




�
�



�
�







�
�



�
�

�

� DataFrames

� Datasets



�
�

�

� DataFrames

� Datasets

�
�



�
�

Spark
RDDs



�
�

Spark

Spark SQL DataFrame API

Catalyst Optimizer

RDDs



�
�

Spark

Spark SQL

User ProgramsJDBC Console

DataFrame API

Catalyst Optimizer

(Scala, Java, Python)

RDDs



�
�



�
�



Relational Queries (SQL)

Data organized into one or more tables
Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price



Relational Queries (SQL)

Data organized into one or more tables
‣ Tables contain columns and rows. Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

columns



Relational Queries (SQL)

Data organized into one or more tables
‣ Tables contain columns and rows. Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

rows



Relational Queries (SQL)

Data organized into one or more tables
‣ Tables contain columns and rows.
‣ Tables typically represent a collection 

of objects of a certain type, such as 
customers or products

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

SBB customers dataset



Relational Queries (SQL)

Data organized into one or more tables
‣ Tables contain columns and rows.
‣ Tables typically represent a collection 

of objects of a certain type, such as 
customers or products

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

A relation is just a table.
Attributes are columns.

attribute



Relational Queries (SQL)

Data organized into one or more tables
‣ Tables contain columns and rows.
‣ Tables typically represent a collection 

of objects of a certain type, such as 
customers or products

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

A relation is just a table.
Attributes are columns.
Rows are records or tuples

record
/tuple



Spark SQL

DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
relational database.

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

DataFrame, is a table, sort of.



Spark SQL

DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
relational database.

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

DataFrames are, conceptually, RDDs 
full of records with a known schema

DataFrame, is a table, sort of.



Spark SQL

DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
relational database.

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

DataFrames are, conceptually, RDDs 
full of records with a known schema

Unlike RDDs though, DataFrames 
require some kind of schema info!

DataFrame, is a table, sort of.



Spark SQL

DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
relational database.

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

DataFrames are, conceptually, RDDs 
full of records with a known schema

DataFrames are untyped!
That is, the Scala compiler doesn’t check 
the types in its schema!

DataFrame, is a table, sort of.

DataFrames contain Rows which can 
contain any schema.



Spark SQL

DataFrame is Spark SQL’s core abstraction.
Conceptually equivalent to a table in a 
relational database.

Customer_Name

"Weitz" "Luzern"

32.40

12.50

32.10

9.60

6.60

12.70

21.40

53.20

"Zürich"

"Neuchâtel"

"Basel"

"Winterthur"

"Lausanne"

"Genève"

"Bern"

"Schinz"

"Dubois"

"Hug"

"Strub"

"Chapuis"

"Smith"

"Weitz"

Destination Ticket_Price

DataFrames are, conceptually, RDDs 
full of records with a known schema

DataFrames are untyped!
That is, the Scala compiler doesn’t check 
the types in its schema!

Transformations on DataFrames are also 
known as untyped transformations

DataFrame, is a table, sort of.





DataFrame

val =

val =



DataFrame

val =

val =

case class : Int : String : String

val =

val =



DataFrame

�
�

�

case class : String : Int

val =



DataFrame

val =

val =

=> = true

val =

val =

_

=>

val =



DataFrame

val =



DataFrame

val =

�
�
�
�







val

=





�
�
�
�

�
�
�
�

�
�
�

�



case class : Int : String : String : Int : String

val =



case class : Int : String : String : Int : String

val =



case class : Int : String : String : Int : String

val =

val

=



case class : Int : String : String : Int : String

val =

val

=



val =



val =

val

=


