
Exercise Session 4 - Parallelism and Concurrency - EPFL

Exercise 1 : Implementing ​map​ and ​filter​ on Futures

In this exercise, you will come up with an implementation of the ​map and ​filter methods of
Futures. First of all, spend some time as a group to make sure that you understand what
those methods are supposed to do. Then, complete the following code to implement the two
methods:

trait Future[T] { self =>

 def map[S](f: T => S): Future[S] =

 new Future[S] {

 def onComplete(callback: Try[S] => Unit): Unit = ​???
 }

 def filter(f: T => Boolean): Future[T] =

 new Future[T] {

 def onComplete(callback: Try[T] => Unit): Unit = ​???
 }

}

In the case of filter, if the original ​Future​ successfully returns a value which does not satisfy
the predicate, the new ​Future​ should return a ​Failure​ containing a
NoSuchElementException​.

Exercise 2 : Master / Slave

In this exercise, you will have to implement a Master / Slave actor system, in which one
actor, the ​master​, dispatches work to other actors, the ​slaves​. Between the master and the
slaves, only two kinds of messages are sent: ​Order​ and ​Ready​ messages.

case class Order(computation: => Unit)

case object Ready

The master actor sends ​Order​ messages to slaves to order them to perform some
computation (passed as an argument of ​Order​). Upon reception of an ​Order​, a slave should
perform the computation. Slaves should send a ​Ready​ message to their master whenever
they finish executing the requested computation, and right after they are created.

1

Exercise Session 4 - Parallelism and Concurrency - EPFL

The master actor itself receives requests through ​Order​ messages from clients. The master
actor should then dispatch the work to slave actors. The master should however never send
an order to a slave which has not declared itself ready via a ​Ready​ message beforehand.

Implement the ​Master​ and ​Slave​ classes.

class Master extends Actor {

 ​???

 override def receive = ​???
}

class Slave(master: Master) extends Actor {

 ​???

 override def receive = ​???
}

An example system using the ​Master​ and ​Slave​ actors is shown below.

object MasterSlave extends App {

 val masterProps: Props = Props(new Master())

 def slaveProps(master: Master): Props = Props(new Slave(master))

 val system = ActorSystem("master/slave")

 val master = system.actorOf(masterProps)

 val slaves = Seq.fill(10) {

 system.actorOf(slaveProps(master))

 }

 // Now, clients should be able to send requests to the master…

 master ! Order(println(3 + 5))

 master ! Order(println(67 * 3))

 // And so on…

}

Hint:​ In order to fulfill its job, the master should remember which slaves are ready and what
requests are still to be allocated to a slave.

2

