Exercise 1 : Depth

Note: This exercise was already given last week. If you have already done it, briefly discuss
the solution as a group before moving to the next exercise.

Review the notion of depth seen in the video lectures. What does it represent ?

Below is a formula for the depth of a divide and conquer algorithm working on an array
segment of size L, as a function of L. The values ¢, d and T are constants. We assume that
L>0 and T>0.

c-L it LT

D(L) - L L .
maz(D(|5]), D(L—|5])) +d otherwise

Below the threshold T, the algorithm proceeds sequentially and takes time ¢ to process each
single element. Above the threshold, the algorithm is applied recursively over the two halves
of the array. The results are then merged using an operation that takes d units of time.

Question 1
Is it the case thatforall 7<L,<L,we have D(L,) <D(L,) ?

If it is the case, prove the property by induction on L. If it is not the case, give a
counterexample showing values of L,, L,, T, ¢, and d for which the property does not hold.
Somewhat counterintuitively, the property doesn’t hold. To show this, let’s take the following
valuesforL, L, T, ¢, and d.

L,=10,L,=12,T=11,c=1,andd = 1.
Using those values, we get that:

D(L,) =10
D(L,) = max(D(6), D(6)) + 1 =7



Question 2

Prove a logarithmic upper bound on D(L). That is, prove that D(L) is in O(log L) by finding
specific constants a,b such that D(L) < a log,L + b.

Proof sketch
Define the following function D’(L).

c-L LT

D'(L) = max(D’(L%J),D’(L —_ L%J)) +d+c-T otherwise

Show that D(L) < D'(L) forall 1< L .

Then, show that, forany 1 <L, <L, we have D’(L,) < D’(L,). This property can be shown by
induction on L,

Finally, let n be such that L < 2" < 2L. We have that:

D(L) = D’(L) Proven earlier.
<D’(2") Also proven earlier.
<log,(2") (d +cT) +cT
<log,(2L) (d + cT) +cT
=log,(L) (d +cT) +log,(2) (d +cT) +cT
=log,(L) (d +cT) +d + 2cT

Done.



Exercise 2 : Aggregate

In the video lectures of this week, you have been introduced to the aggregate method of
ParSeq[A] (and other parallel data structures...). It has the following signature:

def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B
Discuss, as a group, what aggregate does and what its arguments represent.

Question 1

Consider the parallel sequence xs containing the three elements x1, x2 and x3. Also
consider the following call to aggregate:

xs.aggregate(z)(f, g)
The above call might potentially result in the following computation:
f(f(f(z, x1), x2), x3)

But it might also result in other computations. Come up with at least 2 other computations
that may result from the above call to aggregate.

Some examples:

9(f(z, x1), f(f(z, x2), x3))
g(f(f(z, x1), x2), f(z, x3))
9(9(f(z, x1), f(z, x2)), f(z, x3))
9(f(z, x1), g(f(z, x2), f(z, x3)))



Question 2

Below are other examples of calls to aggregate. In each case, check if the call can lead to
different results depending on the strategy used by aggregate to aggregate all values
contained in data down to a single value. You should assume that data is a parallel
sequence of values of type BigInt.

Variant 1

data.aggregate(1)(_ + _, _ + _)
This might lead to different results.
Variant 2
data.aggregate(®)((acc, x) => x - acc, _ + _)

This might lead to different results.

Variant 3

data.aggregate(®)((acc, x) => acc - x, _ + _)

This is always leads to the same result.

Variant 4

data.aggregate(1)((acc, x) => x * x * acc, _ * )

This is always leads to the same result.



Question 3

Under which condition(s) on z, f, and g does aggregate always lead to the same result ?
Come up with a formula on z, f, and g that implies the correctness of aggregate.

int: You may find useful to use calls to foldLeft(z) (f) in your formula(s).

A property that implies the correctness is:
forall xs, ys.

g(xs.foldLeft(z)(f), ys.foldlLeft(z)(f))

(xs ++ ys).foldLeft(z)(f)

Question 4

Implement aggregate using the methods map and/or reduce of the collection you are
defining aggregate for.

A solution:
def aggregate(z: B)(f: (B, A) => B, g: (B, B) => B): B =

if (this.isEmpty) z
else this.map((x: A) => f(z, x)).reduce(g)



Question 5

Implement aggregate using the task and/or parallel constructs seen in the first week
and the Splitter[A] interface seen in this week’s videos. The Splitter interface is
defined as:

trait Splitter[A] extends Iterator[A] {
def split: Seq[Splitter[A]]
def remaining: Int

}

You can assume that the data structure you are defining aggregate for already implements
a splitter method which returns an object of type Splitter[A].

Your implementation of aggregate should work in parallel when the number of remaining
elements is above the constant THRESHOLD and sequentially below it.

Hint: Iterator, and thus Splitter, implements the foldLeft method.

A solution:
def aggregate(z: B)(f: (B, A) => B, g: (B, B) => B): B = {

def go(s: Splitter[A]): B = {
if (s.remaining <= THRESHOLD) {
s.foldLeft(z)(f)
}

else {
val splitted = s.split

val subs = splitted.map((t: Splitter[A]) => task { go(t) })
subs.map(_.join()).reduce(g)

}
}

go(splitter)
}

Question 6

Discuss the implementations from questions 4 and 5. Which one do you think would be more
efficient ?

The version from question 4 may require 2 traversals (one for map, one for reduce) and
does not benefit from the (potentially faster) sequential operator f.



This question has been moved to the third exercise session.



