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A Surprising Program

var a, b = false

var x, y = -1

val t1 = thread {

Thread.sleep(1)

a = true

y = if (b) 0 else 1

}

val t2 = thread {

Thread.sleep(1)

b = true

x = if (a) 0 else 1

}

t1.join(); t2.join()

assert(!(x == 1 && y == 1))



Enumerating Executions Intuitively

▶ Possibility I:
▶ t1 writes true to a

▶ t1 reads b and sees false – writes 1 to y

▶ t2 writes true to b

▶ t2 reads a and sees true – writes 0 to x
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▶ Possibility II: same as I, with t1 and t2 reversed (x = 1, y = 0)
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Enumerating Executions Intuitively

▶ Possibility I:
▶ t1 writes true to a

▶ t1 reads b and sees false – writes 1 to y

▶ t2 writes true to b

▶ t2 reads a and sees true – writes 0 to x

▶ Possibility II: same as I, with t1 and t2 reversed (x = 1, y = 0)
▶ Possibility III:

▶ t1 writes true to a

▶ t2 writes true to b

▶ t1 reads b and sees true – writes 0 to y

▶ t2 reads a and sees true – writes 0 to x

▶ Conclusion: there is no execution in which x = 1 and y = 1



Surprising Result

However, upon running the previous program many times, we get
occasional executions in which x = 1 and y = 1 – the assert statement
sometimes crashes the program.



Surprising Result

However, upon running the previous program many times, we get
occasional executions in which x = 1 and y = 1 – the assert statement
sometimes crashes the program.
Something is wrong with our intution of concurrent programming.
Let’s rebuilt our intuition about concurrency, starting from the basic
principles.



Goals of a Concurrent Programming Model

Every concurrent programming model must answer two questions:

1. How to express that two executions are concurrent?
2. Given a set of concurrent executions, how can they exchange

information (i.e. synchronize)?

In what follows, we will answer these two questions in the context of the
JVM concurrency model.



Threads

The thread notation starts a new thread – a concurrent execution.

thread {

a = true

y = if (b) 0 else 1

}

The thread function is implemented as follows:

def thread(body: =>Unit): Thread = {

val t = new Thread {

override def run() = body

}

t.start()

t

}



Why Threads?

Why do we need threads? Why not just program with CPUs directly?

at (CPU1) {

a = true

y = if (b) 0 else 1

}



Why Threads?

Why do we need threads? Why not just program with CPUs directly?

at (CPU1) {

a = true

y = if (b) 0 else 1

}

Several reasons:

▶ portability – number of available processors varies (not every
computer has a CPU1)

▶ number of concurrent entities in a program can be much larger than
the number of CPUs



Thread as an Abstraction

Principle: threads express opportunities for concurrency in the
program.



Thread as an Abstraction

Principle: threads express opportunities for concurrency in the
program.

To start a thread:

1. Define what a thread does (on the JVM, create a Thread object and
override run).

2. Start a thread instance (on the JVM, call start on the Thread object).



Thread Under-the-Hood

A thread image in memory contains:

▶ copies of processor registers
▶ the call stack (default size: ~2MB)

Hence, we cannot have more than a couple of thousand threads per VM.



Cores, Processes, Threads

How do the threads get assigned to CPUs under-the-hood?

User program instances are separated into processes, which have separate
memory spaces.
Each process can have multiple threads, and starts with one main thread.



Role of the OS

The operating system eventually assigns threads to processes (the OS
guarantees liveness).



Role of the OS

The operating system eventually assigns threads to processes (the OS
guarantees liveness).
Two approaches:

▶ cooperative multitasking – a program has to explicitly give control
(yield) back to the OS (think Windows 3.1)

▶ preemptive multitasking – the OS has a hardware timer that
periodically interrupts the running thread, and assigns different thread
to the CPU (time slices usually ~10 ms)



Example Thread Program

def log(s: String) = println(Thread.currentThread + ”: ” + s)

log(”Creating a new thread.”)

val t = thread {

log(”New thread still running.”)

Thread.sleep(1000)

log(”Completed.”)

}

The Thread.sleep statement pauses the thread, and revives after the
specified period in milliseconds.



