Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Parallel Sorting

Parallel Programming in Scala

Viktor Kuncak



Merge Sort

We will implement a parallel merge sort algorithm.

1. recursively sort the two halves of the array in parallel

2. sequentially merge the two array halves by copying into a temporary
array

3. copy the temporary array back into the original array

The parMergeSort method takes an array, and a maximum depth:



Merge Sort

We will implement a parallel merge sort algorithm.

1. recursively sort the two halves of the array in parallel

2. sequentially merge the two array halves by copying into a temporary
array

3. copy the temporary array back into the original array

The parMergeSort method takes an array, and a maximum depth:

def parMergeSort(xs: Array[Int], maxDepth: Int): Unit = {



Allocating an Intermediate Array

We start by allocating an intermediate array:
val ys = new Array[Int](xs.length)

At each level of the merge sort, we will alternate between the source array
xs and the intermediate array ys.



Sorting the Array

def sort(from: Int, until: Int, depth: Int): Unit = {
if (depth == maxDepth) {
quickSort(xs, from, until - from)
} else {
val mid = (from + until) / 2
parallel(sort(mid, until, depth + 1), sort(from, mid, depth + 1))



Sorting the Array

def sort(from: Int, until: Int, depth: Int): Unit = {
if (depth == maxDepth) {
quickSort(xs, from, until - from)
} else {
val mid = (from + until) / 2
parallel(sort(mid, until, depth + 1), sort(from, mid, depth + 1))

val flip = (maxDepth - depth) % 2 ==
val src = if (flip) ys else xs

val dst = if (flip) xs else ys
merge(src, dst, from, mid, until)

}
sort(@, xs.length, 0)



Merging the Array

Given an array src consisting of two sorted intervals, merge those interval
into the dst array:

def merge(src: Array[Int], dst: Array[Int],
from: Int, mid: Int, until: Int): Unit

The merge implementation is sequential, so we will not go through it.



Merging the Array

Given an array src consisting of two sorted intervals, merge those interval
into the dst array:

def merge(src: Array[Int], dst: Array[Int],
from: Int, mid: Int, until: Int): Unit

The merge implementation is sequential, so we will not go through it.

How would you implement merge in parallel?



Copying the Array

def copy(src: Array[Int], target: Array[Int],
from: Int, until: Int, depth: Int): Unit = {
if (depth == maxDepth) {
Array.copy(src, from, target, from, until - from)
} else {
val mid = (from + until) / 2
val right = parallel(
copy(src, target, mid, until, depth + 1),
copy(src, target, from, mid, depth + 1)

3
if (maxDepth % 2 == @) copy(ys, xs, @, xs.length, 0)



Demo

Let's compare the performance of parMergeSort against the Scala
quicksort implementation.



Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Data Operations and Parallel Mapping

Parallel Programming in Scala

Viktor Kuncak



Parallelism and collections

Parallel processing of collections is important
» one the main applications of parallelism today
We examine conditions when this can be done

» properties of collections: ability to split, combine
» properties of operations: associativity, independence



Functional programming and collections

Operations on collections are key to functional programming

map: apply function to each element

> List(1,3,8).map(x => x*x) == List(1, 9, 64)



Functional programming and collections
Operations on collections are key to functional programming
map: apply function to each element
> List(1,3,8).map(x => x*x) == List(1, 9, 64)
fold: combine elements with a given operation

> List(1,3,8).fold(100)((s,x) => s + x) == 112



Functional programming and collections
Operations on collections are key to functional programming
map: apply function to each element
> List(1,3,8).map(x => x*x) == List(1, 9, 64)
fold: combine elements with a given operation
> List(1,3,8).fold(100)((s,x) => s + x) == 112
scan: combine folds of all list prefixes
> List(1,3,8).scan(100)((s,x) => s + x) == List(100, 101, 104, 112)

These operations are even more important for parallel than sequential
collections: they encapsulate more complex algorithms



Choice of data structures

We use List to specify the results of operations
Lists are not good for parallel implementations because we cannot

efficiently

» split them in half (need to search for the middle)
» combine them (concatenation needs linear time)



Choice of data structures

We use List to specify the results of operations

Lists are not good for parallel implementations because we cannot
efficiently

» split them in half (need to search for the middle)
» combine them (concatenation needs linear time)

We use for now these alternatives

» arrays: imperative (recall array sum)
> trees: can be implemented functionally

Subsequent lectures examine Scala's parallel collection libraries

» includes many more data structures, implemented efficiently



Map: meaning and properties

Map applies a given function to each list element
List(1,3,8).map(x => x*x) == List(1, 9, 64)
List(a1, a2, .., an).map(f) == List(f(a1), f(a2), .-, f(an))

Properties to keep in mind:

> list.map(x => x) == list

> list.map(f.compose(g)) == list.map(g).map(f)

Recall that (f.compose(g))(x) = f(g(x))



Map as function on lists

Sequential definition:

def mapSeq[A,BI(lst: List[Al, f : A => B): List[B] = 1st match {
case Nil => Nil
case h :: t => f(h) :: mapSeq(t,f)

}

We would like a version that parallelizes

» computations of f(h) for different elements h
» finding the elements themselves (list is not a good choice)



Sequential map of an array producing an array

def mapASegSeq[A,B](inp: Array[A], left: Int, right: Int, f : A => B,
out: Array[B]) = {
// Writes to out(i) for left <= i <= right-1
var i= left

