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Relational Queries (SQL)

Data organized into one or more tables
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Relational Queries (SQL)

Data organized into one or more tables
‣ Tables contain columns and rows.
‣ Tables typically represent a collection 

of objects of a certain type, such as 
customers or products
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‣ Tables contain columns and rows.
‣ Tables typically represent a collection 
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A relation is just a table.
Attributes are columns.

attribute
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A relation is just a table.
Attributes are columns.
Rows are records or tuples

record
/tuple



Spark SQL

DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
relational database.
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DataFrame, is a table, sort of.



Spark SQL

DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
relational database.

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

DataFrames are, conceptually, RDDs 
full of records with a known schema
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DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
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DataFrames are, conceptually, RDDs 
full of records with a known schema

Unlike RDDs though, DataFrames 
require some kind of schema info!

DataFrame, is a table, sort of.
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DataFrames are, conceptually, RDDs 
full of records with a known schema

DataFrames are untyped!
That is, the Scala compiler doesn’t check 
the types in its schema!

DataFrame, is a table, sort of.

DataFrames contain Rows which can 
contain any schema.



Spark SQL

DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
relational database.
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DataFrames are, conceptually, RDDs 
full of records with a known schema

DataFrames are untyped!
That is, the Scala compiler doesn’t check 
the types in its schema!

Transformations on DataFrames are also 
known as untyped transformations

DataFrame, is a table, sort of.
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