
Exercise Session 4 - Solutions - Parallelism and Concurrency - EPFL

Exercise 1 : Implementing ​map​ and ​filter​ on Futures

In this exercise, you will come up with an implementation of the ​map and ​filter methods of
Futures. First of all, spend some time as a group to make sure that you understand what
those methods are supposed to do. Then, complete the following code to implement the two
methods:

trait Future[T] { self =>

 def map[S](f: T => S): Future[S] =

 new Future[S] {

 def onComplete(callback: Try[S] => Unit): Unit = ​???
 }

 def filter(f: T => Boolean): Future[T] =

 new Future[T] {

 def onComplete(callback: Try[T] => Unit): Unit = ​???
 }

}

Solution

trait Future[T] { self =>

 def map[S](f: T => S): Future[S] =

 new Future[S] {

 def onComplete(callback: Try[S] => Unit): Unit = ​self.onComplete {
 case Success(v) => callback(Success(f(v)))

 case Failure(e) => callback(Failure(e))

}

 }

 def filter(f: T => Boolean): Future[T] =

 new Future[T] {

 def onComplete(callback: Try[T] => Unit): Unit = ​self.onComplete {
 case Success(v) =>

 if f(v) {

 callback(Success(v))

 }

 else {

 callback(Failure(new NoSuchElementException(“...”)))

 }

 case Failure(e) => callback(Failure(e))

}

 }

}

1

Exercise Session 4 - Solutions - Parallelism and Concurrency - EPFL

Exercise 2 : Master / Slave

In this exercise, you will have to implement a Master / Slave actor system, in which one
actor, the ​master​, dispatches work to other actors, the ​slaves​. Between the master and the
slaves, only two kinds of messages are sent: ​Order​ and ​Ready​ messages.

case class​ Order(computation: => Unit)
case object​ Ready

The master actor sends ​Order​ messages to slaves to order them to perform some
computation (passed as an argument of ​Order​). Upon reception of an ​Order​, a slave should
perform the computation. Slaves should send a ​Ready​ message to their master whenever
they finish executing the requested computation, and right after they are created.

The master actor itself receives requests through ​Order​ messages from clients. The master
actor should then dispatch the work to slave actors. The master should however never send
an order to a slave which has not declared itself ready via a ​Ready​ message beforehand.

Implement the ​Master​ and ​Slave​ classes.

Solution on the next page.

2

Exercise Session 4 - Solutions - Parallelism and Concurrency - EPFL

Solution

class Master extends Actor {

 var availableSlaves: List[ActorRef] = Nil

 var pendingOrders: List[Order] = Nil

 def receive: Receive = {

 case Ready =>

 if (pendingOrders.isEmpty) {

 availableSlaves = availableSlaves :+ sender

 }

 else {

 val order = pendingOrders.head

 pendingOrders = pendingOrders.tail

 sender ! order

 }

 case order: Order => availableSlaves match {

 case slave :: rest => {

 slave ! order

 availableSlaves = rest

 }

 case Nil => {

 pendingOrders = pendingOrders :+ order

 }

 }

 }

}

class Slave(master: ActorRef) extends Actor {

 master ! Ready

 def receive: Receive = {

 case Order(f) =>

 f()

 master ! Ready

 }

}

3

