
Parallel Programming
Midterm Exam
Friday, April 17, 2015

First Name:
Last Name:

Your points are precious, don’t let them go to waste!

Your Name Work that can’t be attributed to you is lost: write your name on each sheet of
the exam.

Your Time All points are not equal. Note that we do not think that all exercises have the
same difficulty, even if they have the same number of points.

Your Attention The exam problems are precisely and carefully formulated, some details
can be subtle. Pay attention, because if you do not understand a problem, you can not
obtain full points.

Exercise Points Points Achieved
1 10
2 10

Total 20



Exercise 1: Associativity (10 points)

Definition (1 pt)

Give the definition of associativity. What does it mean for an operator f to be associative?

Associativity and commutativity (1 pt)

Give an example operator that is associative but that is not commutative.

An associative operator (8 pt)

Given two types A and B, and two associative operators f and g with the following signatures:

• f: (A, A) => A

• g: (B, B) => B

Define a third operator h with the following signature:

• h: ((A, B), (A, B)) => (A, B)

such that h is associative. (1 pt)

Then, prove that h is indeed associative. (7 pt)

Be very precise in your proof. At each step, specify which axiom, hypothesis, or previous result you use.

2



Exercise 2: Parallel Merge Sort (10 points)

In this exercise, you are required to design and analyze a parallel version of the merge sort algorithm. Consider
the function msort shown below that implements a sequential merge sort algorithm for sorting a list of objects
of type T. Recall that a merge sort algorithm partitions the input list in two parts (whose sizes differ by at
most one), sorts each of the parts independently, and finally assembles the two sorted parts into a single
sorted list.

def msort[T](less: (T, T) => Boolean)(l: List[T]): List[T] = {
if (l.length <= 1) {

l
} else {

val (first, second) = partition(l)
merge(less)(msort(less)(first), msort(less)(second))

}
}

The parameter less defines an ordering on the instances of type T, and takes constant time. Given below are
the implementations of the function merge that combines two sorted lists into a single sorted list, and the
function partition.

def merge[T](less: (T, T) => Boolean)(xs: List[T], ys: List[T]): List[T] = {
(xs, ys) match {

case (Nil, _) => ys
case (_, Nil) => xs
case (x :: xtail, y :: ytail) =>

if (less(x, y))
x :: merge(less)(xtail, ys)

else
y :: merge(less)(xs, ytail)

}
}

def partition[T](l: List[T]): (List[T], List[T]) = {
val n = l.length / 2;

(l take n, l drop n)
}

You are given a parallel construct that can execute two function calls in parallel:

def parallel[A, B](taskA: => A, taskB: => B): (A, B)

(a) Which one of the above three functions can you parallelize to obtain a span of O(n) for the function
msort, where n is the size of the input list ? You are allowed to introduce one or more parallel
constructs but you are not allowed to use a different data structure (other than the linked list). Recall
that span is (informally) the time taken by an algorithm when the number of parallel processors is
unlimited. See below for a more formal definition.

(b) Implement the parallel version of the function that you identified in part (a).

3



(c) Prove that the span of the merge sort algorithm is O(n) when the implementation you gave for part (b)
is used ?

For your reference, a brief formal definition of span, which was explained in the lectures, is given below. For
an expression f(e1, · · · , en), where f is a function or a primitive operation, S(f(e1, · · · , en)) = S(e1) + ... +
S(en) + S(f)(v1, · · · , vn), where vi denotes the values of ei. If f is a primitive operation on integers, then
S(f) is constant, regardless of vi. If f is a user-defined function, then S(f)(v1, · · · , vn) is equal to the span of
the body of f when the values of the parameters are v1, · · · , vn. For the parallel construct, S(parallel(c1,
c2)) = cp + max(S(c1), S(c2))), where cp is a constant. For the if-then-else construct, S(if(e1) e2 else
e3) = S(e1) + S(e2) + c if the condition e1 holds, otherwise is equal to S(e1) + S(e3) + c, where c is a constant.
Since the match construct can be reduced to if-then-else, its span can be derived using the span of if-then-else.

4