Example Thread Program

def log(s: String) = println(Thread.currentThread + ”: ” + s)

log(”Creating a new thread.”)

val t = thread {

log(”New thread still running.”)

Thread.sleep(1000)

log(”Completed.”)

}

The Thread.sleep statement pauses the thread, and revives after the
specified period in milliseconds.
The program above is deterministic, but this is not generally so.



Non-Deterministic Programs

Given the same input, the program output is not unique between multiple
runs.

object ThreadsNonDeterminism extends App {

val t = thread {

log(”New thread running”)

}

log(”...”)

log(”...”)

}

We call such programs non-deterministic.



Synchronization

The second requirement of a concurrent programming model is
synchronization. On JVM, threads synchronize through shared memory.



Synchronization

The second requirement of a concurrent programming model is
synchronization. On JVM, threads synchronize through shared memory.
Some problems with shared memory synchronization:

▶ Interleaving and race conditions
▶ Deadlocks
▶ Data races



Thread Joining

One of the basic forms of synchronization.
The call t.join() lets the calling thread wait until thread t has terminated.

object ThreadsStart extends App {

class MyThread extends Thread {

override def run(): Unit = println(s”New thread running”)

}

val t = new MyThread()

t.start()

t.join()

println(s”New thread joined”)

}



Start and Join - Diagrammatically



Guarantees When Joining Threads

When join returns, the effects of the terminated thread are visible to the
thread that called join.

object ThreadsStart extends App {

var a = false

val t = thread {

a = true

}

t.join()

assert(a)

}



Guarantees When Joining Threads

When join returns, the effects of the terminated thread are visible to the
thread that called join.

object ThreadsStart extends App {

var a = false

val t = thread {

a = true

}

t.join()

assert(a)

}

However, join is not useful enough – it always demands that the target
thread terminates.
How to see the effects of another thread that did not yet terminate?



Interleaving

Consider the problem of implementing a concurrent UID generator.



Interleaving

Consider the problem of implementing a concurrent UID generator.

object ThreadsGetUID extends App {

var uidCount = 0

def getUniqueId() = {

val freshUID = uidCount + 1

uidCount = freshUID

freshUID

}

Is it true that every call to getUniqueUID will yield a unique number?



Interleaving

Let’s put it to the test:

...

def printUniqueIds(n: Int): Unit = {

val uids = for (i <- 0 until n) yield getUniqueId()

log(s”Generated uids: $uids”)

}

val t = thread { printUniqueIds(5) }

printUniqueIds(5)

t.join()

}



Interleaving

We observe:

▶ Most runs produce different sequences of IDs.
▶ In most runs, threads share some IDs but not others.

How can we explain this?



Interleaving

We observe:

▶ Most runs produce different sequences of IDs.
▶ In most runs, threads share some IDs but not others.

How can we explain this?



Race condition

The scenario shown in the previous figure is called a race condition.
A race condition occurs when the behavior of the system depends on the
interleaving of executions.



Atomic Execution

We would like to ensure that all operations of getUniqueId are performed
atomically, without another thread reading or writing intermediate results.



Atomic Execution

We would like to ensure that all operations of getUniqueId are performed
atomically, without another thread reading or writing intermediate results.
This can be achieved by wrapping a block in a synchronized call:

object ThreadsGetUID extends App with Monitor {

var uidCount = 0

def getUniqueId() = this.synchronized {

val freshUID = uidCount + 1

uidCount = freshUID

freshUID

}

...

}



Atomic Execution



Synchronized statement

In Scala, synchronized is a member method of AnyRef. In the call:

obj.synchronized { block }

obj serves as a lock.

▶ block can be executed only by thread t holds the lock.
▶ At most one thread can hold a lock at any one time.



Synchronized statement

In Scala, synchronized is a member method of AnyRef. In the call:

obj.synchronized { block }

obj serves as a lock.

▶ block can be executed only by thread t holds the lock.
▶ At most one thread can hold a lock at any one time.

Consequently, if another thread is already running synchronized on the
same object (i.e. it holds the lock), then a thread calling synchronized

gets temporarily blocked, until the lock is released.



Example: Money Transfers

The synchronized statements can nest, which allows composition.



