
Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL 
 

Exercise 1 : Aggregate 
 
In the video lectures of this week, you have been introduced to the ​aggregate method of                
ParSeq[A]​ (and other parallel data structures…). It has the following signature: 
 

def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B 

 
Discuss, as a group, what ​aggregate​ does and what its arguments represent. 

Question 1 
Consider the parallel sequence ​xs ​containing the three elements ​x1​, ​x2 and ​x3​. Also              
consider the following call to aggregate: 
 

xs.aggregate(z)(f, g) 

 
The above call might potentially result in the following computation: 
 

f(f(f(z, x1), x2), x3) 

 

But it might also result in other computations. Come up with at least 2 other computations                
that may result from the above call to ​aggregate​. 
 
 
Some examples: 
 

● g(f(z, x1), f(f(z, x2), x3)) 

● g(f(f(z, x1), x2), f(z, x3)) 

● g(g(f(z, x1), f(z, x2)), f(z, x3)) 

● g(f(z, x1), g(f(z, x2), f(z, x3))) 
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Question 2 
Below are other examples of calls to ​aggregate​. In each case, check if the call can lead to                  
different results depending on the strategy used by ​aggregate ​to aggregate all values             
contained in ​data down to a single value. You should assume that ​data is a parallel                
sequence of values of type ​BigInt​. 
 

Variant 1 

data.aggregate(1)(_ + _, _ + _) 
 
This might lead to different results. 
 

Variant 2 

data.aggregate(0)((acc, x) => x - acc, _ + _) 

 

This might lead to different results. 
 

Variant 3 

data.aggregate(0)((acc, x) => acc - x, _ + _) 

 

This always leads to the same result. 
 

Variant 4 

data.aggregate(1)((acc, x) => x * x * acc, _ * _) 

 

This always leads to the same result. 
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Question 3 
Under which condition(s) on ​z​, ​f​, and ​g​ does ​aggregate​ always lead to the same result ? 
Come up with a formula on ​z​, ​f​, and ​g ​that implies the correctness of ​aggregate​. 
 
Hint:​ You may find useful to use calls to ​foldLeft(z)(f)​ in your formula(s). 
 
A property that implies the correctness is: 

forall xs, ys.   g(xs.F, ys.F) == (xs ++ ys).F 

(split-invariance) 

where we define  

xs.F == xs.foldLeft(z)(f) 

 

The intuition is the following. Take any computation tree for  

xs.aggregate. Such a tree has internal nodes labelled by g and segments 

processed using foldLeft(z)(f). The split-invariance law above says that 

any internal g-node can be removed by concatenating the segments. By 

repeating this transformation, we obtain the entire result equals  

xs.foldLeft(z)(f). 

 

The split-invariance condition uses foldLeft. The following two conditions 

together are a bit simpler and imply split-invariance: 

 

forall u. g(u,z) == u (g-right-unit) 

forall u, v. g(u, f(v,x)) == f(g(u,v), x) (g-f-assoc) 

 

Assume g-right-unit and g-f-assoc. We wish to prove split-invariance. We 

do so by induction on the length of ys. If ys has length zero, then 

ys.foldLeft gives z, so by g-right-unit both sides reduce to xs.foldLeft. 

Let ys have length n>0 and assume by I.H. split-invariance holds for all 

ys of length strictly less than n. Let ys == ys1 :+ y (that is, y is the 

last element of ys). Then 

 

g(xs.F, (ys1 :+ y).F) == (foldLeft definition) 

g(xs.F, f(ys1.F, y)) == (by g-f-assoc) 

f(g(xs.F, ys1.F), y) == (by I.H.) 

f((xs++ys1).F, y) == (foldLeft definition) 

((xs++ys1) :+ y).F == (properties of lists) 

(xs++(ys1 :+ y)).F 

 

Question 4 
Implement ​aggregate using the methods ​map ​and/or reduce of the collection you are             
defining aggregate for. 
 
