
Exercise Session 5 - Solutions - Parallelism and Concurrency - EPFL

Exercise 1 : The Josephus Problem

In this exercise, we will revisit the famous ​Josephus problem​. In this problem, a group of
soldiers trapped by the enemy decide to commit suicide instead of surrendering. In order not
to have to take their own lives, the soldiers devise a plan. All soldiers are arranged in a
single circle. Each soldier, when comes their turn to act, has to kill the next soldier alive next
to them in the clockwise direction. Then, the next soldier that is still alive in the same
direction acts. This continues until there remains only one soldier in the circle. This last
soldier is the lucky one, and can surrender if he decides to. The ​Josephus problem ​consists
in finding the position in the circle of this lucky soldier, depending on the number of soldiers.

In this exercise, you will implement a ​simulation of the mass killing of the soldiers. Each
soldier will be modeled by an actor. Soldiers are arranged in a circle and when their turn
comes to act, they kill the next alive soldier in the circle. The next soldier that is still alive in
the circle should act next. The last soldier remaining alive does not kill himself but prints out
its number to the standard output.

The code on next page covers the creation of all actors and the initialisation of the system.
Your goal is to implement the ​receive​ method of the actors.

Hint:​ Think about what state the soldier must have.

1

Exercise Session 5 - Solutions - Parallelism and Concurrency - EPFL

Solution

import akka.actor._

class Soldier(number: Int) extends Actor {

 import Soldier._

 ​def receive: Receive = behavior(None, None, false)

 def behavior(next: Option[ActorRef],

 killer: Option[ActorRef],

 mustAct: Boolean): ​Receive​ = {

 case Death => next match {

 case Some(myNext) => {

 sender ! UpdateNext(myNext)

 myNext ! YourTurn

 println("Soldier " + number + " dies.")

 self ! PoisonPill

 }

 case None => {

 context.become(behavior(None, Some(sender), mustAct))

 }

 }

 case Next(newNext) => {

 if (newNext == self) {

 println("Soldier " + number + " is last !")

 }

 else if (!killer.isEmpty) {

 killer.get ! Next(newNext)

 newNext ! Act

 println("Soldier " + number + " dies.")

 self ! PoisonPill

 }

 else if (mustAct) {

 newNext ! Kill

 context.become(behavior(None, None, false))

 }

 else {

 context.become(behavior(Some(newNext), None, false))

 }

 }

2

Exercise Session 5 - Solutions - Parallelism and Concurrency - EPFL

 case Act => next match {

 case Some(myNext) => {

 myNext ! Kill

 context.become(behavior(None, killer, false))

 }

 case None => {

 context.become(behavior(None, killer, true))

 }

 }

 }

}

object Soldier {

 // The different messages that can be sent between the actors:

 // The recipient should die.

 case object Kill

 // The recipient should update its next reference.

 case class Next(next: ActorRef)

 // The recipient should act.

 case object Act

 def props(number: Int): Props = Props(new Soldier(number))

}

object Simulation {

 import Soldier._

 // Initialization

 val system = ActorSystem("mySystem")

 def start(n: Int) {

 require(n >= 1)

 // Creation of the actors.

 val actors = Seq.tabulate(n) { (i: Int) =>

 system.actorOf(Soldier.props(i), "Soldier" + i)

 }

 // Inform all actors of the next actor in the circle.

 for (i <- 0 to (n - 2)) {

3

Exercise Session 5 - Solutions - Parallelism and Concurrency - EPFL

 actors(i) ! Next(actors(i + 1))

 }

 actors(n - 1) ! Next(actors(0))

 // Inform the first actor to start acting.

 actors(0) ! Act

 }

}

4