. . . inp
while (1< right) { L Loy Lo o Lo Lor |

out(i)= f(inp(i)) B T B e e R

i= i+1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ out

T3

val in= Array(2,3,4,5,6)

val out= Array(0,0,0,0,0)
val f= (x:Int) => x*x
mapASegSeq(in, 1, 3, f, out)
out

resl: Array[Int] = Array(Q, 9, 16, 0, 0)



Parallel map of an array producing an array

def mapASegPar[A,Bl(inp: Array[A], left: Int, right: Int, f : A => B,
out: Array[B]): Unit = {
// Writes to out(i) for left <= i <= right-1
if (right - left < threshold)
mapASegSeq(inp, left, right, f, out)
else {
val mid = left + (right - left)/2
parallel(mapASegPar(inp, left, mid, f, out),
mapASegPar (inp, mid, right, f, out))

}
Note:

et Lot Tor T Lot Tor L]
ST T

» writes need to be disjoint (otherwise: non-deterministic behavior)
» threshold needs to be large enough (otherwise we lose efficiency)



Example of using mapASegPar: pointwise exponent

Raise each array element to power p:
Array(ai, ag,...,an) — Array(|a1|P, |az|P, ..., |an|P)

We can use previously defined higher-order functions:

val p: Double = 1.5
def f(x: Int): Double = power(x, p)

mapASegSeq(inp, @, inp.length, f, out) // sequential

mapASegPar(inp, @, inp.length, f, out) // parallel



Example of using mapASegPar: pointwise exponent

Raise each array element to power p:
Array(ai, ag,...,an) — Array(|a1|P, |az|P, ..., |an|P)

We can use previously defined higher-order functions:

val p: Double = 1.5
def f(x: Int): Double = power(x, p)

mapASegSeq(inp, @, inp.length, f, out) // sequential

mapASegPar(inp, @, inp.length, f, out) // parallel
Questions on performance:

» are there performance gains from parallel execution
» performance of re-using higher-order functions vs re-implementing



Sequential pointwise exponent written from scratch

def normsOf (inp: Array[Int], p: Double,
left: Int, right: Int,
out: Array[Double]): Unit = {
var i= left
while (i < right) {
out(i)= power(inp(i),p)
i= i+l



Parallel pointwise exponent written from scratch

def normsOfPar(inp: Array[Int], p: Double,
left: Int, right: Int,
out: Array[Doublel]): Unit = {
if (right - left < threshold) {
var i= left
while (i < right) {
out(i)= power(inp(i),p)
i= i+1
}
} else {
val mid = left + (right - left)/2
parallel(normsOfPar(inp, p, left, mid, out),
normsOfPar(inp, p, mid, right, out))



Measured performance using scalameter

> inp.length = 2000000
> threshold = 10000

» Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz (4-core, 8 HW
threads), 16GB RAM

expression ‘ time(ms)
mapASegSeq(inp, 0, inp.length, f, out) 174.17
mapASegPar(inp, 0, inp.length, f, out) 28.93
normsOfSeq(inp, p, 0, inp.length, out) 166.84
normsOfPar(inp, p, 0, inp.length, out) 28.17




Measured performance using scalameter

> inp.length = 2000000
> threshold = 10000

» Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz (4-core, 8 HW
threads), 16GB RAM

expression ‘ time(ms)
mapASegSeq(inp, 0, inp.length, f, out) 174.17
mapASegPar(inp, 0, inp.length, f, out) 28.93
normsOfSeq(inp, p, 0, inp.length, out) 166.84
normsOfPar(inp, p, 0, inp.length, out) 28.17

Parallelization pays off

Manually removing higher-order functions does not pay off



Parallel map on immutable trees

Consider trees where

> |eaves store array segments
» non-leaf node stores two subtrees

sealed abstract class Tree[A] { val size: Int }
case class Leaf[Al(a: Array[A]) extends Tree[A] {
override val size = a.size

}
case class Node[A](1l: Tree[Al, r: Tree[A]) extends Tree[A] {
override val size = l.size + r.size

Assume that our trees are balanced: we can explore branches in parallel



Parallel map on immutable trees

def mapTreePar[A:Manifest,B:Manifest](t: Tree[Al, f: A => B) : Tree[B] =
t match {
case Leaf(a) => {
val len = a.length; val b = new Array[B](len)
var i= 0@
while (i < len) { b(i)= f(a(i)); i=i +1 }
Leaf(b) }
case Node(l,r) => {
val (1b,rb) = parallel(mapTreePar(l,f), mapTreePar(r,f))
Node(1lb, rb) 3}
}

Speedup and performance similar as for the array



Give depth bound of mapTreePar

Give a correct but as tight as possible asymptotic parallel computation
depth bound for mapTreePar applied to complete trees with height h and 2"
nodes, assuming the passed first-class function f executes in constant time.

2h

h

log h
hlogh
h2h

O



Give depth bound of mapTreePar

Give a correct but as tight as possible asymptotic parallel computation
depth bound for mapTreePar applied to complete trees with height h and 2"
nodes, assuming the passed first-class function f executes in constant time.

2h

h

log h
hlogh
h2h

O

Answer: h. The computation depth equals the height of the tree.



