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Exercise 1: Associativity (25 points)

For the this exercise, you will look at multiplication of 2 by 2 matrices containing 32-bits integers. Remember
that multiplication of such matrices is defined as follows:

AB = C ⇐⇒ ∀ 1 ≤ i ≤ 2, 1 ≤ k ≤ 2. Cik =
2∑

j=1
Aij ·Bjk

Also note that 32-bits integers form a commutative ring, meaning that both addition and multiplication are
associative and commutative, and that multiplication distributes over addition.

Question 1: Definition (5 points)

State the associative property for matrix multiplication.

Answer

(Am×nBn×p)Cp×q = Am×n(Bn×pCp×q)

For all Am×n, Bn×p and Cp×q matrices.

Question 2: Proof of associativity (15 points)

Prove that multiplication of 32-bits integer matrices of dimension 2 by 2 is associative.

Hint: To show that two matrices X and Y are equal, you may show that for all indexes i and j that Xij and
Yij are equal.

Answer

Let A, B and C be arbritrary 32-bits integer matrices of dimension 2 by 2. Let i ∈ [1, 2], l ∈ [1, 2] be arbitrary
indexes.

We show that ((AB)C)il = (A(BC))il.
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((AB)C)il =
2∑

k=1
(AB)ik · Ckl Definition of matrix multiplication

=
2∑

k=1
(

2∑
j=1

(Aij ·Bjk)) · Ckl Definition of matrix multiplication

=
2∑

k=1

2∑
j=1

((Aij ·Bjk) · Ckl) Distributivity of multiplication

=
2∑

j=1

2∑
k=1

((Aij ·Bjk) · Ckl) Associativity and commutativity of addition

=
2∑

j=1

2∑
k=1

(Aij · (Bjk · Ckl)) Associativity of multiplication

=
2∑

j=1
Aij ·

2∑
k=1

(Bjk · Ckl) Distributivity of multiplication

=
2∑

j=1
Aij · (BC)jl Definition of matrix multiplication

= (A(BC))il Definition of matrix multiplication

QED

Question 3: Associativity in parallel programming (5 points)

Why is associativity interesting in the context of parallel programming?

1. Associative operations always have efficient lock-free implementations.

2. The order of parameters of an associative operation can be freely swapped, giving better latency.

3. Associativity opens up possibilities to balance work.

4. Associative operations are more efficiently executed on Intel processors.
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Exercise 2: Parallelizing Fold with Minus (25 points)

Let a be an Array[Int]. We are interested in the value of acc computed by the following piece of code:

var acc = 0
for(i <- (a.length - 1) to 0 by (-1))

acc = a(i) - acc

For example, with a = Array(4, 3, 6, 2) we obtain acc = 4-(3-(6-(2-0))) = 5.

Question 1 (10 points)

Complete the template shown below so that the value of acc returned by the template is same as that
computed by the above code snippet. For you reference, a.zipWithIndex returns a new array consisting of
all elements of a paired with their index. Eg. Array(1, 2, 5).zipWithIndex = Array((1, 0), (2, 1),
(5, 2))

val acc = a.zipWithIndex
.map{ case (value, index) =>

if(index % 2 == 0) value
else -value

}.sum

Question 2 (10 points)

We are now interested by a more efficient way of computing acc, which combines the two traversals of the
array and make the traversal in parallel. For that, we will use the parallel construct we saw in the lectures.
For your reference, you will below an implementation of the parallel construct. Note that t = Task { op
} creates a new thread t to execute op, and t.join() waits and returns the result of op when t finishes.

def parallel[A, B](op1: =>A, op2: =>B): (A, B) = {
val res1 = Task { op1 }
val res2 = op2
(res1.join(), res2)

}

Complete the code snippet shown below so that computeAcc(a, 0, a.length) returns the value of
acc. The function may recursively call itself on an array segment between indices start (inclusive)
and end (exclusive). Some input/output examples: computeAcc(Array(1,2,7,13,5), 0, 5) = -2
computeAcc(Array(1,2,7,13,5), 1, 4) = -8
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def computeAcc(a: Array[Int], start: Int, end: Int): Int = {
if(end - start == 1) {

if(start % 2 == 0) a[start]
else -a[start]

} else {
val mid = (start + end) / 2
val (lacc, racc) = parallel(computeAcc(a, start, mid), computeAcc(a, mid, end))
lacc + racc

}
}

Question 3 Suppose we call computeAcc with the following arguments:

computeAcc(Array(112, 97, 114, 97, 108, 108, 101, 108), 0, 8)

How many Tasks will be created when the above described implementation of parallel is used?

Number of tasks = 7. In general, n -1 tasks will be created for a array of size n. (Remember the there is no
threshold in this setting). The number of tasks created is same as the number of internal nodes in a complete
binary tree with n leaves, where leaves correspond to the case end - start == 1.
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Exercise 3: Parallel Quick Sort (25 points)

In this exercise, you are required to design and analyze a parallel version of the quick sort algorithm. Consider
the function qsort shown below that implements a sequential quick sort algorithm for sorting (in ascending
order) a list of Int.

def qsort(list: List[Int]): List[Int] = {
if (list.size <= 1) list
else {

val (smaller, eqs, bigger) = partition(list, choosePivot(list))
qsort(smaller) ++ eqs ++ qsort(bigger)

}
}

A brief explanation of the quick sort algorithm

(a) If the input list has zero or one element, the algorithm returns the list as it is.

(b) Otherwise, the algorithm chooses an element of the input list referred to as the pivot.

(c) It then partitions the input list into three parts such that the first part (smaller) contains all elements
smaller than the pivot, the second part (eqs) contains all elements equal to the pivot, and the last part
(bigger) contains all elements greater than the pivot. Note that the size of the parts may depend on
the choice of the pivot, and may not necessarily be equal.

