
Exercise Session 3 - Parallelism and Concurrency - EPFL

Exercise 1 : Parallel Encoding
Note: This exercise was already given last week. If you have already done it, briefly discuss
the solution as a group before moving to the next exercise.

In this exercise, your group will devise a parallel algorithm to encode sequences using the
run-length encoding scheme. The encoding is very simple. It transforms sequences of letters
such that all subsequences of the same letter are replaced by the letter and the sequence
length. For instance:

“AAAAATTTGGGGTCCCAAC” ⇒ “A5T3G4T1C3A2C1”

Your goal in this exercise is to come up with a parallel implementation of this algorithm. The
function should have the following shape:

def rle(data: ParSeq[Char]): Buffer[(Char, Int)] =

 data.aggregate(???)(???, ???)

The Buffer class is already given to you. A buffer of type Buffer[A] represents sequences
of elements of type A. It supports the following methods, all of which are efficient:

def isEmpty: Boolean

def head: A

def tail: Buffer[A]

def last: A

def init: Buffer[A]

def ++(that: Buffer[A]): Buffer[A]

Buffer.empty[A]: Buffer[A]

Buffer.singleton[A](element: A): Buffer[A]

1

Exercise Session 3 - Parallelism and Concurrency - EPFL

Exercise 2 : Parallel Two Phase Construction

In this exercise, you will implement an array Combiner using internally a double linked list
(DLL). Below is a minimal implementation of the DLLCombiner class and the related Node
class. Your goal for this exercise is to complete the implementation of the (simplified)
Combiner interface of the DLLCombiner class.

class DLLCombiner[A] extends Combiner[A, Array[A]] {

 var head: Node[A] = null // `null` for empty lists.

 var last: Node[A] = null // `null` for empty lists.

 var size: Int = 0

 // Implement these three methods...

 override def +=(elem: A): Unit = ???

 override def combine(that: DLLCombiner[A]): DLLCombiner[A] = ???

 override def result(): Array[A] = ???

}

class Node[A](val value: A) {

 var next: Node[A] // `null` for last node.

 var previous: Node[A] // `null` for first node.

}

Question 1
What computational complexity do your methods have ? Are the actual complexities of your
methods acceptable according to the Combiner requirements ?

Question 2
One of the three methods you have implemented, result, should work in parallel according
to the Combiner contract. Can you think of a way to implement this method efficiently using
2 parallel tasks ?

Question 3
Can you, given the current internal representation of your combiner, implement result so
that it executes efficiently using 4 parallel tasks ? If not, can you think of a way to make it
possible ?

Hint: This is an open-ended question, there might be multiple solutions. In your solution, you
may want to add extra information to the class Node and/or the class DLLCombiner .

2

Exercise Session 3 - Parallelism and Concurrency - EPFL

Exercise 3: Pipelines
In this exercise, we look at pipelines of functions. A pipeline is simply a function which
applies its argument successively to each function of a sequence. To illustrate this, consider
the following pipeline of 4 functions:

val p = toPipeline(Seq(_ + 1, _ * 2, _ + 3, _ / 4))

The pipeline p is itself a function. Given a value x, the pipeline p will perform the following
computations to process it. In the above example,

p(x) = (((x + 1) Application of first function
 * 2) Application of second function
 + 3) Application of third function
 / 4 Application of fourth function

In this exercise, we will investigate the possibility to process such pipelines in parallel.

Question 1
Implement the following toPipeline function, which turns a parallel sequence of functions
into a pipeline. You may use any of the parallel combinators available on ParSeq, such as
the parallel fold or the parallel reduce methods.

def toPipeline(fs: ParSeq[A => A]): A => A = ???

Hint: Functions have a method called andThen , which implements function composition: it
takes as argument another function and also returns a function. The returned function first
applies the first function, and then applies the function passed as argument to that result.
You may find it useful in your implementation of pipeline.

Question 2
Given that your toPipeline function works in parallel, would the pipelines it returns also
work in parallel ? Would you expect pipelines returned by a sequential implementation of
toPipeline to execute any slower ? If so, why ?

Discuss those questions with your group and try to get a good understanding how what is
happening.

3

Exercise Session 3 - Parallelism and Concurrency - EPFL

Question 3
Instead of arbitrary functions, we will now consider functions that are constant everywhere
except on a finite domain. We represent such functions in the following way:

class FiniteFun[A](mappings: immutable.Map[A, A], default: A) {

 def apply(x: A): A = {

 mappings.get(x) match {

 case Some(y) => y

 case None => default

 }

 }

 def andThen(that: FiniteFun[A]): FiniteFun[A] = ???

}

Implement the andThen method. Can pipelines of such finite functions be efficiently
constructed in parallel using the appropriately modified toPipeline method ? Can the
resulting pipelines be efficiently executed ?

Question 4
Compare the work and depth of the following two functions, assuming infinite parallelism.
For which kind of input would the parallel version be faster ?

def applyAllSeq[A](x: A, fs: Seq[FiniteFun[A]]): A = {

 // Applying each function sequentially.

 var y = x

 for (f <- fs) y = f(y)

 y

}

def applyAllPar[A](x: A, fs: ParSeq[FiniteFun[A]]): A = {

 if (fs.isEmpty) x

 else {

 // Computing the composition in parallel.

 val p = fs.reduce(_ andThen _)

 // Applying the pipeline.

 p(x)

 }

}

4