Comparison of arrays and immutable trees

Arrays
» (+) random access to elements, on shared memory can share array
» (+) good memory locality
» (-) imperative: must ensure parallel tasks write to disjoint parts
> (-) expensive to concatenate

Immutable trees:

+) purely functional, produce new trees, keep old ones
+) no need to worry about disjointness of writes by parallel tasks
) efficient to combine two trees

vV v vV VY

(
(
(+
(-) high memory allocation overhead
(-) bad locality



Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Fold (Reduce) Operations

Parallel Programming in Scala

Viktor Kuncak



Functional programming and collections
We have seen operation:
map: apply function to each element
> List(1,3,8).map(x => x*x) == List(1, 9, 64)

We now consider:

fold: combine elements with a given operation

> List(1,3,8).fold(100)((s,x) => s + x) == 112



Fold: meaning and properties

Fold takes among others a binary operation, but variants differ:

» whether they take an initial element or assume non-empty list

> in which order they combine operations of collection
List(1,3,8).foldLeft(100)((s,x) => s - x) == ((100 - 1) - 3) - 8 == 88
List(1,3,8).foldRight(100)((s,x) => s - x) == 1 - (3 - (8-100)) == -94
List(1,3,8).reduceLeft((s,x) => s - x) == (1 - 3) - 8 == -10
List(1,3,8).reduceRight((s,x) => s - x) == 1 - (3 - 8) ==

To enable parallel operations, we look at associative operations

» addition, string concatenation (but not minus)



Associative operation
Operation f: (A,A) => A is associative iff for every x, y, z:

fix, Ry, 2)) = f(f(x,y), 2)

If we write f(a, b) in infix form as a ® b, associativity becomes

x@(y®z)=(x®y)®z
Consequence: consider two expressions with same list of operands

connected with ®, but different parentheses. Then these expressions
evaluate to the same result, for example:

x@y)@(zew) =(xe(y®2))ow=((x®y)®2) 0w



Trees for expressions

Each expression built from values connected with ® can be represented as
a tree

> leaves are the values
» nodes are @

xX® (y®2): ®
X/ \®
y/ \z
(x®y) @ (z@ w):
®/®\®
SN 7N



Folding (reducing) trees

How do we compute the value of such an expression tree?

sealed abstract class Tree[A]
case class Leaf[Al(value: A) extends Tree[A]
case class Node[A](left: Tree[Al, right: Tree[A]) extends Tree[A]

Result of evaluating the expression is given by a reduce of this tree.

What is its (sequential) definition?



Folding (reducing) trees

How do we compute the value of such an expression tree?

sealed abstract class Tree[A]
case class Leaf[Al(value: A) extends Tree[A]
case class Node[A](left: Tree[Al, right: Tree[A]) extends Tree[A]

Result of evaluating the expression is given by a reduce of this tree.
What is its (sequential) definition?
def reduce[A](t: Tree[Al, f : (A,A) => A): A =t match {

case Leaf(v) => v
case Node(l, r) => f(reduce[A]l(1l, f), reduce[Al(r, f)) // Node -> f

}

We can think of reduce as replacing the constructor Node with given f



Running reduce

For non-associative operation, the result depends on structure of the tree:

def tree = Node(Leaf (1), Node(Leaf(3), Leaf(8)))
def fMinus = (x:Int,y:Int) => x -y
def res = reduce[Int](tree, fMinus) // 6



Parallel reduce of a tree

How to make that tree reduce parallel?



Parallel reduce of a tree

How to make that tree reduce parallel?

def reduce[A](t: Tree[Al, f : (A,A) => A): A =t match {
case Leaf(v) => v
case Node(l, r) => {
val (1V, rV) = parallel(reduce[A]l(l, f), reduce[Al(r, f))
f(1v, rv)



Parallel reduce of a tree

How to make that tree reduce parallel?

def reduce[A](t: Tree[Al, f : (A,A) => A): A =t match {
case Leaf(v) => v
case Node(l, r) => {
val (1V, rV) = parallel(reduce[A]l(l, f), reduce[Al(r, f))
f(1v, rv)

b

What is the depth complexity of such reduce?



Parallel reduce of a tree

How to make that tree reduce parallel?

def reduce[A](t: Tree[Al, f : (A,A) => A): A =t match {
case Leaf(v) => v
case Node(l, r) => {
val (1V, rV) = parallel(reduce[A]l(l, f), reduce[Al(r, f))
f(1v, rv)

b

What is the depth complexity of such reduce?

Answer: height of the tree



Associativity stated as tree reduction

How can we restate associativity of such trees?

x@(y®z)=x®y) ®z



Associativity stated as tree reduction

How can we restate associativity of such trees?
x@(y®z)=(x®y)®z

If fdenotes @, in Scala we can write this also as:

reduce(Node(Leaf (x), Node(Leaf(y), Leaf(z))), f) ==
reduce(Node(Node(Leaf(x), Leaf(y)), Leaf(z)), f)



Order of elements in a tree

Observe: can use a list to describe the ordering of elements of a tree

def toList[AJ(t: Tree[Al): List[A] = t match {
case Leaf(v) => List(v)
case Node(l, r) => toList[AJ(1) ++ toList[Al(r) }



Order of elements in a tree

Observe: can use a list to describe the ordering of elements of a tree
def toList[AJ(t: Tree[Al): List[A] = t match {

case Leaf(v) => List(v)

case Node(l, r) => toList[AJ(1) ++ toList[Al(r) }

Suppose we also have tree map:

def map[A,BI(t: Tree[A]l, f : A => B): Tree[B] = t match {
case Leaf(v) => Leaf(f(v))
case Node(l, r) => Node(map[A,BI(1, f), map[A,BI(r, f)) 3}

Can you express tolList using map and reduce?