(d) Finally, the algorithm recursively sorts the first and the last parts, and concatenates the results.

If the pivot is chosen arbitrarily, the depth of the qsort algorithm is O(n2) in the worst case, for a list of size
n. Now say, instead of arbitrarily choosing the pivot, we always choose the median of the list as the pivot.
The median of a list of integers is the middle element in the sorted order of the integers. We can compute the
median of an arbitrary list l (of size n) in worst case linear time: O(n) by using an algorithm called median
of medians. Note that when the median is chosen as the pivot, at most b (n−1)

2 c elements are smaller than the
pivot, and at most d (n−1)

2 e elements are greater than the pivot.

Question 1 (15 points) Show a parallel implementation of the qsort function whose depth is O(l.size),
given that choosePivot uses the median. You can use the parallel construct explained in the previous
question. You don’t have to show the implementations of the partition or the choosePivot functions.

def qsort(list: List[Int]): List[Int] = {
if (list.size <= 1) list
else {

val (smaller, eqs, bigger) = partition(list, choosePivot(list))
val (lres, rres) = parallel(qsort(smaller), qsort(bigger))
lres ++ eqs ++ rres

}
}

Question 2 (10 points) Prove that the depth of the parallel qsort function is O(l.size). Note that for
computing the depth of qsort you need to come up with a sutiable depth for the partition function. You
need not prove the depth of the partition, or choosePivot functions.
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For pedagogical reasons, we provide a detailed formal proof below. Let a, b, and c denote some positive
constants.

if list.size <= 1, D(qsort(list)) = a

Otherwise, D(qsort(list)) = D(chooseP ivot(list))+D(parition(list, · · · ))+D(parallel(qsort(smaller), qsort(bigger))+
Depth(lres + +eqs + +res).

The functions choosePivot, partition and list concatenation can be implemented in time linear in the
size of their arguments. Each of these operations are invoked with lists of size less than list.size, which
implies that their depth is upper bounded by O(list.size). Note that depth is always less than or equal to
the sequential execution time. Therefore,

D(qsort(l)) ≤ b ∗ l.size + c + D(parallel(qsort(smaller), qsort(bigger))
= b ∗ l.size + c + max(D(qsort(smaller), qsort(bigger)))) by the definition of depth of the parallel construct

Let D(qsort(l)) be denoted using D(n) where n = l.size.

D(n) ≤ b ∗ n + c + max(D(b (n− 1)
2 c), D(d (n− 1)

2 e)) since the pivot is the median

≤ b ∗ n + c + D(n

2 ) because depth, like time, is monotonously increasing function.

The above recurrence can be solved in many ways e.g. using Master’s Theorem. However, here, let us use
induction. Induction Hypothesis: D(n) <= 2(b + c) ∗ n + a. This satisfies the base case n <= 1 where
D(1) = a. Consider the case n > 1.

D(n) ≤ b ∗ n + c + D(n

2 )

≤ b ∗ n + c + 2(b + c) ∗ n

2 + a By inductive hypothesis.

≤ 2(b + c) ∗ n since n ≥ 2

QED
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Exercise 4: Read/Write Lock (25 points)

In this question, you have to implement a class ReadWrite that implements a read/write lock. Unlike a
traditional monitor that has a single operation to build mutual exclusion blocks (synchronized), read/write
locks have two methods:

read(op) // performs ‘op‘ as a reader
write(op) // performs ‘op‘ as a writer

The read and write methods should satisfy the following constraints:

• Only one writer may own the lock at any point in time. That is, no two write operations can execute
concurrently.

• Multiple readers can own the lock concurrently. That is, mutiple read operations can happen concur-
rently.

• A writer may own the lock only if no reader owns it. That is, a write operation can happen only if
there are no concurrent read operations.

Question 1 (15 points)

Implement both read and write in the class stub on the next page and write a small explanation about it
just below: (declare any vars you’d need at the begining of the class). You may use synchronized, wait,
and notifyAll methods to implement the read and write methods.

Explain your solution in at most six sentences here

Hints:

• Since multiple concurrent reads should be allowed to happen, it is important that the op operation in
read is itself executed outside of a synchronized block.

• You may want to keep track of the number of reader executing at the same time.
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Answer

class ReadWrite extends Monitor {
var readers : Int = 0

def read[T](op: => T): T = {
synchronized {

readers += 1
}
try {

op
}
finally {

synchronized {
readers -= 1
if (readers == 0)

notifyAll()
}

}
}

def write[T](op: => Unit) = synchronized {
while (readers > 0) {

wait()
}
op

}
}
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Question 2 (10 points) In most real world application, reads are far more frequent than writes; the lock
implemented in question 1 would be highly inefficient as reads may block writes from happening.

Implement a read/write lock, based on the previous question’s implementation, ensuring that any write
operation that entered the synchronized block (i.e. that own the lock) takes precedence over any new reader.
That is, if a writer has entered the synchronized block of a write no new reader is permitted to enter a read,
but existing readers are allowed to complete.

Answer

class ReadWrite extends Monitor {

var pendingWriters: Int = 0
var readers: Int = 0

def read[T](op: => T): T = {
synchronized {

while(pendingWriters > 0) {
wait()

}
readers += 1

}
try {

op
}
finally {

synchronized {
readers -= 1
if (readers == 0)

notifyAll()
}

}
}

def write[T](op: => Unit): Unit = synchronized {
pendingWriters += 1
while (readers > 0) {

wait()
}
try {

op
}
finally {

pendingWriters -= 1
if (pendingWriters == 0)

notifyAll()
}

}
}
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