
 
Exercise Session 1 - Parallelism and Concurrency - EPFL 

Exercise 1 : Introduction to Concurrency 
 
Freshly graduated from EPFL, you all have been hired as contractors for a successful and               
rapidly growing bank. The bank has recently been experiencing problems with their money             
management system, coded in Scala, and so they hired the best and brightest young              
engineers they could find: you! The system has been working perfectly fine so far, they tell                
you. In the past days, due to an increased number of customers, they had to switch from a                  
single threaded sequential execution environment to a multithreaded concurrent         
environment, in which multiple threads may perform transactions concurrently. That’s when           
problems started, your manager says… 
 
Below is the code responsible to withdraw money from the account ​from​ and transfer it to 
the account ​to​, within the same bank.  
 
def transfer(from: Account, to: Account, amount: BigInt) { 

  require(amount >= 0) 

 

  val balanceFrom = from.balance 

  if (balanceFrom >= amount) { 

    from.balance = balanceFrom - amount 

    val balanceTo = to.balance 

    to.balance = balanceTo + amount 

  } 

} 

 
For the bank, it is very important that the following two properties hold in any sequence of 
transfer transactions: 

1. The balance of an account never goes below 0. 
2. The total sum of money held by the bank is constant. 

Question 1 
Does the above ​transfer method respect the two properties in a ​sequential ​execution             
environment, that is, when there is only one thread in the program? 
 

Question 2 
What can go wrong in a setting where multiple threads can execute the ​transfer method               
concurrently ? For each of the two desired properties of the system, check if its holds in this                  
concurrent environment. If not, come up with an example execution which exhibits a violation              
of the property.  
 

1 



 
Exercise Session 1 - Parallelism and Concurrency - EPFL 

Question 3 
For each of the proposed implementations of ​transfer below, check which of the properties              
hold. Additionally, check if the system is vulnerable to ​deadlocks​.  

Variant 1 
def transfer(from: Account, to: Account, amount: Long) { 

  val balanceFrom = from.balance 

  if (balanceFrom >= amount) { 

    from.synchronized { 

      from.balance = balanceFrom - amount 

    } 

    to.synchronized { 

      val balanceTo = to.balance 

      to.balance = balanceTo + amount 

    } 

  } 

} 

Variant 2 
def transfer(from: Account, to: Account, amount: Long) { 

  from.synchronized { 

    val balanceFrom = from.balance 

    if (balanceFrom >= amount) { 

      from.balance = balanceFrom - amount 

      to.synchronized { 

        val balanceTo = to.balance 

        to.balance = balanceTo + amount 

      } 

    } 

  } 

} 

Variant 3 
object lock // Global object. 

def transfer(from: Account, to: Account, amount: Long) { 

  lock.synchronized { 

    val balanceFrom = from.balance 

    if (balanceFrom >= amount) { 

      from.balance = balanceFrom - amount 

      val balanceTo = to.balance 

      to.balance = balanceTo + amount 

    } 

  } 

} 

2 



 
Exercise Session 1 - Parallelism and Concurrency - EPFL 

Exercise 2 : Parallel Reductions 

Question 1 
As a group, write a function called ​minMax​, which should take a non-empty array as input                
and return a pair containing the smallest and the largest element of the array. 
 
def minMax(a: Array[Int]): (Int, Int) = ??? 
 
Now write a parallel version of the function. You may use the constructs ​task ​and/or               

parallel​, as​ ​seen in the lectures. 

Question 2 
 
Imagine that the data structure you are given, instead of an ​Array[A]​, is one called               
ParSeq[A]​. This class offers the two following methods, which work in parallel: 
 
def map[B](f: A => B): ParSeq[B] 

def reduce(f: (A, A) => A): A 

 
Can you write the following ​minMax ​function in terms of ​map​ and/or ​reduce​ operations ? 
 
def minMax(data: ParSeq[Int]): (Int, Int) = ??? 

Question 3 
 
What property does the function ​f passed to ​reduce need to satisfy in order to have the                 
same result regardless on how ​reduce groups the applications of the operation f to the               
elements of the data structure? Prove that your function ​f​ indeed satisfies that property. 

 

3 