Order of elements in a tree

Observe: can use a list to describe the ordering of elements of a tree

def toList[AJ(t: Tree[Al): List[A] = t match {
case Leaf(v) => List(v)
case Node(l, r) => toList[AJ(1) ++ toList[Al(r) }

Suppose we also have tree map:

def map[A,BI(t: Tree[A]l, f : A => B): Tree[B] = t match {
case Leaf(v) => Leaf(f(v))
case Node(l, r) => Node(map[A,BI(1, f), map[A,BI(r, f)) 3}
Can you express tolList using map and reduce?

toList(t) == reduce(map(t, List( )), _ ++ _)



Consequence stated as tree reduction

Consequence of associativity: consider two expressions with same list of
operands connected with ®, but different parentheses. Then these
expressions evaluate to the same result.

Express this consequence in Scala using functions we have defined so far.



Consequence stated as tree reduction

Consequence of associativity: consider two expressions with same list of
operands connected with ®, but different parentheses. Then these
expressions evaluate to the same result.

Express this consequence in Scala using functions we have defined so far.

Consequence (Scala): if f : (A,A)=>A is associative, t1:Tree[A] and
t2:Tree[A] and if toList(t1)==toList(t2), then:

reduce(t1, f)==reduce(t2, f)



Consequence stated as tree reduction

Consequence of associativity: consider two expressions with same list of
operands connected with ®, but different parentheses. Then these
expressions evaluate to the same result.

Express this consequence in Scala using functions we have defined so far.

Consequence (Scala): if f : (A,A)=>A is associative, t1:Tree[A] and
t2:Tree[A] and if toList(t1)==toList(t2), then:

reduce(t1, f)==reduce(t2, f)

Can we prove that this fact follows from associativity?



Explanation of the consequence

Intuition: given a tree, use tree rotation until it becomes list-like.

Associativity law says tree rotation preserves the result:

S, O,
/\ - /\

Example use:

O /®\®\
/\ /\ /\

Applying rotation to tree preserves tolList as well as the value of reduce.
toList(t1)==toList(t2) = rotations can bring t1,t2 to same tree



Towards a reduction for arrays

We have seen reduction on trees.

Often we work with collections where we only know the ordering and not
the tree structure.

How can we do reduction in case of, e.g., arrays?

» convert it into a balanced tree
» do tree reduction

Because of associativity, we can choose any tree that preserves the order
of elements of the original collection

Tree reduction replaces Node constructor with f, so we can just use f
directly instead of building tree nodes.

When the segment is small, it is faster to process it sequentially



Parallel array reduce

def reduceSeg[A]l(inp: Array[A], left: Int, right: Int, f: (A,A) => A): A = {
if (right - left < threshold) {
var res= inp(left); var i= left+1
while (i < right) { res= f(res, inp(i)); i= i+1 }
res
} else {
val mid = left + (right - left)/2
val (al,a2) = parallel(reduceSeg(inp, left, mid, f),
reduceSeg(inp, mid, right, f))
f(al,a2)

3
def reduce[Al(inp: Array[Al, f: (A,A) => A): A =
reduceSeg(inp, @, inp.length, f)



Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Associative Operations

Parallel Programming in Scala

Viktor Kuncak



Associative operation

Operation f: (A,A) => A is associative iff for every x, y, z:

fix, fly, 2)) = (f(x,y),2)
Consequence:

> two expressions with same list of operands connected with ®, but
different parentheses evaluate to the same result
» reduce on any tree with this list of operands gives the same result



Associative operation

Operation f: (A,A) => A is associative iff for every x, y, z:

fix, fly, 2)) = (f(x,y),2)
Consequence:

> two expressions with same list of operands connected with ®, but
different parentheses evaluate to the same result
» reduce on any tree with this list of operands gives the same result

Which operations are associative?



A different property: commutativity
Operation f: (A,A) => A is commutative iff for every x, y:

fix.y) = fy,x)

There are operations that are associative but not commutative
There are operations that are commutative but not associative

For correctness of reduce, we need (just) associativity



Examples of operations that are both associative and commutative

Many operations from math:

vV vV V.V VY

addition and multiplication of mathematical integers (BigInt) and of
exact rational numbers (given as, e.g., pairs of BigInts)

addition and multiplication modulo a positive integer (e.g. 23?),
including the usual arithmetic on 32-bit Int or 64-bit Long values
union, intersection, and symmetric difference of sets

union of bags (multisets) that preserves duplicate elements

boolean operations &&;, ||, exclusive or

addition and multiplication of polynomials

addition of vectors

addition of matrices of fixed dimension



Using sum: array norm

Our array norm example computes first:

t—1
> L)

Which combination of operations does sum of powers correspond to?



Using sum: array norm

Our array norm example computes first:

t-1
> Lail?]
i=s
Which combination of operations does sum of powers correspond to?

reduce(map(a, power(abs(_), p)), _ + _)

Here + is the associative operation of reduce

map can be combined with reduce to avoid intermediate collections



Examples of operations that are associative but not commutative

These examples illustrate that associativity does not imply commutativity:

» concatenation (append) of lists: (x ++ y) ++ z == x ++ (y ++ 2)

» concatenation of Strings (which can be viewed as lists of Char)

» matrix multiplication AB for matrices A and B of compatible
dimensions

» composition of relations r© s = {(a, c) | Ib.(a,b) € rA (b, c) € s}

» composition of functions (fo g)(x) = f{g(x))

Because they are associative, reduce still gives the same result.



