
Exercise Session 2 - Parallelism and Concurrency - EPFL

Exercise 1 : Depth
Note:​ This exercise was already given last week. If you have already done it, briefly discuss
the solution as a group before moving to the next exercise.

Review the notion of ​depth​ seen in the video lectures. What does it represent ?

Below is a formula for the depth of a ​divide and conquer algorithm working on an array
segment of size ​L​, as a function of L​. The values c, d and ​T are constants. We assume that
L>0​ and ​T>0​.

Below the threshold ​T​, the algorithm proceeds sequentially and takes time ​c to process each
single element. Above the threshold, the algorithm is applied recursively over the two halves
of the array. The results are then merged using an operation that takes ​d​ units of time.

Question 1
Is it the case that for all ​1 ≤ L​1​ ≤ L​2​ we have ​D(L​1​) ≤ D(L​2​) ​?

If it is the case, prove the property by induction on L. If it is not the case, give a
counterexample showing values of ​L​1​, L​2​,​ ​T​, ​c​, and ​d ​for which the property does not hold.

Question 2
Prove a logarithmic upper bound on ​D(L)​. That is, prove that ​D(L) ​is in ​O(log​ ​L)​ by finding
specific constants ​a​,​b​ such that​ D(L) ≤ a log​2​L + b​.

Hint: The proof is more complex that it might seem. One way to make it more manageable is
to define and use a function D’(L) that has the property described in question 1, and is
greater or equal to D(L). We suggest you use:

Also remark that computing D’(L) when L is a power of 2 is easy. Also remember that there
always exists a power of 2 between any positive integer and its double.

1

Exercise Session 2 - Parallelism and Concurrency - EPFL

Exercise 2 : Aggregate

In the video lectures of this week, you have been introduced to the ​aggregate method of
ParSeq[A]​ (and other parallel data structures…). It has the following signature:

def aggregate[B](z: B)(f: (B, A) => B, g: (B, B) => B): B

Discuss, as a group, what ​aggregate​ does and what its arguments represent.

Question 1
Consider the parallel sequence ​xs ​containing the three elements ​x1​, ​x2 and ​x3​. Also
consider the following call to aggregate:

xs.aggregate(z)(f, g)

The above call might potentially result in the following computation:

f(f(f(z, x1), x2), x3)

But it might also result in other computations. Come up with at least 2 other computations
that may result from the above call to ​aggregate​.

Question 2
Below are other examples of calls to ​aggregate​. In each case, check if the call can lead to
different results depending on the strategy used by ​aggregate ​to aggregate all values
contained in ​data down to a single value. You should assume that ​data is a parallel
sequence of values of type ​BigInt​.

Variant 1

data.aggregate(1)(_ + _, _ + _)

Variant 2

data.aggregate(0)((acc, x) => x - acc, _ + _)

Variant 3

data.aggregate(0)((acc, x) => acc - x, _ + _)

Variant 4

data.aggregate(1)((acc, x) => x * x * acc, _ * _)

2

Exercise Session 2 - Parallelism and Concurrency - EPFL

Question 3
Under which condition(s) on ​z​, ​f​, and ​g​ does ​aggregate​ always lead to the same result ?
Come up with a formula on ​z​, ​f​, and ​g ​that implies the correctness of ​aggregate​.

Hint:​ You may find useful to use calls to ​foldLeft(z)(f)​ in your formula(s).

Question 4
Implement ​aggregate using the methods ​map ​and/or reduce of the collection you are
defining aggregate for.

Question 5
Implement ​aggregate using the ​task ​and/or parallel constructs seen in the first week
and the ​Splitter[A] interface seen in this week’s videos. The ​Splitter interface is
defined as:

trait Splitter[A] extends Iterator[A] {

 def split: Seq[Splitter[A]]

 def remaining: Int

}

You can assume that the data structure you are defining ​aggregate ​for already implements
a ​splitter​ method which returns an object of type ​Splitter[A]​.

Your implementation of ​aggregate should work in parallel when the number of remaining
elements is above the constant ​THRESHOLD​ and sequentially below it.

Hint:​ ​Iterator​, and thus ​Splitter​, implements the ​foldLeft​ method.

Question 6

Discuss the implementations from questions 4 and 5. Which one do you think would be more
efficient ?

3

Exercise Session 2 - Parallelism and Concurrency - EPFL

Exercise 3 : Parallel Encoding

In this exercise, your group will devise a parallel algorithm to encode sequences using the
run-length encoding scheme. The encoding is very simple. It transforms sequences of letters
such that all subsequences of the same letter are replaced by the letter and the sequence
length. For instance:

“AAAAATTTGGGGTCCCAAC” ⇒ “A5T3G4T1C3A2C1”

Your goal in this exercise is to come up with a parallel implementation of this algorithm. The
function should have the following shape:

def rle(data: ParSeq[Char]): Buffer[(Char, Int)] =

 data.aggregate(???)(???, ???)

The ​Buffer class is already given to you. A buffer of type ​Buffer[A] represents sequences
of elements of type ​A​. It supports the following methods, all of which are efficient:

def isEmpty: Boolean

def head: A

def tail: Buffer[A]

def last: A

def init: Buffer[A]

def ++(that: Buffer[A]): Buffer[A]

Buffer.empty[A]: Buffer[A]

Buffer.singleton[A](element: A): Buffer[A]

Take-home Question
Can you think of a data structure, mutable or not, which implements the above ​Buffer API
in an efficient way ?

4

