

case class : Int

: Int

: Boolean

: String

: String

: Boolean

: Boolean

val =

case class : Int

: Boolean

: Boolean

: Boolean

: Int

val =

�
�

val =

val =

=>

=>

val

= =>

=>

val

= =>

=>

val

=

case =>

case =>

val

=

case =>

case =>

Example: Selecting Scholarship Recipients

While for all three of these possible
examples, the end result is the same, the
time it takes to execute the job is vastly
different.

Example: Selecting Scholarship Recipients

While for all three of these possible
examples, the end result is the same, the
time it takes to execute the job is vastly
different.

0

1.25

2.5

3.75

5

Se
co

nd
s

Po
ss

ibi
lity

 1
Po

ss
ibi

lity
 2

Filtering data first
is 3.6x faster!

Possibility 1 Possibility 2

Example: Selecting Scholarship Recipients

While for all three of these possible
examples, the end result is the same, the
time it takes to execute the job is vastly
different.

0

75

150

225

300

Se
co

nd
s

Po
ss

ibi
lity

 1
Po

ss
ibi

lity
 2

177x slower!

Po
ss

ibi
lity

 3

~4 mins to
complete, versus
1.35 and 4.97
seconds

Unstructured Semi-Structured Structured

Unstructured Semi-Structured Structured

Log files JSON Database
tables

XMLImages

�
�
�

Structured Data vs RDDs

Assuming we have a dataset of Account objects:
case	class	Account(name:	String,	balance:	Double,	risk:	Boolean)	

Spark/RDDs see:

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Blobs of objects we know
nothing about, except that
they’re called Account.

Spark can’t see inside this
object or analyze how it
may be used, and to
optimize based on that
usage. It’s opaque.

Structured Data vs RDDs

Assuming we have a dataset of Account objects:
case	class	Account(name:	String,	balance:	Double,	risk:	Boolean)	

Spark/RDDs see:

A database/Hive sees:

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

name: String risk: Boolean
risk: Boolean
risk: Boolean
risk: Boolean

balance: Double
balance: Double
balance: Double
balance: Double

name: String
name: String
name: String

Columns of named and
typed values.
If Spark could see data this
way, it could break up and
only select the datatypes it
needs to send around the
cluster.

Structured vs Unstructured Computation

The same can be said about computation.

In Spark:

Like the data Spark
operates on, function
literals too are completely
opaque to Spark.
A user can do anything
inside of one of these, and
all Spark can see is
something like:
$anon$1@604f1a67

‣ We do functional transformations on data.
‣ We pass user-defined function literals to higher-order

functions like map, flatMap, and filter.

!

Structured vs Unstructured Computation

The same can be said about computation.

In Spark:

In a database/Hive:
Fixed set of operations,
fixed set of types they
operate on.

Optimizations the norm!

‣ We do functional transformations on data.
‣ We pass user-defined function literals to higher-order

functions like map, flatMap, and filter.

!

‣ We do declarative transformations on data.
‣ Specialized/structured, pre-defined operations.

Structured vs Unstructured

In summary:

Spark RDDs:

Databases/Hive:
SELECT	
WHERE	
ORDER	BY	
GROUP	BY	
COUNT

!Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

name: String risk: Boolean
risk: Boolean
risk: Boolean
risk: Boolean

balance: Double
balance: Double
balance: Double
balance: Double

name: String
name: String
name: String

as we know them so far

Structured vs Unstructured

In summary:

Spark RDDs:

Databases/Hive:
SELECT	
WHERE	
ORDER	BY	
GROUP	BY	
COUNT

!Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

name: String risk: Boolean
risk: Boolean
risk: Boolean
risk: Boolean

balance: Double
balance: Double
balance: Double
balance: Double

name: String
name: String
name: String

Not much structure.
Difficult to
aggressively optimize.

as we know them so far

Structured vs Unstructured

In summary:

Spark RDDs:

Databases/Hive:
SELECT	
WHERE	
ORDER	BY	
GROUP	BY	
COUNT

!Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

Account
object

name: String risk: Boolean
risk: Boolean
risk: Boolean
risk: Boolean

balance: Double
balance: Double
balance: Double
balance: Double

name: String
name: String
name: String

Lots of structure.
Lots of optimization
opportunities!

Not much structure.
Difficult to
aggressively optimize.

as we know them so far

Spark SQL makes this possible!