Many operations are commutative but not associative

This function is also commutative:

fix y) :X2+y2
Indeed f(x,y) = x> + y* = y* + x* = fly, x) But

f(f(x, ¥), 2) (P +y)P+ 2z
fix,fly,2) = X+ (P +22)?

These are polynomials of different growth rates with respect to different
variables and are easily seen to be different for many x, y, z.

Proving commutativity alone does not prove associativity and does not
guarantee that the result of reduce is the same as e.g. reducelLeft and
reduceRight.



Associativity is not preserved by mapping

In general, if f(x,y) is commutative and hy(z), ha(z) are arbitrary
functions, then any function defined by

8(xy) = ha(flhi(x), h(y)))
is equal to ha(f(h1(y), ha(x))) = &(y, x), so it is commutative, but it often
loses associativity even if fwas associative to start with.
Previous example was an instance of this for hi(x) = ha(x) = x°.

When combining and optimizing reduce and map invocations, we need to
be careful that operations given to reduce remain associative.



Floating point addition is commutative but not associative

scala> val e = 1e-200
e: Double = 1.0E-200
scala> val x = 1e200
x: Double = 1.0E200
scala> val mx = -x
mx: Double = -1.0E200

scala> (x + mx) + e

res2: Double = 1.0E-200

scala> x + (mx + e)

res3: Double = 0.0

scala> (x + mx) + e == x + (mx + e)
res4: Boolean = false



Floating point multiplication is commutative but not associative

scala> val e = 1e-200
e: Double = 1.0E-200

scala> val x = 1e200
x: Double = 1.0E200

scala> (e*x)*x
res@: Double = 1.0E200

scala> ex(x*x)
resl: Double = Infinity

scala> (exx)*x == e*x(x*x)
res2: Boolean = false



Making an operation commutative is easy

Suppose we have a binary operation g and a strict total ordering less
(e.g. lexicographical ordering of bit representations).

Then this operation is commutative:
def f(x: A, y: A) = if (less(y,x)) g(y,x) else g(x,y)
Indeed f(x,y)==f(y,x) because:

» if x==y then both sides equal g(x,x)

> if less(y,x) then left sides is g(y,x) and it is not less(x,y) so right
side is also g(y,x)

> if less(x,y) then it is not less(y,x) so left sides is g(x,y) and right
side is also g(x,y)

We know of no such efficient trick for associativity



Associative operations on tuples

Suppose f1: (A1,A1) => Al and f2: (A2,A2) => A2 are associative

Then f: ((A1,A2), (A1,A2)) => (A1,A2) defined by
f((x1,x2), (y1,y2)) = (f1(x1,y1), f2(x2,y2))

is also associative:

f(F((x1,x2), (y1,y2)), (z1,z2)) ==

1 (x1,y1), f2(x2,y2)), (z1,z2)) ==

(F1(fF1(x1,y1), z1), f2(f2(x2,y2), z2)) == (because f1, f2 are associative)
(f1(x1, fi1(y1,z1)), f2(x2, f2(y2,z2))) ==

f((x1 x2), (f1(y1,z1), f2(y2,z2))) ==

f((x1 x2), f((yl,y2), (z1, z2)))

We can similarly construct associative operations on for n-tuples



Example: rational multiplication

Suppose we use 32-bit numbers to represent numerator and denominator
of a rational number.

We can define multiplication working on pairs of numerator and
denominator
times((x1,y1), (x2, y2)) = (x1*x2, yl*y2)

232

Because multiplication modulo is associative, so is times



Example: average

Given a collection of integers, compute the average

val sum = reduce(collection, _ + _)
val length = reduce(map(collection, (x:Int) => 1), _ + _)
sum/length

This includes two reductions. Is there a solution using a single reduce?



Example: average

Use pairs that compute sum and length at once
f((suml,len1), (sum2, len2)) = (suml + suml, lenl + len2)

Function f is associative because addition is associative.

Solution is then:

val (sum, length) = reduce(map(collection, (x:Int) => (x,1)), f)
sum/length



Associativity through symmetry and commutativity

Although commutativity of f alone does not imply associativity, it implies
it if we have an additional property. Define:

E(x,y,z) = f(f(x,y), 2)
We say arguments of E can rotate if E(x,y,z) = E(y,z,x), that is:
f(f(x,y), z) = f(fly,2), x

Claim: if f is commutative and arguments of E can rotate then f is also
associative.

Proof:

f(f(x,y), 2) = f(f(y,2), x) = f(x, f(y,z))



Example: addition of modular fractions

Define
plus((x1,y1), (x2, y2)) = (x1xy2 + x2xy1, ylxy2)

where * and + are all modulo some base (e.g. 23?).
We can have overflows in both numerator and denominator

Is such plus associative?



