
Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL

Exercise 1 : Aggregate

In the video lectures of this week, you have been introduced to the ​aggregate method of
ParSeq[A]​ (and other parallel data structures…). It has the following signature:

def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B

Discuss, as a group, what ​aggregate​ does and what its arguments represent.

Question 1
Consider the parallel sequence ​xs ​containing the three elements ​x1​, ​x2 and ​x3​. Also
consider the following call to aggregate:

xs.aggregate(z)(f, g)

The above call might potentially result in the following computation:

f(f(f(z, x1), x2), x3)

But it might also result in other computations. Come up with at least 2 other computations
that may result from the above call to ​aggregate​.

Some examples:

● g(f(z, x1), f(f(z, x2), x3))

● g(f(f(z, x1), x2), f(z, x3))

● g(g(f(z, x1), f(z, x2)), f(z, x3))

● g(f(z, x1), g(f(z, x2), f(z, x3)))

1

Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL

Question 2
Below are other examples of calls to ​aggregate​. In each case, check if the call can lead to
different results depending on the strategy used by ​aggregate ​to aggregate all values
contained in ​data down to a single value. You should assume that ​data is a parallel
sequence of values of type ​BigInt​.

Variant 1

data.aggregate(1)(_ + _, _ + _)

This might lead to different results.

Variant 2

data.aggregate(0)((acc, x) => x - acc, _ + _)

This might lead to different results.

Variant 3

data.aggregate(0)((acc, x) => acc - x, _ + _)

This always leads to the same result.

Variant 4

data.aggregate(1)((acc, x) => x * x * acc, _ * _)

This always leads to the same result.

2

Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL

Question 3
Under which condition(s) on ​z​, ​f​, and ​g​ does ​aggregate​ always lead to the same result ?
Come up with a formula on ​z​, ​f​, and ​g ​that implies the correctness of ​aggregate​.

Hint:​ You may find useful to use calls to ​foldLeft(z)(f)​ in your formula(s).

A property that implies the correctness is:

forall xs, ys. g(xs.F, ys.F) == (xs ++ ys).F

(split-invariance)

where we define

xs.F == xs.foldLeft(z)(f)

The intuition is the following. Take any computation tree for

xs.aggregate. Such a tree has internal nodes labelled by g and segments

processed using foldLeft(z)(f). The split-invariance law above says that

any internal g-node can be removed by concatenating the segments. By

repeating this transformation, we obtain the entire result equals

xs.foldLeft(z)(f).

The split-invariance condition uses foldLeft. The following two conditions

together are a bit simpler and imply split-invariance:

forall u. g(u,z) == u (g-right-unit)

forall u, v. g(u, f(v,x)) == f(g(u,v), x) (g-f-assoc)

Assume g-right-unit and g-f-assoc. We wish to prove split-invariance. We

do so by induction on the length of ys. If ys has length zero, then

ys.foldLeft gives z, so by g-right-unit both sides reduce to xs.foldLeft.

Let ys have length n>0 and assume by I.H. split-invariance holds for all

ys of length strictly less than n. Let ys == ys1 :+ y (that is, y is the

last element of ys). Then

g(xs.F, (ys1 :+ y).F) == (foldLeft definition)

g(xs.F, f(ys1.F, y)) == (by g-f-assoc)

f(g(xs.F, ys1.F), y) == (by I.H.)

f((xs++ys1).F, y) == (foldLeft definition)

((xs++ys1) :+ y).F == (properties of lists)

(xs++(ys1 :+ y)).F

Question 4
Implement ​aggregate using the methods ​map ​and/or reduce of the collection you are
defining aggregate for.

A solution:

3

Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL

def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B =

 if (this.isEmpty) z

 else this.map((x: A) => f(z, x)).reduce(g)

4

Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL

Question 5
Implement ​aggregate using the ​task ​and/or parallel constructs seen in the first week
and the ​Splitter[A] interface seen in this week’s videos. The ​Splitter interface is
defined as:

trait Splitter[A] extends Iterator[A] {

 def split: Seq[Splitter[A]]

 def remaining: Int

}

You can assume that the data structure you are defining ​aggregate ​for already implements
a ​splitter​ method which returns an object of type ​Splitter[A]​.

Your implementation of ​aggregate should work in parallel when the number of remaining
elements is above the constant ​THRESHOLD​ and sequentially below it.

Hint:​ ​Iterator​, and thus ​Splitter​, implements the ​foldLeft​ method.

A solution:

def aggregate(z: B)(f: (B, A) => B, g: (B, B) => B): B = {

 def go(s: Splitter[A]): B = {

 if (s.remaining <= THRESHOLD) {

 s.foldLeft(z)(f)

 }

 else {

 val splitted = s.split

 val subs = splitted.map((t: Splitter[A]) => task { go(t) })

subs.map(_.join()).reduce(g)

 }

 }

 go(splitter)

}

Question 6

Discuss the implementations from questions 4 and 5. Which one do you think would be more
efficient ?

The version from question 4 may require 2 traversals (one for map, one for reduce) and
does not benefit from the (potentially faster) sequential operator f.

5

Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL

Exercise 2 : Depth
Review the notion of ​depth​ seen in the video lectures. What does it represent ?

Below is a formula for the depth of a ​divide and conquer algorithm working on an array
segment of size ​L​, as a function of L​. The values c, d and ​T are constants. We assume that
L>0​ and ​T>0​.

Below the threshold ​T​, the algorithm proceeds sequentially and takes time ​c to process each
single element. Above the threshold, the algorithm is applied recursively over the two halves
of the array. The results are then merged using an operation that takes ​d​ units of time.

Question 1
Is it the case that for all ​1 ≤ L​1​ ≤ L​2​ we have ​D(L​1​) ≤ D(L​2​) ​?

If it is the case, prove the property by induction on L. If it is not the case, give a
counterexample showing values of ​L​1​, L​2​,​ ​T​, ​c​, and ​d ​for which the property does not hold.

Somewhat counterintuitively, the property doesn’t hold. To show this, let’s take the following
values for L​1​, L​2​,​ ​T, c, and d.

L​1​ = 10, L​2​ = 12,​ ​T = 11​, ​c = 1​, and ​d = 1.

Using those values, we get that:

D(L​1​) = 10
D(L​2​) = max(D(6), D(6)) + 1 = 7

6

Exercise Session 2 - Solutions - Parallelism and Concurrency - EPFL

Question 2
Prove a logarithmic upper bound on ​D(L)​. That is, prove that ​D(L) ​is in ​O(log​ ​L)​ by finding
specific constants ​a​,​b​ such that​ D(L) ≤ a log​2​L + b​.

Proof sketch

Define the following function D’(L).

Show that D(L) ≤ D’(L) for all 1 ≤ L .

Then, show that, for any 1 ≤ L​1​ ≤ L​2​ we have D’(L​1​) ≤ D’(L​2​). This property can be shown by
induction on L​2​.

Finally, let n be such that L ≤ 2​n​ < 2L. We have that:

D(L) ≤ D’(L) Proven earlier.
 ≤ D’(2​n​) Also proven earlier.
 ​≤ log​2​(2​

n​) (d + cT) + cT
 ​< log​2​(2L) (d + cT) + cT
 = log​2​(L) (d + cT) + log​2​(2) (d + cT) + cT
 = log​2​(L) (d + cT) + d + 2cT

Done.

7