Example: Money Transfers

The synchronized statements can nest, which allows composition.
Let’s design an online banking system in which we want to log money
transfers.
First, here is the code to collect log messages:

import scala.collection._

private val transfers = mutable.ArrayBuffer[String]()

private val log = new Monitor {}

def logTransfer(name: String, n: Int) = log.synchronized {

transfers += s”transfer to account $name = $n”

}

Note the synchronized, which is needed because += is not by itself atomic.



Accounts

Next, here is the class Account:

class Account(val name: String, initialBalance: Int) extends Monitor {

private var myBalance = initialBalance

def balance: Int = this.synchronized { myBalance }

def add(n: Int): Unit = this.synchronized {

myBalance += n

if (n > 10) logTransfer(name, n)

}

val getUID = ThreadsGetUID.getUniqueId()

}

(we will need getUID later)



Test Code

Finally, here is some code that simulates account movements:

val jane = new Account(”Jane”, 100)

val john = new Account(”John”, 200)

val t1 = thread { jane.add(5) }

val t2 = thread { john.add(50) }

val t3 = thread { jane.add(70) }

t1.join(); t2.join(); t3.join()

log(s”--- transfers ---\n$transfers”)

Note the nested synchronized calls: First on add, then on logTransfer.



Transfers

Let’s add a method that transfers money from one account to another (as
an atomic action):

def transfer(a: Account, b: Account, n: Int) =

a.synchronized {

b.synchronized {

a.add(n)

b.add(-n)

}

}



Testing Transfers

Test it as follows:

val jane = new Account(”Jane”, 1000)

val john = new Account(”John”, 2000)

log(”started...”)

val t1 = thread { for (i <- 0 until 100) transfer(jane, john, 1) }

val t2 = thread { for (i <- 0 until 100) transfer(john, jane, 1) }

t1.join(); t2.join();

log(s”john = ${john.balance}, jane = ${jane.balance}”)



Testing Transfers

Test it as follows:

val jane = new Account(”Jane”, 1000)

val john = new Account(”John”, 2000)

log(”started...”)

val t1 = thread { for (i <- 0 until 100) transfer(jane, john, 1) }

val t2 = thread { for (i <- 0 until 100) transfer(john, jane, 1) }

t1.join(); t2.join();

log(s”john = ${john.balance}, jane = ${jane.balance}”)

What behavior do you expect to see?

1. The program terminates with both accounts having the same balance
at the end as at the beginning.

2. The program terminates with accounts having a different balance.
3. The program crashes.
4. The program hangs.



Deadlocks

Here’s a possible sequence of events:



Deadlocks

Here’s a possible sequence of events:

A situation like this where no thread can make progress because each
thread waits on some lock is called a deadlock.



Preventing Deadlocks

In the previous example, a deadlock arose because two threads tried to
grab two locks in different order.
To prevent the deadlock, we can enforce that locks are always taken in the
same order by all threads.
Here’s a way to do this:

def transfer(a: Account, b: Account, n: Int) = {

def adjust() { a.add(n); b.add(-n) }

if (a.getUID < b.getUID)

a.synchronized { b.synchronized { adjust() } }

else

b.synchronized { a.synchronized { adjust() } }

}



Monitors

The fork and the synchronized statement allow serializing the execution
of different threads, but sometimes a thread needs to wait for a specific
condition (for example, a particular value of some variable).
In such cases, we need a synchronization primitive called a monitor.



Monitors

The fork and the synchronized statement allow serializing the execution
of different threads, but sometimes a thread needs to wait for a specific
condition (for example, a particular value of some variable).
In such cases, we need a synchronization primitive called a monitor.
In Scala and Java, the synchronized statement has a dual purpose – it can
be used both as a lock and as a monitor.



Monitors

The fork and the synchronized statement allow serializing the execution
of different threads, but sometimes a thread needs to wait for a specific
condition (for example, a particular value of some variable).
In such cases, we need a synchronization primitive called a monitor.
In Scala and Java, the synchronized statement has a dual purpose – it can
be used both as a lock and as a monitor.
Let’s implement a commonly used synchronization data structure – a
one-place buffer.



One-Place Buffer

When using a one-place buffer, we will distinguish two roles a thread can
have, a producer, or a consumer.