Example: addition of modular fractions

plus((x1,y1), (x2, y2)) = (xTxy2 + x2xyl, yl*xy2)
Observe: plus is commutative. Moreover:

EC(xT,y1), (x2,y2), (x3,y3)) ==
plus(plus((x1,y1), (x2,y2)), (x3,y3)) ==
plus((x1xy2 + x2*y1, yl*y2), (x3,y3)) ==
((x1xy2 + x2*%y1)*y3 + x3*xylxy2, ylxy2*y3) ==
(X1xy2*y3 + x2*xylxy3 + x3*xylxy2, ylxy2xy3)

Therefore

E((x2,y2), (x3,y3), (x1,y1)) ==
(x2xy3*y1 + x3%xy2*xy1l + Xx1*xy2xy3, y2xy3*yl)

which is the same. By previous claim, plus is associative.



Example: relativistic velocity addition

Let u, v range over rational numbers in the open interval (—1,1)

Define fto add velicities according to special relativity

u-+v

flu,v) = 1+ uv

Clearly, fis commutative: flu,v) = f{v, u).

+
f(flu,v),w) = ESTTA _ utvtwuvw
T 1+1u++uva 1+ uv+ uw+ vw

We can rotate arguments u, v, w



Example: relativistic velocity addition

Let u, v range over rational numbers in the open interval (—1,1)

Define fto add velicities according to special relativity

u-+v

flu,v) = 1+ uv

Clearly, fis commutative: flu, v) = flv, u).

+
f(flu,v),w) = ESTTA _ utvtwuvw
T ]'+1Lii-+uv\/W 1+ uv+ uw+ vw

We can rotate arguments u, v, w

fis commutative and we can rotate, so fis associative.



Consequences of non-associativity on floating points

If we implement f given by expression

u+v

flu,v) = T

using floating point numbers, then the operation is not associative.

Even though the difference between f(x, f(y, z)) and f(f(x,y), z) is small in
one step, over many steps it accumulates, so the result of the reduceleft
and a reduce may differ substantially.



A family of associative operations on sets

Define binary operation on sets A, B by (A, B) = (AU B)* where x* is any
operator on sets (closure) with these properties:

» A C A* (expansion)
» if AC Bthen A* C B* (monotonicity)
» (A*)* = A* (idempotence)

Example of *: convex hull, Kleene star in regular expressions
Claim: every such fis associative.

Proof: fis commutative. It remains to show

f(fA,B),C) = ((AUB)*U()" = (AUBU Q)"

because from there it is easy to see that the arguments rotate.



First subset inclusion

We need to prove: (AUB)*U C)* C (AUBU C)*.
Since AU B C AU BU C, by monotonicity:

(AUB)*C (AUBUO)*

Similarly

CCAUBUCC (AUBU Q)

Thus (AU B)*U CC (AU BU C)*. By monotonicity and idempotence

(AUB)*U C)* C ((AUBU C)*)* = (AU BU O)*



Second subset inclusion

We need to prove: (AUBU C)* C ((AUB)*U O)*
From expansion we have AU B C (AU B)*. Thus

AUBUCC (AUB)*UC

The property then follows by monotonicity.



Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Parallel Scan Left

Parallel Programming in Scala

Viktor Kuncak



Parallel scan
Having seen parallel map and parallel fold
map: apply function to each element
> List(1,3,8).map(x => x*x) == List(1, 9, 64)
fold: combine elements with a given operation
> List(1,3,8).fold(100)((s,x) => s + x) == 112

we now examine parallel scanleft:
scanlLeft: list of the folds of all list prefixes

List(1,3,8).scanLeft(100)((s,x) => s + x) == List(100, 101, 104, 112)



scanlLeft: meaning and properties

List(1,3,8).scanLeft(100)(_ + _) == List(100, 101, 104, 112)

List(al, a2, a3).scanLeft(f)(a®) = List(b@, b1, b2, b3)

where
> bd = a0
» bl = f(bo, al)
» b2 = f(b1, a2)
» b3 = f(b2, a3)

We assume that f is assocative, throughout this segment.



scanlLeft: meaning and properties

List(1,3,8).scanLeft(100)(_ + _) == List(100, 101, 104, 112)

List(al, a2, a3).scanLeft(f)(a®) = List(b@, b1, b2, b3)

where
> bd = a0
» bl = f(bo, al)
» b2 = f(b1, a2)
» b3 = f(b2, a3)

We assume that f is assocative, throughout this segment.
scanRight is different from scanLeft, even if f is associative
List(1,3,8).scanRight(100)(_ + _) == List(112, 111, 108, 100)

We consider only scanLeft, but scanRight is dual.



Sequential Scan

List(a1, ag, ..., an).scanLeft(f)(ag) = List(by, by, ba, ..., by)

where by = ag and b; = f(bj_1, a;) for 1 < i< N.



Sequential Scan

List(a1, ag, ..., an).scanLeft(f)(ag) = List(by, by, ba, ..., by)
where by = ag and b; = f(bj_1, a;) for 1 < i< N.
Give a sequential definition of scanLeft:

» take an array inp, an element a0, and binary operation f
> write the output to array out, assuming out.length >= inp.length + 1

def scanLeft[Al(inp: Array[A],
ad: A, f: (A,A) => A,
out: Array[A]): Unit



Sequential Scan Solution

def scanLeft[A]l(inp: Array[A],
ao: A, f: (A,A) => A,
out: Array[A]): Unit = {
out(Q)= a0
var a= ao
var i= @
while (i < inp.length) {
a= f(a,inp(i))
i= i +1
out(i)= a

}



Making scan parallel

Can scanLeft be made parallel? Assume that f is associative.

