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� drop()

� drop(”all”)

� drop(Array(”id”, ”name”))



�
�

� fill(0)

� fill(Map(”minBalance” -> 0))

� replace(Array(”id”),Map(1234 -> 8923))





collect(): Array[Row]

count(): Long

first(): Row/head(): Row

show(): Unit

take(n: Int): Array[Row]









case class : Int : String String

case class : Int : String

val =

val =
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case class : Int

: Int

: Boolean

: String

: String

: Boolean

: Boolean

val =

case class : Int

: Boolean

: Boolean

: Boolean

: Int

val =
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Filtering data first 
is 3.6x faster!

Possibility 1 Possibility 2

While for all three of these possible 
examples, the end result is the same, the 
time it takes to execute the job is vastly 
different.
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While for all three of these possible 
examples, the end result is the same, the 
time it takes to execute the job is vastly 
different.

0

75

150

225

300

Se
co

nd
s

Po
ss

ibi
lity

 1
Po

ss
ibi

lity
 2

177x slower!

Po
ss

ibi
lity

 3

~4 mins to 
complete, versus 
1.35 and 4.97 
seconds
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Revisiting Our Selecting Scholarship Recipients Example

Comparing performance between 
handwritten RDD-based solutions and 
DataFrame solution…
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Revisiting Our Selecting Scholarship Recipients Example

Comparing performance between 
handwritten RDD-based solutions and 
DataFrame solution…
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Optimizations: RDDs vs DataFrames

In summary:

Spark RDDs:

DataFrames/Databases/Hive:
SELECT	
WHERE	
ORDER	BY	
GROUP	BY	
COUNT

!Account 
object

Account 
object

Account 
object

Account 
object

Account 
object

Account 
object

Account 
object

Account 
object

name: String risk: Boolean
risk: Boolean
risk: Boolean
risk: Boolean

balance: Double
balance: Double
balance: Double
balance: Double

name: String
name: String
name: String

Lots of structure. 
Lots of optimization 
opportunities!

Not much structure.
Difficult to 
aggressively optimize.
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