
Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL 
 

Exercise 1 : Aggregate 
 
In the video lectures of this week, you have been introduced to the aggregate method of                
ParSeq[A] (and other parallel data structures…). It has the following signature: 
 

def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B 

 
Discuss, as a group, what aggregate does and what its arguments represent. 

Question 1 
Consider the parallel sequence xs containing the three elements x1, x2 and x3. Also              
consider the following call to aggregate: 
 

xs.aggregate(z)(f, g) 

 
The above call might potentially result in the following computation: 
 

f(f(f(z, x1), x2), x3) 

 

But it might also result in other computations. Come up with at least 2 other computations                
that may result from the above call to aggregate. 
 
 
Some examples: 
 

● g(f(z, x1), f(f(z, x2), x3)) 

● g(f(f(z, x1), x2), f(z, x3)) 

● g(g(f(z, x1), f(z, x2)), f(z, x3)) 

● g(f(z, x1), g(f(z, x2), f(z, x3))) 
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Question 2 
Below are other examples of calls to aggregate. In each case, check if the call can lead to                  
different results depending on the strategy used by aggregate to aggregate all values             
contained in data down to a single value. You should assume that data is a parallel                
sequence of values of type BigInt. 
 

Variant 1 

data.aggregate(1)(_ + _, _ + _) 
 
This might lead to different results. 
 

Variant 2 

data.aggregate(0)((acc, x) => x - acc, _ + _) 

 

This might lead to different results. 
 

Variant 3 

data.aggregate(0)((acc, x) => acc - x, _ + _) 

 

This always leads to the same result. 
 

Variant 4 

data.aggregate(1)((acc, x) => x * x * acc, _ * _) 

 

This always leads to the same result. 
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Question 3 
Under which condition(s) on z, f, and g does aggregate always lead to the same result ? 
Come up with a formula on z, f, and g that implies the correctness of aggregate. 
 
Hint: You may find useful to use calls to foldLeft(z)(f) in your formula(s). 
 
A property that implies the correctness is: 

forall xs, ys.   g(xs.F, ys.F) == (xs ++ ys).F 

(split-invariance) 

where we define  

xs.F == xs.foldLeft(z)(f) 

 

The intuition is the following. Take any computation tree for  

xs.aggregate. Such a tree has internal nodes labelled by g and segments 

processed using foldLeft(z)(f). The split-invariance law above says that 

any internal g-node can be removed by concatenating the segments. By 

repeating this transformation, we obtain the entire result equals  

xs.foldLeft(z)(f). 

 

The split-invariance condition uses foldLeft. The following two conditions 

together are a bit simpler and imply split-invariance: 

 

forall u. g(u,z) == u (g-right-unit) 

forall u, v. g(u, f(v,x)) == f(g(u,v), x) (g-f-assoc) 

 

Assume g-right-unit and g-f-assoc. We wish to prove split-invariance. We 

do so by induction on the length of ys. If ys has length zero, then 

ys.foldLeft gives z, so by g-right-unit both sides reduce to xs.foldLeft. 

Let ys have length n>0 and assume by I.H. split-invariance holds for all 

ys of length strictly less than n. Let ys == ys1 :+ y (that is, y is the 

last element of ys). Then 

 

g(xs.F, (ys1 :+ y).F) == (foldLeft definition) 

g(xs.F, f(ys1.F, y)) == (by g-f-assoc) 

f(g(xs.F, ys1.F), y) == (by I.H.) 

f((xs++ys1).F, y) == (foldLeft definition) 

((xs++ys1) :+ y).F == (properties of lists) 

(xs++(ys1 :+ y)).F 

 

Question 4 
Implement aggregate using the methods map and/or reduce of the collection you are             
defining aggregate for. 
 
A solution: 
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def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B = 

  if (this.isEmpty) z 

  else this.map((x: A) => f(z, x)).reduce(g) 
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Question 5 
Implement aggregate using the task and/or parallel constructs seen in the first week             
and the Splitter[A] interface seen in this week’s videos. The Splitter interface is             
defined as: 
 

trait Splitter[A] extends Iterator[A] { 

  def split: Seq[Splitter[A]] 

  def remaining: Int 

} 

 
You can assume that the data structure you are defining aggregate for already implements              
a splitter method which returns an object of type Splitter[A]. 
 
Your implementation of aggregate should work in parallel when the number of remaining             
elements is above the constant THRESHOLD and sequentially below it. 
 
Hint: Iterator, and thus Splitter, implements the foldLeft method. 
 
 
A solution: 
 
def aggregate(z: B)(f: (B, A) => B, g: (B, B) => B): B = { 

  

  def go(s: Splitter[A]): B = { 

    if (s.remaining <= THRESHOLD) { 

      s.foldLeft(z)(f) 

    } 

    else { 

      val splitted = s.split 

 

      val subs = splitted.map((t: Splitter[A]) => task { go(t) }) 

subs.map(_.join()).reduce(g) 

    } 

  } 

 

  go(splitter) 

} 

 

Question 6 

Discuss the implementations from questions 4 and 5. Which one do you think would be more                
efficient ? 
 
The version from question 4 may require 2 traversals (one for map, one for reduce) and 
does not benefit from the (potentially faster) sequential operator f.  
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Exercise 2 : Depth 
Review the notion of depth seen in the video lectures. What does it represent ? 
 
Below is a formula for the depth of a divide and conquer algorithm working on an array                 
segment of size L, as a function of L. The values c, d and T are constants. We assume that                    
L>0 and T>0. 
 

 
 
Below the threshold T, the algorithm proceeds sequentially and takes time c to process each               
single element. Above the threshold, the algorithm is applied recursively over the two halves              
of the array. The results are then merged using an operation that takes d units of time. 

Question 1 
Is it the case that for all 1 ≤ L1 ≤ L2 we have D(L1) ≤ D(L2) ? 
 
If it is the case, prove the property by induction on L. If it is not the case, give a                    
counterexample showing values of L1, L2, T, c, and d for which the property does not hold. 
 
 
Somewhat counterintuitively, the property doesn’t hold. To show this, let’s take the following             
values for L1, L2, T, c, and d. 
 

L1 = 10, L2 = 12, T = 11, c = 1, and d = 1.  
 
Using those values, we get that: 
 

D(L1) = 10 
D(L2) = max(D(6), D(6)) + 1 = 7 
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Question 2 
Prove a logarithmic upper bound on D(L). That is, prove that D(L) is in O(log L) by finding 
specific constants a,b such that D(L) ≤ a log2L + b. 
 
Proof sketch 
 
Define the following function D’(L). 
 

 
 
Show that D(L) ≤ D’(L) for all 1 ≤ L . 
 
Then, show that, for any 1 ≤ L1 ≤ L2 we have D’(L1) ≤ D’(L2). This property can be shown by 
induction on L2. 
 
Finally, let n be such that L ≤ 2n < 2L. We have that: 
 
D(L) ≤ D’(L) Proven earlier. 
        ≤ D’(2n) Also proven earlier. 
        ≤ log2(2

n) (d + cT) + cT  
        < log2(2L) (d + cT) + cT 
        = log2(L) (d + cT) + log2(2) (d + cT) + cT 
        = log2(L) (d + cT) + d + 2cT 
 
Done. 
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