
Exercise Session 3 - Solutions - Parallelism and Concurrency - EPFL 
 

Exercise 1 : Parallel Encoding 
In this exercise, your group will devise a parallel algorithm to encode sequences using the               
run-length encoding scheme. The encoding is very simple. It transforms sequences of letters             
such that all subsequences of the same letter are replaced by the letter and the sequence                
length. For instance: 
 

“AAAAATTTGGGGTCCCAAC”  ⇒  “A5T3G4T1C3A2C1” 

 
Your goal in this exercise is to come up with a parallel implementation of this algorithm. The                 
function should have the following shape: 
 
def rle(data: ParSeq[Char]): Buffer[(Char, Int)] =  
  data.aggregate(???)(???, ???) 
 

The Buffer class is already given to you. A buffer of type Buffer[A] represents sequences               
of elements of type A. It supports the following methods, all of which are efficient: 
 
def isEmpty: Boolean  // Checks if the buffer is empty. 
def head: A           // Returns the first element of the buffer. 
def tail: Buffer[A]   // Returns the buffer minus its first element. 
def last: A           // Returns the last element of the buffer. 
def init: Buffer[A]   // Returns the buffer minus its last element. 
def ++(that: Buffer[A]): Buffer[A] // Concatenate two buffers. 
def append(elem: A): Buffer[A] // Appends a single element to the right. 
 

Buffer.empty[A]: Buffer[A] // Returns an empty buffer. 
Buffer.singleton[A](element: A): Buffer[A] // Single element buffer. 
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A solution: 
 

def rle(data: ParSeq[Char]): Buffer[(Char, Int)] = { 
 

  def g(as: Buffer[(Char, Int)], bs: Buffer[(Char, Int)]) = 
    if (as.isEmpty || bs.isEmpty || as.last._1 != bs.head._1) 
      as ++ bs 

    else  
as.init.append((as.last._1, as.last._2 + bs.head._2)) ++ bs.tail 

 

  def f(acc: Buffer[(Char, Int)], x: Char) = 
    if (acc.isEmpty || acc.last._1 != x) 
      acc.append((x, 1)) 

    else 
      acc.init.append((x, acc.last._2 + 1)) 

 

  val z: Buffer[(Char, Int)] = Buffer.empty 
 

  data.aggregate(z)(f, g) 

} 
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Exercise 2 : Parallel Two Phase Construction 
 
In this exercise, you will implement an array Combiner using internally a double linked list               
(DLL). Below is a minimal implementation of the DLLCombiner class and the related Node              
class. Your goal for this exercise is to complete the implementation of the (simplified)              
Combiner interface of the DLLCombiner class. 
 
class DLLCombiner[A] extends Combiner[A, Array[A]] { 
  var head: Node[A] = null // null for empty lists. 
  var last: Node[A] = null // null for empty lists. 
  var size: Int = 0 
 

  // Implement these three methods... 
  override def +=(elem: A): Unit = ??? 
  override def combine(that: DLLCombiner[A]): DLLCombiner[A] = ??? 
  override def result(): Array[A] = ??? 
} 

 

class Node[A](val value: A) { 
  var next: Node[A]     // null for last node. 
  var previous: Node[A] // null for first node. 
} 

 
A solution: 
 
class DLLCombiner[A] extends Combiner[A, Array[A]] { 
  var head: Node[A] = null 
  var last: Node[A] = null 
  var size: Int = 0 
 

  override def +=(elem: A): Unit = {  
    val node = new Node(elem) 
    if (size == 0) { 
      head = node 

      last = node 

      size = 1 

    } 

    else { 
      last.next = node 

      node.previous = last 

      last = node 

      size += 1 

    } 

  } 
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  override def combine(that: DLLCombiner[A]): DLLCombiner[A] = 
    if (this.size == 0) 
      that 

    else if (that.size == 0) 
      this 

    else { 
      this.last.next = that.head 

      that.head.previous = this.last 

 

      this.size = this.size + that.size 

      this.last = that.last 

 

      this 

    } 

 

  // This is not implemented in parallel yet. 

  override def result(): Array[A] = { 
    val data = new Array[A](size) 
 

    var current = head 
    var i = 0 
    while (i < size) { 
      data(i) = current.value 

      i += 1 

      current = current.next 

    } 

    data 

  } 

} 

 
  

4 



Exercise Session 3 - Solutions - Parallelism and Concurrency - EPFL 
 

Question 1 
What computational complexity do your methods have? Are the actual complexities of your             
methods acceptable according to the Combiner requirements? 
 
