




�
�
�
�



�
�



�
�

� drop()

� drop(”all”)

� drop(Array(”id”, ”name”))



�
�

� fill(0)

� fill(Map(”minBalance” -> 0))

� replace(Array(”id”),Map(1234 -> 8923))





collect(): Array[Row]

count(): Long

first(): Row/head(): Row

show(): Unit

take(n: Int): Array[Row]









case class : Int : String String

case class : Int : String

val =

val =

val =

val =







val =

val =

val =



val =



val =





val

=



val

=





case class : Int

: Int

: Boolean

: String

: String

: Boolean

: Boolean

val =

case class : Int

: Boolean

: Boolean

: Boolean

: Int

val =





�
�

val =

val =





0

1.25

2.5

3.75

5

Se
co

nd
s

Po
ss

ibi
lity

 1
Po

ss
ibi

lity
 2

Filtering data first 
is 3.6x faster!

Possibility 1 Possibility 2

While for all three of these possible 
examples, the end result is the same, the 
time it takes to execute the job is vastly 
different.

Recall

Revisiting Our Selecting Scholarship Recipients Example



While for all three of these possible 
examples, the end result is the same, the 
time it takes to execute the job is vastly 
different.

0

75

150

225

300

Se
co

nd
s

Po
ss

ibi
lity

 1
Po

ss
ibi

lity
 2

177x slower!

Po
ss

ibi
lity

 3

~4 mins to 
complete, versus 
1.35 and 4.97 
seconds

Recall

Revisiting Our Selecting Scholarship Recipients Example



Revisiting Our Selecting Scholarship Recipients Example

Comparing performance between 
handwritten RDD-based solutions and 
DataFrame solution…

0

75

150

225

300

Se
co

nd
s

Po
ss

ibi
lity

 1
Po

ss
ibi

lity
 2

193x slower!

Po
ss

ibi
lity

 3

than DataFrame 
solution!

Data
Fr

am
e



Revisiting Our Selecting Scholarship Recipients Example

Comparing performance between 
handwritten RDD-based solutions and 
DataFrame solution…

0

1.25

2.5

3.75

5

Se
co

nd
s

Po
ss

ibi
lity

 1
Po

ss
ibi

lity
 2

4x faster!

Po
ss

ibi
lity

 3

than almost 
same program 
written for 
RDDs

Data
Fr

am
e

om
itt
ed

Possibility 1 Possibility 2 DataFrame





�
�



Spark

Spark SQL

User ProgramsJDBC Console

DataFrame API

Catalyst Optimizer

(Scala, Java, Python)

RDDs



Spark

Spark SQL

User ProgramsJDBC Console

DataFrame API

Catalyst Optimizer

(Scala, Java, Python)

RDDs



Optimizations: RDDs vs DataFrames

In summary:

Spark RDDs:

DataFrames/Databases/Hive:
SELECT	
WHERE	
ORDER	BY	
GROUP	BY	
COUNT

!Account 
object

Account 
object

Account 
object

Account 
object

Account 
object

Account 
object

Account 
object

Account 
object

name: String risk: Boolean
risk: Boolean
risk: Boolean
risk: Boolean

balance: Double
balance: Double
balance: Double
balance: Double

name: String
name: String
name: String

Lots of structure. 
Lots of optimization 
opportunities!

Not much structure.
Difficult to 
aggressively optimize.



�
�
�



�
�
�

�



�
�
�

�
�



�
�
�

�
�
�



�
�
�



�
�
�



�
�
�



�
�
�












