Parallelism and Concurrency

Midterm Exam
Wednesday, April 12, 2017

Your points are precious, don’t let them go to waste!

Your Time All points are not equal. Note that we do not think that all exercises have the
same difficulty, even if they have the same number of points.

Your Attention The exam problems are precisely and carefully formulated, some details
can be subtle. Pay attention, because if you do not understand a problem, you can not
obtain full points.

Exercise | Points | Points Achieved

1 25
2 25
3 25
4 25

Total 100

Exercise 1: Parallel Search (25 points)

Finding the index of the first occurence of an item in an array is a standard problem that can be solved
naively by iterating through the array, checking at each element if it matches the one we are looking for. In
this exercise, you will implement a function to perform this task in parallel.

Problem

In this exercise your task is to implement an efficient parallel version of the search algorithm. Your
implementation should use the parallel function seen in class. The function you are implementing should
have the following signature:

def find(arr: Array[Int], value: Int): Option[Int] = 777

The function takes as inputs an array of integers and a value. If the value is present in the array, it should
return the smallest index at which the value can be found, wrapped in Some. Otherwise, it should return
None.

For example:

find(Array (17, 5, 42, 11), 42) == Some(2)
find(Array (17, 5, 42, 11), 34) == None
find(Array(11, 5, 11, 11), 11) == Some(0)

Threshold

Your implementation should work sequentially when the size of the array segment considered is below or
equal to the constant value THRESHOLD, and in parallel otherwise.

Library Functions

The appendix contains the signature of parallel as well as the signature of useful methods on arrays.

Please answer on next page.

Please answer on this page.

Exercise 2: Parallel Word Splitting (25 points)

Splitting a text into a sequence of words is a key preprocessing step in many systems that work with textual
data. In this exercise, you will write a Scala function to perform this crucial task in parallel.

Definitions

e We consider a word to be a non-empty sequence of non-whitespace characters.
e Words in the text are separated by one or more whitespaces.

e Whitespaces can also appear at the beginning and end of the text.
Example Starting from the following text:
"Hello, I’m a text! "

We would like to obtain the following sequence of words:

llHello,ll’ IlIJmll, Ilall, lltext!ll

Statement Your goal for this exercise is to write, in Scala, a parallel and efficient implementation of the
toWords function. The function takes as input a parallel sequence of characters and outputs a Vector of
words.

def toWords(chars: ParSeq[Char]): Vector[String] = 777

The output of the function should contain all words, in order, that appear in the sequence of characters chars.

Notes
e A reduced API for ParSeq is presented in appendix.
e A Vector is an immutable sequential sequence with an efficient implementation of the following methods:

— :+, appends an element at the end.

— +:, prepends an element at the beginning.

++, concatenates two sequences.
— .head, returns the first element.
— .last, returns the last element.
— .tail, returns a Vector containing all elements but the first.

— .init, returns a Vector containing all elements but the last.
e The following operations on String are considered to be efficient enough in the context of this exercise:

— :+, appends a Char at the end of the String.
— +:, preprends a Char at the beginning of the String.

— ++, concatenates two strings.

e You should use the method isWhitespace of Char to check whether a character is a whitespace or not.

Hints Think of the corner cases. What if the text is only whitespaces 7 What if it contains a single word ?

Please answer on this page.

Exercise 3: Memory Models (25 points)
Assume the following two threads.

Initial state:

var a, b, ¢ =0
val lock = new AnyRef

Thread 1:
a=1
b=2

lock.synchronized { ¢ = a + b }

Thread 2:

def f =a+b

println(if (b == 2) a else 2)
lock.synchronized { println(f) }
while (c == 0) {%}

println(f)

lock.synchronized { println(f) }

Question 1

Under the sequential consistency model, what are the possible values printed by Thread 2?7 Use one line per
print statement, and list the possible values that could have been printed on that line.

Please answer question 1 in the space below.

Question 2

Under the Java memory model, what are the possible values printed by Thread 27 Use one line per print
statement, and list the possible values that could have been printed on that line.

Please answer question 2 in the space below.