One-Place Buffer

When using a one-place buffer, we will distinguish two roles a thread can
have, a producer, or a consumer.
The one-place buffer has the following invariants:

▶ producers send an element to the buffer.
▶ consumers take an element from the buffer.
▶ at most one element can be in the buffer at any one time.
▶ If buffer is full, producers have to wait.
▶ If buffer is empty, consumers have to wait.



Implementation Schema

Here’s an outline of class OnePlaceBuffer

class OnePlaceBuffer[Elem] extends Monitor {

private var elem: Elem = _

private var full: Boolean = false

def put(e: Elem): Unit = synchronized {

if (full) ???

else { elem = e; full = true }

}

def get(): Elem = synchronized {

if (!full) ???

else { full = false; elem }

}

}



Implementation Schema

Here’s an outline of class OnePlaceBuffer

class OnePlaceBuffer[Elem] extends Monitor {

private var elem: Elem = _

private var full: Boolean = false

def put(e: Elem): Unit = synchronized {

if (full) ???

else { elem = e; full = true }

}

def get(): Elem = synchronized {

if (!full) ???

else { full = false; elem }

}

}

Question: How to implement the ???s?



Busy Waiting

We could wait as follows:

class OnePlaceBuffer[Elem] extends Monitor {

private var elem: Elem = _

private var full: Boolean = false

def put(e: Elem) = while (!tryToPut(e)) {}

def tryToPut(e: Elem): Boolean = synchronized {

if (full) false

else { elem = e; full = true; true }

}

// similarly for get

}

This technique is called polling or busy waiting.
Problem: Consumes compute time while waiting.



Wait and Notify

A monitor can be used for more than just locking. Every monitor object
has the following methods:



Wait and Notify

A monitor can be used for more than just locking. Every monitor object
has the following methods:
wait() suspends the current thread,
notify() wakes up one other thread waiting on the current object,
notifyAll() wakes up all other thread waiting on the current object.



Wait and Notify

A monitor can be used for more than just locking. Every monitor object
has the following methods:
wait() suspends the current thread,
notify() wakes up one other thread waiting on the current object,
notifyAll() wakes up all other thread waiting on the current object.

Note: these methods can only be called from inside a synchronized

statement.



Blocking Implementation

class OnePlaceBuffer[Elem] extends Monitor {

var elem: Elem = _; var full = false

def put(e: Elem): Unit = synchronized {

while (full) wait()

elem = e; full = true; notifyAll()

}

def get(): Elem = synchronized {

while (!full) wait()

full = false; notifyAll(); elem

}

}



Blocking Implementation

class OnePlaceBuffer[Elem] extends Monitor {

var elem: Elem = _; var full = false

def put(e: Elem): Unit = synchronized {

while (full) wait()

elem = e; full = true; notifyAll()

}

def get(): Elem = synchronized {

while (!full) wait()

full = false; notifyAll(); elem

}

}

Questions:
1. Why notifyAll() instead of notify()?
2. Why while (full) wait() instead of if (full) wait()?



The Fine Print

▶ wait, notify and notifyAll should only be called from within a
synchronized on this
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▶ wait, notify and notifyAll should only be called from within a
synchronized on this

▶ wait will release the lock, so other threads can enter the monitor
▶ notify and notifyAll schedule other threads for execution after the

calling thread has released the lock (has left the monitor)



The Fine Print

▶ wait, notify and notifyAll should only be called from within a
synchronized on this

▶ wait will release the lock, so other threads can enter the monitor
▶ notify and notifyAll schedule other threads for execution after the

calling thread has released the lock (has left the monitor)
▶ on the JVM runtime, it is possible that a thread calling wait

sometimes wakes up even if nobody called notify or notifyAll



Visibility

While discussing fork and synchronized, we did not examine how they
affect the visibility of memory writes.
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visible to the thread that called join.



Visibility

While discussing fork and synchronized, we did not examine how they
affect the visibility of memory writes.
The join method ensures that all the writes of the joined thread are
visible to the thread that called join.
The synchronized statement ensures that all the writes by thread A
preceding the release of the lock by that thread A are visible to any thread
B that subsequently acquires the lock.



A Memory Model

A memory model is a set of rules that defines how and when the writes to
memory by one thread become visible to other threads.



