Exercise 1 : Implementing map and filter on Futures

In this exercise, you will come up with an implementation of the map and filter methods of
Futures. First of all, spend some time as a group to make sure that you understand what
those methods are supposed to do. Then, complete the following code to implement the two
methods:

trait Future[T] { self =>
def map[S](f: T => S): Future[S] =
new Future[S] {

def onComplete(callback: Try[S] => Unit): Unit = 222
}
def filter(f: T => Boolean): Future[T] =
new Future[T] {
def onComplete(callback: Try[T] => Unit): Unit = 2??

}

Solution

trait Future[T] { self =>
def map[S](f: T => S): Future[S] =
new Future[S] {
def onComplete(callback: Try[S] => Unit): Unit = self.onComplete {
case Success(v) => callback(Success(f(v)))
case Failure(e) => callback(Failure(e))

}
}

def filter(f: T => Boolean): Future[T] =
new Future[T] {
def onComplete(callback: Try[T] => Unit): Unit = self.onComplete {
case Success(v) =>
if f(v) {
callback(Success(v))
}
else {
callback(Failure(new NoSuchElementException(*...”)))
}
case Failure(e) => callback(Failure(e))
}
}



Exercise 2 : Master / Slave

In this exercise, you will have to implement a Master / Slave actor system, in which one
actor, the master, dispatches work to other actors, the slaves. Between the master and the
slaves, only two kinds of messages are sent: Order and Ready messages.

case class Order(computation: => Unit)
case object Ready

The master actor sends Order messages to slaves to order them to perform some
computation (passed as an argument of Order). Upon reception of an Order, a slave should
perform the computation. Slaves should send a Ready message to their master whenever
they finish executing the requested computation, and right after they are created.

The master actor itself receives requests through Order messages from clients. The master
actor should then dispatch the work to slave actors. The master should however never send
an order to a slave which has not declared itself ready via a Ready message beforehand.

Implement the Master and Slave classes.

Solution on the next page.




Solution

class Master extends Actor {
var availableSlaves: List[ActorRef] = Nil
var pendingOrders: List[Order] = Nil

def receive: Receive = {
case Ready =>

if (pendingOrders.isEmpty) {
availableSlaves = availableSlaves :+ sender

}

else {
val order = pendingOrders.head
pendingOrders = pendingOrders.tail
sender ! order

}
case order: Order => availableSlaves match {
case slave :: rest => {

slave ! order
availableSlaves = rest

¥

case Nil => {
pendingOrders = pendingOrders :+ order

}

}
}
}

class Slave(master: ActorRef) extends Actor {
master ! Ready

def receive: Receive = {
case Order(f) =>

()

master ! Ready



