
Exercise Session 4 - Solutions - Parallelism and Concurrency - EPFL

Exercise 1 : Implementing map and filter on Futures

In this exercise, you will come up with an implementation of the map and filter methods of
Futures. First of all, spend some time as a group to make sure that you understand what
those methods are supposed to do. Then, complete the following code to implement the two
methods:

trait Future[T] { self =>

 def map[S](f: T => S): Future[S] =

 new Future[S] {

 def onComplete(callback: Try[S] => Unit): Unit = ???
 }

 def filter(f: T => Boolean): Future[T] =

 new Future[T] {

 def onComplete(callback: Try[T] => Unit): Unit = ???
 }

}

Solution

trait Future[T] { self =>

 def map[S](f: T => S): Future[S] =

 new Future[S] {

 def onComplete(callback: Try[S] => Unit): Unit = self.onComplete {
 case Success(v) => callback(Success(f(v)))

 case Failure(e) => callback(Failure(e))

}

 }

 def filter(f: T => Boolean): Future[T] =

 new Future[T] {

 def onComplete(callback: Try[T] => Unit): Unit = self.onComplete {
 case Success(v) =>

 if f(v) {

 callback(Success(v))

 }

 else {

 callback(Failure(new NoSuchElementException(“...”)))

 }

 case Failure(e) => callback(Failure(e))

}

 }

}

1