The complexity of += is constant, as well as the complexity of combine. This is obviously well                 
within the desired complexity range. The result function takes time linear in the size of the                
data, which is acceptable according to the Combiner requirements. However, the result            
function should work in parallel according to the contract. This isn’t the case here. 

Question 2 
One of the three methods you have implemented, result, should work in parallel according              
to the Combiner contract. Can you think of a way to implement this method efficiently using                
2 parallel tasks? 
 
The idea is to copy the double linked list to the array from both ends at the same time. For                    
this, we create a task that handle the second half of the array, while the current thread                 
copied the first half. 
 
override def result(): Array[A] = { 
  val data = new Array[A](size) 
  val mid = size / 2 
 

  // This is executed on a different thread. 

  val taskEnd = task { 
    var i = size - 1 
    var current = last 
    while (i >= mid) { 
      data(i) = current.value 

      current = current.previous 

      i -= 1 

    } 

  } 

  

  // This is executed on the current thread. 
  var i = 0 
  var current = head 
  while (i < mid) { 
    data(i) = current.value 

    current = current.next 

    i += 1 

  } 

  taskEnd.join() 

  data 

} 
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Question 3 
Can you, given the current internal representation of your combiner, implement result so             
that it executes efficiently using 4 parallel tasks? If not, can you think of a way to make it                   
possible? 
 
Hint: This is an open-ended question, there might be multiple solutions. In your solution, you               
may want to add extra information to the class Node and/or the class DLLCombiner. 
 
Solution: 
 
The actual answer to this question is: it depends. Two see why, we first make the following                 
observation:  
 
All implementations of the result function must consist of primarily two operations: 

1. Moving to the next node in the list, and, 
2. Copying the value of the node to the array. 

 
Depending on the actual cost of the two operations, one may devise schemes that can make                
efficient use of more than two threads. For instance, assume for a moment that copying a                
value to the array is significantly costlier than moving to the next node in the list. In this case,                   
we could execute the function efficiently in parallel by spawning multiple threads starting             
from the head of the list, each handling a disjoint set of indexes (for instance, one thread                 
takes indexes of the form 4n, another 4n + 1 and so on). 
 
On the other hand, if we assume that moving to the next node in the list has a cost                   
comparable to the one of copying a value to the array, then finding such a strategy is more                  
challenging, or even impossible. 
 
However, there are ways to circumvent this problem by modifying the data structure used.              
One way could be to keep track of the middle of the double linked lists. The result function                  
could then execute in parallel on 4 different threads by copying the array from both ends and                 
from the middle (in both directions) simultaneously. The problem would then be to efficiently              
maintain the pointer to the middle of the list, which might not be a trivial task when combining                  
arbitrary lists together. If you are interested in learning more about such data-structures, we              
encourage you to look up the skip list data structure, which generalises on this idea. 
 
Another solution would be to modify the nodes so that they also point to their successor’s                
successor and their predecessor’s predecessor. This way, two threads could start from the             
start of the list and two from the end. In each case, one thread would be responsible for odd                   
indexes and the other for even ones. This solution does not change at all the complexity of                 
the various Combiner operations, but requires a bit more bookkeeping. 
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Exercise 3: Pipelines 
In this exercise, we look at pipelines of functions. A pipeline is simply a function which                
applies its argument successively to each function of a sequence. To illustrate this, consider              
the following pipeline of 4 functions: 
 
val p: Int => Int = toPipeline(ParSeq(_ + 1, _ * 2, _ + 3, _ / 4)) 
 
The pipeline p is itself a function. Given a value x, the pipeline p will perform the following                  
computations to process it. In the above example,  
 

p(x) = (((x + 1) Application of first function 
            * 2) Application of second function 
            + 3) Application of third function 
            / 4 Application of fourth function  

 
In this exercise, we will investigate the possibility to process such pipelines in parallel.  

Question 1 
Implement the following toPipeline function, which turns a parallel sequence of functions            
into a pipeline. You may use any of the parallel combinators available on ParSeq, such as                
the parallel fold or the parallel reduce methods. 
 
def toPipeline(fs: ParSeq[A => A]): A => A = ??? 
 