Exercise 4: Lock-Free Banking (25 points)

During the course, we have seen the example of a bank account class (called Account) with thread-safe
getAmount and transfer methods. The class has the following API:

class Account(initialAmount: Long = OL) {
def getAmount: Long = 777
def transfer(target: Account, n: Long): Unit = 777

}
In this exercise, we will consider a slightly modified variant, with the following requirements:

e getAmount should return the current amount of money that the account holds. It should never return
an amount that is inconsistent with the set of transfers performed on this account.

e transfer should transfer money from an account to an other, with the following requirements:

— Attempting to transfer a negative amount of money n should result in an I1legalArgumentException
being thrown and the transfer being aborted.

— Attempting to transfer more money than available should result in an I1legalStateException
being thrown and the transfer being aborted.

— When a transfer is aborted, it should not modify the amount of money on either accounts.
— If the operation is not aborted, the amount of money in this account should be decremented by n.

— If the operation is not aborted, the amount in the target account should be incremented by n.

e If a set of transfers are performed concurrently, the results (succeeding or failing) must be consistent
with one possible sequential ordering of the transfers.

For your convenience, a correct, dead-lock free, implementation of the Account class is shown in the appendix.

Statement

Your task is to write a revised version of Account with the same public API (i.e., a getAmount method and a
transfer method with the same specification) but that is implemented in a lock-free way. An implementation
that is not lock-free will not be considered valid.

To do so, you should use an AtomicLong to represent the amount, and adapt the implementation of getAmount
and transfer accordingly. The API of AtomicLong is presented in the appendix.

To get full points, your implementation must comply to all of the requirements stated above and be lock-free.
Assumptions

You may assume that Long operations never overflow.

Desirable Properties

Your implementation should aim at minimizing the number of atomic operations performed during transfer
and getAmount, i.e., the number of calls to methods of AtomicLong.

Please answer on next page.

Please answer on this page.

Parallel API

e def parallel[A, Bl(opl: => A, op2: => B): (A, B): Executes the two given computations in par-
allel and returns the pair of results.

Option API
Relevant API for Option[A]:
e def map[B](f: (A) => B): Option[B]: Returns a Some containing the result of applying f to this

Option’s value if this Option is nonempty. Otherwise return None.

e def flatMap[B]l(f: (A) => Option[B]): Option[B]: Returns the result of applying f to this
Option’s value if this Option is nonempty.

e def flatten[B] (implicit ev: <:<[A, Option[B]]): Option[B]: Returns flattened option.
e def get: T: Returns the option’s value.

e def getOrElse[B >: A](default: => B): B: Returns the option’s value if the option is nonempty,
otherwise return the result of evaluating default.

e def orElse[B >: A](alternative: => Option[B]): Option[B]: Returns this Option if it is
nonempty, otherwise return the result of evaluating alternative.

Array API
Relevant API for Array[T]:

e def apply(index: Int): T: Gets the element at a given index. Indexes start at 0.

e def length: Int: Returns the length of the array.

ParSeq API

Relevant API for ParSeq[A]. You can assume that the implementations of the following methods are similar
to what was seen during the lectures.

e def map[B] (f: (A) => B): ParSeq[B]: Applies, in parallel, a function on all elements of the sequence,
and returns the sequence of results.
e def reduce(op: (A, A) => A): A: Reduces the elements of this sequence using the specified operator.

e def aggregate[B](z: => B)(f: (B, A) => B, g: (B, B) => B): B: Aggregates the results of ap-
plying an operator to the elements.

10

AtomicLong API
Relevant API for AtomicLong:

e new AtomicLong(initialValue: Long): Creates a new AtomicLong with the specified initial value.
e def get: Long: Atomically returns the current value of the AtomicLong.

e def compareAndSet(oldV: Long, newV: Long): Boolean: Atomically sets the value of the
AtomicLong to newV if the current value is == 01dV. Returns true if it succeeds (the current value was
01dV) or false otherwise.

e def addAndGet(delta: Long): Long: Atomically adds delta to the current value of the AtomicLong
and returns the new value (i.e., the old value + delta). This operation always succeeds.

Example Implementation of Account
Implementation of Account using locks:

class Account(initialAmount: Long = OL) {
private val id = generateUniqueID()
private var amount: Long = initialAmount

def getAmount: Long = this.synchronized {
amount

}

def transfer(target: Account, n: Long): Unit = {
if (n <= OL)
throw new IllegalArgumentException("n must be positive")

val (first, second) =
if (this.id < target.id) (this, target)
else (target, this)

first.synchronized {
second.synchronized {
if (this.amount < n)
throw new IllegalStateException("Not enough money")
this.amount -=n
target.amount += n
¥
}
}

11

