the timings of EPM alone. The last row gives the total 
timings of EPM plus generating the subsumption cone and using it to remove 
redundancy. From the table one can see that a substantial amount of redun- 
dancy is removed with the subsumption cone. In fact, here, all the redundant 
constraints generated are removed. When compared with table 2, the first two 
columns indicate that EPM can achieve the same results as CHM but in lesser 
time even with the extra computation required for the subsumption cone. This 
would be true for FV as well if we use the subsumption cone to remove 
redundancy at the end. As an interesting remark, it is not true that removing 
redundant constraints always costs more time than ignoring them. In fact 

Table 3 
Results of EPM with and without subsumption cone 

Variables eliminated 2 3 4 5 

Constraints generated with redundancy 300 669 1188 1462 
Constraints generated without redundancy 170 158 99 26 

EPM 0.8 1.6 3.1 3.8 
EPM + subsumption cone 1.6 2.8 4.9 6.0 
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somet imes  it is even  faster .  F o r  example ,  we have one  case w h e re  E P M  a lone  
takes  17.2 seconds  to gene ra t e  3155 cons t ra in ts  in the  pro jec t ion ,  whereas  E P M  
plus subsumpt ion  cone  gene ra t e s  the  same pro jec t ion  wi thou t  r e d u n d a n c y  
( r e d u c e d  to 50 const ra ints)  in only 17 seconds.  This  is because  the  subsumpt ion  
cone  de tec t s  r e d u n d a n t  cons t ra in ts  as soon  as they  are  g e n e r a t e d  and hence ,  
e l iminates  the  t ime to a l locate  m e m o r i e s  for  s tor ing them.  
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