
Exercise Session 4 - Solutions - Parallelism and Concurrency - EPFL

Exercise 1 : Implementing ​map​ and ​filter​ on Futures

In this exercise, you will come up with an implementation of the ​map and ​filter methods of
Futures. First of all, spend some time as a group to make sure that you understand what
those methods are supposed to do. Then, complete the following code to implement the two
methods:

trait Future[T] { self =>

 def map[S](f: T => S): Future[S] =

 new Future[S] {

 def onComplete(callback: Try[S] => Unit): Unit = ​???
 }

 def filter(f: T => Boolean): Future[T] =

 new Future[T] {

 def onComplete(callback: Try[T] => Unit): Unit = ​???
 }

}

Solution

trait Future[T] { self =>

 def map[S](f: T => S): Future[S] =

 new Future[S] {

 def onComplete(callback: Try[S] => Unit): Unit = ​self.onComplete {
 case Success(v) => callback(Success(f(v)))

 case Failure(e) => callback(Failure(e))

}

 }

 def filter(f: T => Boolean): Future[T] =

 new Future[T] {

 def onComplete(callback: Try[T] => Unit): Unit = ​self.onComplete {
 case Success(v) =>

 if f(v) {

 callback(Success(v))

 }

 else {

 callback(Failure(new NoSuchElementException(“...”)))

 }

 case Failure(e) => callback(Failure(e))

}

 }

}

1

