
Exercise Session 2 - Parallelism and Concurrency - EPFL 
 

Exercise 1 : Aggregate 
 
In the video lectures of this week, you have been introduced to the ​aggregate method of                
ParSeq[A]​ (and other parallel data structures…). It has the following signature: 
 

def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B 

 
Discuss, as a group, what ​aggregate​ does and what its arguments represent. 

Question 1 
Consider the parallel sequence ​xs ​containing the three elements ​x1​, ​x2 and ​x3​. Also              
consider the following call to aggregate: 
 

xs.aggregate(z)(f, g) 

 
The above call might potentially result in the following computation: 
 

f(f(f(z, x1), x2), x3) 

 

But it might also result in other computations. Come up with at least 2 other computations                
that may result from the above call to ​aggregate​. 

Question 2 
Below are other examples of calls to ​aggregate​. In each case, check if the call can lead to                  
different results depending on the strategy used by ​aggregate ​to aggregate all values             
contained in ​data down to a single value. You should assume that ​data is a parallel                
sequence of values of type ​BigInt​. 
 

Variant 1 

data.aggregate(1)(_ + _, _ + _) 
 

Variant 2 

data.aggregate(0)((acc, x) => x - acc, _ + _) 

 

Variant 3 

data.aggregate(0)((acc, x) => acc - x, _ + _) 

 

Variant 4 

data.aggregate(1)((acc, x) => x * x * acc, _ * _) 

1 



Exercise Session 2 - Parallelism and Concurrency - EPFL 
 

Question 3 
Under which condition(s) on ​z​, ​f​, and ​g​ does ​aggregate​ always lead to the same result ? 
Come up with a formula on ​z​, ​f​, and ​g ​that implies the correctness of ​aggregate​. 
 
Hint:​ You may find useful to use calls to ​foldLeft(z)(f)​ in your formula(s). 

Question 4 
Implement ​aggregate using the methods ​map ​and/or reduce of the collection you are             
defining aggregate for. 

Question 5 
Implement ​aggregate using the ​task ​and/or parallel constructs seen in the first week             
and the ​Splitter[A] interface seen in this week’s videos. The ​Splitter interface is             
defined as: 
 

trait Splitter[A] extends Iterator[A] { 

  def split: Seq[Splitter[A]] 

  def remaining: Int 

} 

 
You can assume that the data structure you are defining ​aggregate ​for already implements              
a ​splitter​ method which returns an object of type ​Splitter[A]​. 
 
Your implementation of ​aggregate should work in parallel when the number of remaining             
elements is above the constant ​THRESHOLD​ and sequentially below it. 
 
Hint:​ ​Iterator​, and thus ​Splitter​, implements the ​foldLeft​ method. 

Question 6 

Discuss the implementations from questions 4 and 5. Which one do you think would be more                
efficient ? 
 
  

2 



Exercise Session 2 - Parallelism and Concurrency - EPFL 
 

Exercise 2 : Depth 
Review the notion of ​depth​ seen in the video lectures. What does it represent ? 
 
Below is a formula for the depth of a ​divide and conquer algorithm working on an array                 
segment of size ​L​, as a function of L​. The values c, d and ​T are constants. We assume that                    
L>0​ and ​T>0​. 
 

 
 
Below the threshold ​T​, the algorithm proceeds sequentially and takes time ​c to process each               
single element. Above the threshold, the algorithm is applied recursively over the two halves              
of the array. The results are then merged using an operation that takes ​d​ units of time. 

Question 1 
Is it the case that for all ​1 ≤ L​1​ ≤ L​2​ we have ​D(L​1​) ≤ D(L​2​) ​? 
 
If it is the case, prove the property by induction on L. If it is not the case, give a                    
counterexample showing values of ​L​1​, L​2​,​ ​T​, ​c​, and ​d ​for which the property does not hold. 

Question 2 
Prove a logarithmic upper bound on ​D(L)​. That is, prove that ​D(L) ​is in ​O(log​ ​L)​ by finding 
specific constants ​a​,​b​ such that​ D(L) ≤ a log​2​L + b​. 
 
Hint: The proof is more complex that it might seem. One way to make it more manageable is                  
to define and use a function D’(L) that has the property described in question 1, and is                 
greater or equal to D(L). We suggest you use: 
 

 
 

Also remark that computing D’(L) when L is a power of 2 is easy. Also remember that there                  
always exists a power of 2 between any positive integer and its double. 

3 


