

Exercise Session 1 - Solutions - Parallelism and Concurrency - EPFL

Exercise 1 : Introduction to Concurrency

Freshly graduated from EPFL, you all have been hired as contractors for a successful and
rapidly growing bank. The bank has recently been experiencing problems with their money
management system, coded in Scala, and so they hired the best and brightest young
engineers they could find: you! The system has been working perfectly fine so far, they tell
you. In the past days, due to an increased number of customers, they had to switch from a
single threaded sequential execution environment to a multithreaded concurrent
environment, in which multiple threads may perform transactions concurrently. That’s when
problems started, your manager says…

Below is the code responsible to withdraw money from the account ​from​ and transfer it to
the account ​to​, within the same bank.

def transfer(from: Account, to: Account, amount: BigInt) {

 val balanceFrom = from.balance

 if (balanceFrom >= amount) {

 from.balance = balanceFrom - amount

 val balanceTo = to.balance

 to.balance = balanceTo + amount

 }

}

For the bank, it is very important that the following two properties hold in any sequence of
transfer transactions:

1. The balance of an account never goes below 0.
2. The total sum of money held by the bank is constant.

Question 1
Does the above ​transfer method respect the two properties in a ​sequential ​execution
environment ?

Yes.

1

Exercise Session 1 - Solutions - Parallelism and Concurrency - EPFL

Question 2
What can go wrong in a setting where multiple threads can execute the ​transfer method
concurrently ? For each of the two desired properties of the system, check if its holds in this
concurrent environment. If not, come up with an example execution which exhibits a violation
of the property.

Property 1 holds*

Assuming that the execution of two concurrent threads only interleaves instructions and that
reads and writes are executed atomically, it can be shown that property 1 always holds.
Unfortunately, such strong guarantees are not offered by the Java Memory Model. If you are
interested, have a look at the note below on the Java Memory Model.

Violation of property 2

Consider 2 threads that execute concurrently ​transfer(from, to, amount) with the exact
same parameters. Assume that the account ​from has sufficient funds for at least one
transfer.

Thread 1 executes until it has computed the value ​balanceFrom - amount and then stops.
Thread 2 then executes in its entirety the call to ​transfer(from, to, amount)​. Then
thread 1 resumes its execution and completes the call to ​transfer​.

At the end of this execution, the total amount of money held by the bank has changed. It is
has in fact increased by the value ​amount​.

Note on the Java Memory Model

Assuming the Java Memory Model, both of the two properties can potentially be violated.
Indeed, the model only ensure that the execution of each thread appears sequential to the
thread itself, and not to any other concurrently running threads. Seemingly atomic
instructions can be arbitrarily decomposed by the underlying virtual machine. Sequences of
instructions can also be reordered at will by the VM, as long as the execution of a single
thread appears as if it were executed sequentially. In this settings, both properties can be
violated.

2

Exercise Session 1 - Solutions - Parallelism and Concurrency - EPFL

Question 3
For each of the proposed implementations of ​transfer below, check which of the properties
hold. Additionally, check if the system is vulnerable to ​deadlocks​.

Variant 1
def transfer(from: Account, to: Account, amount: Long) {

 val balanceFrom = from.balance

 if (balanceFrom >= amount) {

 from.synchronized {

 from.balance = balanceFrom - amount

 }

 to.synchronized {

 val balanceTo = to.balance

 to.balance = balanceTo + amount

 }

 }

}

In this variant, property 2 can be violated. It is ​not​ vulnerable to deadlocks.

Variant 2
def transfer(from: Account, to: Account, amount: Long) {

 from.synchronized {

 val balanceFrom = from.balance

 if (balanceFrom >= amount) {

 from.balance = balanceFrom - amount

 to.synchronized {

 val balanceTo = to.balance

 to.balance = balanceTo + amount

 }

 }

 }

}

In this variant, none of the two properties can be violated. However, it is susceptible to
deadlocks.

3

Exercise Session 1 - Solutions - Parallelism and Concurrency - EPFL

Variant 3
object lock // Global object.

def transfer(from: Account, to: Account, amount: Long) {

 lock.synchronized {

 val balanceFrom = from.balance

 if (balanceFrom >= amount) {

 from.balance = balanceFrom - amount

 val balanceTo = to.balance

 to.balance = balanceTo + amount

 }

 }

}

In this last variant, none of the two properties can be violated and no deadlock can occur. It
is however still not entirely satisfactory, since no two threads can execute transfers in
parallel, even when the accounts are totally disjoint. Can you think of a better solution?

4

Exercise Session 1 - Solutions - Parallelism and Concurrency - EPFL

Exercise 2 : Parallel Reductions

Question 1
As a group, write a function called ​minMax​, which should take a non-empty array as input
and return a pair containing the smallest and the largest element of the array.

def minMax(a: Array[Int]): (Int, Int) = ???

Now write a parallel version of the function. You may use the constructs ​task ​and/or

parallel​, as​ ​seen in the lectures.

A solution:

 def minMax(a: Array[Int]): (Int, Int) = {

 val threshold = 10

 def minMaxPar(a: Array[Int], from: Int, until: Int): (Int, Int) = {

 if (until - from <= threshold) {

 var i = from

 var min = a(from)

 var max = a(from)

 while (i < until) {

 val x = a(i)

 if(x < min) min = x

 if(x > max) max = x

 i = i + 1

 }

 (min, max)

 }

 else {

 val mid = (from + until) / 2

 val ((xMin, xMax),

 (yMin, yMax)) = parallel(minMaxPar(a, from, mid),

 minMaxPar(a, mid, until))

 (min(xMin, yMin), max(xMax, yMax))

 }

 }

 minMaxPar(a, 0, a.size)

 }

5

Exercise Session 1 - Solutions - Parallelism and Concurrency - EPFL

Question 2

Imagine that the data structure you are given, instead of an ​Array[A]​, is one called
ParSeq[A]​. This class offers the two following methods, which work in parallel:

def map[B](f: A => B): ParSeq[B]

def reduce(f: (A, A) => A): A

Can you write the following ​minMax ​function in terms of ​map​ and/or ​reduce​ operations ?

def minMax(data: ParSeq[Int]): (Int, Int) = ???

A solution:

def minMax(data: ParSeq[Int]): (Int, Int) = data.map({

 (x: Int) => (x, x)

}).reduce({

 case ((mn1, mx1), (mn2, mx2)) => (min(mn1, mn2), max(mx1, mx2))

})

Question 3

What property does the function ​f passed to ​reduce need to satisfy in order to have the
same result regardless on how ​reduce groups the applications of the operation f to the
elements of the data structure? Prove that your function ​f​ indeed satisfies that property.

The function ​f ​must be associative. That is, for any x, y, z, it should be the case that:

f(x, f(y, z)) == f(f(x, y), z)​.

Both the ​min and ​max functions are associative. In addition, it can be easily shown that
pairwise application of associative functions is also associative. From this follows that f is
indeed associative.

6

Exercise Session 1 - Solutions - Parallelism and Concurrency - EPFL

Exercise 3 : Depth

This question has been moved to the second exercise session.

7