A Memory Model

A memory model is a set of rules that defines how and when the writes to
memory by one thread become visible to other threads.
Consider our introductory example:

var a, b = false; var x, y = -1

val t1 = thread {

a = true

y = if (b) 0 else 1

}

val t2 = thread {

b = true

x = if (a) 0 else 1

}

t1.join(); t2.join()

assert(!(x == 1 && y == 1))



Sequential Consistency Model

When we initially analyzed the introductory example, we assumed that
every read and write happens in the program order, and that every read
and write goes to main memory.
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Sequential Consistency Model

When we initially analyzed the introductory example, we assumed that
every read and write happens in the program order, and that every read
and write goes to main memory.
That specific memory model is called the sequential consistency model.
More formally:

Consider all the reads and writes to program variables. If the
result of the execution is the same as if the read and write
operations were executed in some sequential order, and the
operations of each individual processor appear in the program
order, then the model is sequentially consistent.



Reorderings

Unfortunately, as we saw in our experiment, multicore processors and
compilers do not implement the sequential consistency model.



Reorderings

Unfortunately, as we saw in our experiment, multicore processors and
compilers do not implement the sequential consistency model.
One reason are CPU registers, which hold local copies of memory values.

▶ Each core might have a different copy of shared memory in its
registers.

▶ Writing the registers back to main-memory happens at unpredictable
times.

Another reason are optimizing compilers: they are generally allowed to
reorder instructions as if no other thread was watching.



The Java Memory Model

The Java Memory Model (JMM) defines a “happens-before” relationship
as follows.

▶ Program order: Each action in a thread happens-before every
subsequent action in the same thread.
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The Java Memory Model

The Java Memory Model (JMM) defines a “happens-before” relationship
as follows.

▶ Program order: Each action in a thread happens-before every
subsequent action in the same thread.

▶ Monitor locking: Unlocking a monitor happens-before every
subsequent locking of that monitor.

▶ Volatile fields: A write to a volatile field happens-before every
subsequent read of that field.

▶ Thread start: A call to start() on a thread happens-before all
actions of that thread.

▶ Thread termination. An action in a thread happens-before another
thread completes a join on that thread.

▶ Transitivity. If A happens before B and B happens-before C, then A
happens-before C.



The Java Memory Model ctd

Rule: if any two operations A and B are in a happens-before relationship,
then B is guaranteed to see the memory effects of A.



The Java Memory Model ctd

Rule: if any two operations A and B are in a happens-before relationship,
then B is guaranteed to see the memory effects of A.
Example:

var a = 0

var set = false

thread {

a = 1

synchronized { set = true }

}

thread {

synchronized { if (set) println(a) }

}

Can the second thread print 0?



Observing Reorderings

var a, b = false

var x, y = -1

val t1 = thread {

synchronized { a = true }

synchronized { y = if (b) 0 else 1 }

}

val t2 = thread {

synchronized { b = true }

synchronized { x = if (a) 0 else 1 }

}

t1.join()

t2.join()

assert(!(x == 1) && (y == 1))

Will the assertion fail now?



Extra: Volatile Variables

One last synchronization primitive that we examine are volatile variables.
Sometimes we need only safe publication instead of atomic execution. In
these cases, synchronized can be too heavyweight.



Extra: Volatile Variables

One last synchronization primitive that we examine are volatile variables.
Sometimes we need only safe publication instead of atomic execution. In
these cases, synchronized can be too heavyweight.
There’s a cheaper solution than using synchronized – we can use a volatile
field.
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Guarantees of Volatile

Making a variable @volatile has several effects.
First, reads and writes to volatile variables are never reordered by the
compiler.
Second, volatile reads and writes are never cached in CPU registers – they
go directly to the main memory.
Third, writes to normal variables that in the program precede a volatile
write W cannot be moved by the compiler after W.
Fourth, reads from normal variables that in the program appear after a
volatile read R cannot be moved by the compiler before R.
Fifth, before a volatile write, values cached in registers must be written
back to main memory.
Sixth, after a volatile read, values cached in registers must be re-read from
the main memory.
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For almost all practical purposes, you should keep your programs simple,
and avoid using @volatile variables.



Conclusion About Volatiles

For almost all practical purposes, you should keep your programs simple,
and avoid using @volatile variables.
Instead, as a rule of the thumb, stick with synchronized when you need to
make your writes visible to other threads.