Goal: an algorithm that runs in O(log n) given infinite parallelism



Making scan parallel

Can scanLeft be made parallel? Assume that f is associative.
Goal: an algorithm that runs in O(log n) given infinite parallelism
At first, the task seems impossible; it seems that:
» the value of the last element in sequence depends on all previous ones

> need to wait on all previous partial results to be computed first
» such approach gives O(n) even with infinite parallelism



Making scan parallel

Can scanLeft be made parallel? Assume that f is associative.
Goal: an algorithm that runs in O(log n) given infinite parallelism
At first, the task seems impossible; it seems that:
» the value of the last element in sequence depends on all previous ones

> need to wait on all previous partial results to be computed first
» such approach gives O(n) even with infinite parallelism

Idea: give up on reusing all intermediate results

» do more work (more f applications)
» improve parallelism, more than compensate for recomputation



High-level approach: express scan using map and reduce

Can you define result of scanLeft using map and reduce?



High-level approach: express scan using map and reduce

Can you define result of scanLeft using map and reduce?

Assume input is given in array inp and that you have reduceSeg1 and
mapSeg functions on array segments:

def reduceSegl1[Al(inp: Array[A]l, left: Int, right: Int,
a0: Int, f: (A,A) => A): A

def mapSegl[A,BI(inp: Array[A], left: Int, right: Int,
fi . (Int,A) => B,
out: Array[B]): Unit



High-Level Solution

According to definition, element on position i is the reduce of the previous
elements.

We thus map the array with a function defined using reduce:

def scanLeft[Al(inp: Array[A]l, a@: A, f: (A,A) => A, out: Array[A]) = {
val fi = { (i:Int,v:A) => reduceSegl(inp, @, i, a0, f) }
mapSeg(inp, @, inp.length, fi, out)
val last = inp.length - 1
out(last + 1) = f(out(last), inp(last))
}

Map always gives as many elements as the input, so we additionally
compute the last element.



Reusing intermediate results of reduce

In the previous solution we do not reuse any computation.
Can we reuse some of it?
Recall that reduce proceeds by applying the operations in a tree

Idea: save the intermediate results of this parallel computation.



Reusing intermediate results of reduce

In the previous solution we do not reuse any computation.

Can we reuse some of it?

Recall that reduce proceeds by applying the operations in a tree
Idea: save the intermediate results of this parallel computation.

We first assume that input collectio is also (another) tree.



Tree definitions

Trees storing our input collection only have values in leaves:

sealed abstract class Tree[A]
case class Leaf[Al(a: A) extends Tree[A]
case class Node[AJ(l: Tree[Al, r: Tree[A]) extends Tree[A]

Trees storing intermediate values also have (res) values in nodes:

sealed abstract class TreeRes[A] { val res: A }
case class LeafRes[A]l(override val res: A) extends TreeRes[A]
case class NodeRes[AJ(l: TreeRes[A],

override val res: A,

r: TreeRes[A]) extends TreeRes[A]



Tree definitions

Trees storing our input collection only have values in leaves:

sealed abstract class Tree[A]
case class Leaf[Al(a: A) extends Tree[A]
case class Node[AJ(l: Tree[Al, r: Tree[A]) extends Tree[A]

Trees storing intermediate values also have (res) values in nodes:

sealed abstract class TreeRes[A] { val res: A }
case class LeafRes[A]l(override val res: A) extends TreeRes[A]
case class NodeRes[AJ(l: TreeRes[A],

override val res: A,

r: TreeRes[A]) extends TreeRes[A]

Can you define reduceRes function that transforms Tree into TreeRes?



Reduce that preserves the computation tree

def reduceRes[A](t: Tree[A], f: (A,A) => A): TreeRes[A]



Reduce that preserves the computation tree

def reduceRes[A]l(t: Tree[A]l, f: (A,A) => A): TreeRes[A] = t match {
case Leaf(v) => LeafRes(v)

case Node(l, r) => { / \

val (tL, tR) = (reduceRes(l, f), reduceRes(r, f

°
NodeRes(tL, f(tL.res, tR.res), tR) / \. / \

3



Reduce that preserves the computation tree

def reduceRes[A](t: Tree[A]l, f: (A,A) => A): TreeRes[A] = t match {
case Leaf(v) => LeafRes(v)

case Node(l, r) => { ////62\\\\
val (tL, tR) = (reduceRes(l, f), reduceRes(r, f
NodeRes(tL, f(tL.res, tR.res), tR) z//4\\\\ x//58\\\
} 50
3

val t1 = Node(Node(Leaf(1), Leaf(3)), Node(Leaf(8), Leaf(50)))

val plus = (x:Int,y:Int) => x+y

scala> reduceRes(t1, plus)

res@: TreeRes[Int] = NodeRes(NodeRes(LeafRes(1),4,LeafRes(3)),
62,
NodeRes(LeafRes(8),58,LeafRes(50)))



Parallel reduce that preserves the computation tree (upsweep)

def upsweep[A](t: Tree[Al, f: (A,A) => A): TreeRes[A] = t match {
case Leaf(v) => LeafRes(v)
case Node(l, r) => {
val (tL, tR) = parallel(upsweep(l, f), upsweep(r, f))
NodeRes(tL, f(tL.res, tR.res), tR)
3