A solution: 
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def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B = 

  if (this.isEmpty) z 

  else this.map((x: A) => f(z, x)).reduce(g) 
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Question 5 
Implement ​aggregate using the ​task ​and/or parallel constructs seen in the first week             
and the ​Splitter[A] interface seen in this week’s videos. The ​Splitter interface is             
defined as: 
 

trait Splitter[A] extends Iterator[A] { 

  def split: Seq[Splitter[A]] 

  def remaining: Int 

} 

 
You can assume that the data structure you are defining ​aggregate ​for already implements              
a ​splitter​ method which returns an object of type ​Splitter[A]​. 
 
Your implementation of ​aggregate should work in parallel when the number of remaining             
elements is above the constant ​THRESHOLD​ and sequentially below it. 
 
Hint:​ ​Iterator​, and thus ​Splitter​, implements the ​foldLeft​ method. 
 
 
A solution: 
 
def aggregate(z: B)(f: (B, A) => B, g: (B, B) => B): B = { 

  

  def go(s: Splitter[A]): B = { 

    if (s.remaining <= THRESHOLD) { 

      s.foldLeft(z)(f) 

    } 

    else { 

      val splitted = s.split 

 

      val subs = splitted.map((t: Splitter[A]) => task { go(t) }) 

subs.map(_.join()).reduce(g) 

    } 

  } 

 

  go(splitter) 

} 

 

Question 6 

Discuss the implementations from questions 4 and 5. Which one do you think would be more                
efficient ? 
 
The version from question 4 may require 2 traversals (one for map, one for reduce) and 
does not benefit from the (potentially faster) sequential operator f.  
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Exercise 2 : Depth 
Review the notion of ​depth​ seen in the video lectures. What does it represent ? 
 
Below is a formula for the depth of a ​divide and conquer algorithm working on an array                 
segment of size ​L​, as a function of L​. The values c, d and ​T are constants. We assume that                    
L>0​ and ​T>0​. 
 

 
 
Below the threshold ​T​, the algorithm proceeds sequentially and takes time ​c to process each               
single element. Above the threshold, the algorithm is applied recursively over the two halves              
of the array. The results are then merged using an operation that takes ​d​ units of time. 

Question 1 
Is it the case that for all ​1 ≤ L​1​ ≤ L​2​ we have ​D(L​1​) ≤ D(L​2​) ​? 
 
If it is the case, prove the property by induction on L. If it is not the case, give a                    
counterexample showing values of ​L​1​, L​2​,​ ​T​, ​c​, and ​d ​for which the property does not hold. 
 
 
Somewhat counterintuitively, the property doesn’t hold. To show this, let’s take the following             
values for L​1​, L​2​,​ ​T, c, and d. 
 

L​1​ = 10, L​2​ = 12,​ ​T = 11​, ​c = 1​, and ​d = 1.  
 
Using those values, we get that: 
 

D(L​1​) = 10 
D(L​2​) = max(D(6), D(6)) + 1 = 7 
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Question 2 
Prove a logarithmic upper bound on ​D(L)​. That is, prove that ​D(L) ​is in ​O(log​ ​L)​ by finding 
specific constants ​a​,​b​ such that​ D(L) ≤ a log​2​L + b​. 
 
Proof sketch 
 
Define the following function D’(L). 
 

 
 
Show that D(L) ≤ D’(L) for all 1 ≤ L . 
 
Then, show that, for any 1 ≤ L​1​ ≤ L​2​ we have D’(L​1​) ≤ D’(L​2​). This property can be shown by 
induction on L​2​. 
 
Finally, let n be such that L ≤ 2​n​ < 2L. We have that: 
 
D(L) ≤ D’(L) Proven earlier. 
        ≤ D’(2​n​) Also proven earlier. 
        ​≤ log​2​(2​

n​) (d + cT) + cT  
        ​< log​2​(2L) (d + cT) + cT 
        = log​2​(L) (d + cT) + log​2​(2) (d + cT) + cT 
        = log​2​(L) (d + cT) + d + 2cT 
 
Done. 
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