Hint: Functions have a method called andThen, which implements function composition: it            
takes as argument another function and also returns a function. The returned function first              
applies the first function, and then applies the function passed as argument to that result.               
You may find it useful in your implementation of pipeline. 
 
Solution: 
 
def toPipeline(fs: ParSeq[A => A]): A => A =  
  if (fs.isEmpty) 
    (x: A) => x 

  else 
    fs.reduce(_ andThen _) 

Question 2 
Given that your toPipeline function works in parallel, would the pipelines it returns also 
work in parallel? Would you expect pipelines returned by a sequential implementation of 
toPipeline to execute any slower? If so, why? 
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Discuss those questions with your group and try to get a good understanding how what is 
happening. 
 
Even though the pipeline is constructed in parallel, it will not itself execute in parallel. The 
resulting pipeline still has to apply its argument to all the functions it contains sequentially. 
This is due to the fact that the andThen method simply returns a function that will apply the 
first function and then the second, sequentially. 

Question 3 
Instead of arbitrary functions, we will now consider functions that are constant everywhere             
except on a finite domain. We represent such functions in the following way: 
 
class FiniteFun[A](mappings: immutable.Map[A, A], default: A) { 
  def apply(x: A): A = { 
    mappings.get(x) match { 

      case Some(y) => y 

      case None    => default 

    } 

  } 

 

  def andThen(that: FiniteFun[A]): FiniteFun[A] = ??? 
} 

 

Implement the andThen method. Can pipelines of such finite functions be efficiently            
constructed in parallel using the appropriately modified toPipeline method? Can the           
resulting pipelines be efficiently executed? 
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Solution: 
 
def andThen(that: FiniteFun[A]): FiniteFun[A] = { 
  val newDefault = that(default) 
 

  val newMappings = for { 
    (x, y) <- mappings 

    val z = that(y) 
    if (z != newDefault) 
  } yield (x, z) 
 

  new FiniteFun(newMappings, newDefault) 
} 

 

Pipelines of such functions can be efficiently constructed in parallel, as was the case for               
“normal” functions also. Also, interestingly, the resulting pipeline can be executed efficiently.            
The execution time of the pipeline does not depend on the number of functions in the                
pipeline, only on the lookup time in the finite map mappings (which can be nearly constant                
time if the underlying map is a hashtable). The size of this map is upper bounded by the size                   
of the mappings of the functions in the pipeline. 

 

  

9 



Exercise Session 3 - Solutions - Parallelism and Concurrency - EPFL 
 

Question 4 
Compare the work and depth of the following two functions, assuming infinite parallelism. 
For which kind of input would the parallel version be asymptotically faster? 
 
def applyAllSeq[A](x: A, fs: Seq[FiniteFun[A]]): A = { 
  // Applying each function sequentially. 

  var y = x 
  for (f <- fs) 
    y = f(y) 

  y 

} 

 
def applyAllPar[A](x: A, fs: ParSeq[FiniteFun[A]]): A = { 
  if (fs.isEmpty) x 
  else { 
    // Computing the composition in parallel. 
    val p = fs.reduce(_ andThen _) 

    // Applying the pipeline. 
    p(x) 

  } 

} 

 
Solution: 
 
To simplify the analysis, we will assume that lookup in the mappings takes constant time,               
and thus that applying a FiniteFun also takes constant time. Let’s also assume that fs is of                 
size n for both functions. 
 
Since the function is purely sequential, the work and depth of applyAllSeq are equal. They               
amount to n applications of a finite function, which is linear in n. 
 
For applyAllPar, things are a bit more complex. Let’s denote by d the size of the largest                 
domain of all functions passed as argument. 
 
The depth of the function is simply the depth of computing the pipeline (fs.reduce(_              

andThen _)) plus a constant for applying the pipeline. Assuming infinite parallelism, this             
results in a depth that is in O(log2(n) ⋅ d). 
 
The work of applyAllPar is significantly more than its depth, and can be upper bounded by                
O(n ⋅ d). Indeed, there are n applications of the andThen method, each of which takes O(d)                 
time. 
 
When d is a constant, then the parallel version will be asymptotically faster than its               
sequential counterpart. If d is exponentially larger than n, then the sequential version is              
expected to perform better. 
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