Using tree with results to create the final collection

/62\ Next: a tree for 100, 101, 104, 112, 162

/4\ /58\



Using tree with results to create the final collection

/62\ Next: a tree for 100, 101, 104, 112, 162

/4\ /58\

// ’a@’ is reduce of all elements left of the tree ’t’
def downsweep[A](t: TreeRes[A]l, a@: A, f : (A,A) => A): Tree[A] = t match {
case LeafRes(a) => Leaf(f(a@, a))
case NodeRes(l, _, r) => {
val (tL, tR) = parallel(downsweep[A](1l, a@, f),
downsweep[Al(r, f(a@, l.res), f))
Node(tL, tR) 3} }



Using tree with results to create the final collection

/62\ Next: a tree for 100, 101, 104, 112, 162

/4\ /58\

// ’a@’ is reduce of all elements left of the tree ’t’

def downsweep[A](t: TreeRes[Al, a0: A, f : (A,A) => A): Tree[A]

case LeafRes(a) => Leaf(f(a@, a))
case NodeRes(l, _, r) => {
val (tL, tR) = parallel(downsweep[A](1l, a@, f),
downsweep[Al(r, f(a@, l.res), f))
Node(tL, tR) 3} }

scala> downsweep(res@, 100, plus)

= t match {

resl: Tree[Int] = Node(Node(Leaf(101),Leaf(104)),Node(Leaf(112),Leaf(162)))



scanlLeft on trees

def scanLeft[A](t: Tree[A]l, a@: A, f: (A,A) => A): Tree[A] = {
val tRes = upsweep(t, f)
val scanl = downsweep(tRes, a0, f)
prepend(a@, scanl)



scanlLeft on trees

def scanLeft[A](t: Tree[A]l, a@: A, f: (A,A) => A): Tree[A] = {
val tRes = upsweep(t, f)
val scanl = downsweep(tRes, a0, f)
prepend(a@, scanl)

}

Define prepend.



scanlLeft on trees

def scanLeft[A](t: Tree[A]l, a@: A, f: (A,A) => A): Tree[A] = {
val tRes = upsweep(t, f)
val scanl = downsweep(tRes, a0, f)
prepend(a@, scanl)

3
Define prepend.

def prepend[A](x: A, t: Tree[Al): Tree[A]l = t match {
case Leaf(v) => Node(Leaf(x), Leaf(v))
case Node(l, r) => Node(prepend(x, 1), r)



scanlLeft and arrays

Previous definition on trees is good for understanding

As with map and reduce, to make it more efficient, we use trees that have
arrays in leaves instead of individual elements.



scanlLeft and arrays

Previous definition on trees is good for understanding

As with map and reduce, to make it more efficient, we use trees that have
arrays in leaves instead of individual elements.

Exercise: define scanLeft on trees with such large leaves, using sequential
scan left in the leaves.



scanlLeft and arrays

Previous definition on trees is good for understanding

As with map and reduce, to make it more efficient, we use trees that have
arrays in leaves instead of individual elements.

Exercise: define scanLeft on trees with such large leaves, using sequential
scan left in the leaves.

Next step: parallel scan when the entire collection is an array

» we will still need to construct the intermediate tree



Intermediate tree for array reduce

sealed abstract class TreeResA[A] { val res: A }
case class Leaf[A]l(from: Int, to: Int,

override val res: A) extends TreeResA[A]
case class Node[A](l: TreeResA[A],

override val res: A,

r: TreeResA[A]) extends TreeResA[A]

The only difference compared to previous TreeRes: each Leaf now keeps
track of the array segment range (from, to) from which res is computed.

We do not keep track of the array elements in the Leaf itself; we instead
pass around a reference to the input array.



Upsweep on array

Starts from an array, produces a tree

def upsweep[Al(inp: Array[Al, from: Int, to: Int,
f: (A,A) => A): TreeResA[A] = {
if (to - from < threshold)
Leaf(from, to, reduceSegl(inp, from + 1, to, inp(from), f))
else {
val mid = from + (to - from)/2
val (tL,tR) = parallel(upsweep(inp, from, mid, f),
upsweep(inp, mid, to, f))
Node(tL, f(tL.res,tR.res), tR)



Sequential reduce for segment

def reduceSegl1[A](inp: Array[A], left: Int, right: Int,
ao: A, f: (ALA) => A): A ={
var a= ao
var i= left
while (i < right) {
a= f(a, inp(i))
i= i+l



Downsweep on array

def downsweep[Al(inp: Array[A],
ao: A, f: (A,A) => A,
t: TreeResA[A],

out: Array[A]): Unit = t match {
case Leaf(from, to, res) =>

scanLeftSeg(inp, from, to, a0, f, out)
case Node(l, _, r) =>{
val (_,_) = parallel(
downsweep(inp, a0, f, 1, out),
downsweep(inp, f(a@,l.res), f, r, out))



Sequential scan left on segment

Writes to output shifted by one.

def scanLeftSeg[A](inp: Array[A], left: Int, right: Int,
ad: A, f: (A,A) => A,
out: Array[Al) = {
if (left < right) {
var i= left
var a= a0
while (i < right) {
a= f(a,inp(i))
i= i+1
out(i)=a



Finally: parallel scan on the array

def scanLeft[Al(inp: Array[A],
ao: A, f: (A,A) => A,
out: Array[A]) = {
val t = upsweep(inp, @, inp.length, f)
downsweep(inp, a0, f, t, out) // fills out[1..inp.length]
out(@)= a0 // prepends a0



End of Slide Deck



