
Introduction: Concurrent Programming

Concurrent Programming
Martin Odersky

Concurrent Programming

Concurrent programming expresses a program as

▶ a set of concurrent computations
▶ that execute during overlapping time intervals
▶ and that need to coordinate in some way.

Concurrent is difficult; we get all the problems of sequential programming,
plus

▶ non-determinism (behaviors change from one run to the next)
▶ race conditions (time-dependent behavior)
▶ deadlocks (program lockups)

Benefits of Concurrent Programming

1. Performance

▶ exploit parallelism in hardware
▶ parallel programming is implemented by means of concurrent

programming

2. Responsiveness

▶ faster I/O without blocking or polling

3. Distribution

▶ Processes used in concurrent programming can be spread over several
nodes.

Cores, Processes, and Threads

▶ OS schedules cores to run threads.
▶ Threads in the same process share memory.

Concurrency on the JVM

Every time a JVM process starts, it creates several threads, including the
main thread, which runs the program.
You can find this out by running this little program:

object ThreadsMain extends App {

val t: Thread = Thread.currentThread

println(s”I am the thread ${t.getName}”)

}

Threads on the JVM

A thread image in memory contains:

▶ copies of processor registers
▶ the call stack (default size: ~2MB)

Hence, cannot have more than a couple of thousand threads per VM.
Context switch is a moderately complex operation

▶ ~ 1ms per switch
▶ much more expensive than calls or objects creation
▶ less expensive than (blocking I/O)

Creating Threads

Threads are defined as subclasses of java.lang.Thread.

object ThreadsStart extends App {

class MyThread extends Thread {

override def run(): Unit = {

println(s”I am ${Thread.currentThread.getName}”)

}

}

val t = new MyThread()

t.start()

println(s”I am ${Thread.currentThread.getName}”)

}

Two steps to start a thread: (1) create an instance of a Thread subclass,
(2) invoke its start method.

Waiting for Thread Termination

The call t.join() lets the calling thread wait until thread t has terminated.

object ThreadsStart extends App {

class MyThread extends Thread {

override def run(): Unit = {

println(s”New thread running”)

}

}

val t = new MyThread()

t.start()

t.join()

println(s”New thread joined”)

}

Start and Join - Diagrammatically

Starting threads in Scala

In Scala, we can define a helper method to simplify thread creation:

def thread(b: => Unit) = {

val t = new Thread {

override def run() = b

}

t.start()

t

}

Then the previous example becomes:

val t = thread { println(s”New thread running”) }

t.join()

println(s”New thread joined”)

Thread Execution

▶ The operating system contains a scheduler that runs all active
threads on all cores.

▶ If there are more available threads than cores, threads are time-sliced.
▶ Typically, a thread is run for 10 to 100ms on a core, or until it pauses

or waits.

Pausing Thread Execution

We can pause the currently running thread by calling its sleep method.

object ThreadsSleep extends App {

val t = thread {

Thread.sleep(1000)

log(”New thread running.”)

Thread.sleep(1000)

log(”Still running.”)

Thread.sleep(1000)

log(”Completed.”)

}

t.join()

log(”New thread joined.”)

}

Non-Determinism

The previous program was deterministic. It always printed

New thread running.

Still running.

Completed.

New thread joined.

in that order.
But this is not always the case.

Non-Determinism

Here is an example of a program that has different behaviors in different
runs.

object ThreadsNonDeterminism extends App {

val t = thread {

log(”New thread running”)

}

log(”...”)

log(”...”)

t.join()

log(”New thread joined”)

}

We call such programs non-deterministic.

Interleaving

Thread operations are executed concurrently or interleaved.
This invalidates many assumptions we have on sequential programs.
For instance, consider this object:

object ThreadsGetUID {

var uidCount = 0

def getUniqueId() = {

val freshUID = uidCount + 1

uidCount = freshUID

freshUID

}

}

It it true that every call to getUniqueUID will yield a unique number?

Interleaving

Let’s put it to the test:

object ThreadsGetUID extends App {

var uidCount = 0

def getUniqueId() = {

val freshUID = uidCount + 1

uidCount = freshUID

freshUID

}

def printUniqueIds(n: Int): Unit = {

val uids = for (i <- 0 until n) yield getUniqueId()

log(s”Generated uids: $uids”)

}

val t = thread { printUniqueIds(5) }

printUniqueIds(5)

t.join() }

Interleaving

We observe:

▶ Most runs produce different sequences of IDs.
▶ In most runs, threads share some IDs but not others.

How can we explain this?

Interleaving

We observe:

▶ Most runs produce different sequences of IDs.
▶ In most runs, threads share some IDs but not others.

How can we explain this?

Atomic Execution

We would like to ensure that all operations of getUniqueId are performed
atomically, without another thread reading or writing intermediate results.
This can be achieved by wrapping a block in a synchronized call:

object ThreadsGetUID extends App {

var uidCount = 0

def getUniqueId() = synchronized {

val freshUID = uidCount + 1

uidCount = freshUID

freshUID

}

...

}

Synchronized

synchronized translates directly to Java bytecodes.
The Scala typechecker treats it as if it was a method of type AnyRef:

def synchronized[T](block: => T): T

A call of

obj.synchronized { block }

executes block and makes sure that no other thread executes inside a
synchronized method of the same obj.

Locking

In the call

obj.synchronized { block }

obj serves as a lock.

▶ block can be executed only by thread t holds the lock.
▶ Only one thread can hold a lock at any one time.

Locking, Diagrammatically

Monitors

▶ On the JVM, every object can serve as a lock.
▶ This is needlessly general and expensive on non JVM platforms.
▶ So future Scala will treat synchronized as a method of a trait Monitor.
▶ Only instances of Monitor can serve as locks.

Revised GetUniqueId

object ThreadsGetUID extends App with Monitor {

var uidCount = 0

def getUniqueId() = this.synchronized {

val freshUID = uidCount + 1

uidCount = freshUID

freshUID

}

...

}

A Memory Model

A simple way to think about concurrent executions is in terms of
interleavings.
Assume:

▶ Primitive operations: single-word loads, stores.
▶ Need to read the fine-print on multi-word values, e.g. Longs on a 32

bit architecture.

Then:

▶ The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order
specified by its program.

This is called the Sequential Consistency memory model.

Reorderings

Unfortunately, modern multicore processors do not implement the
sequential consistency model.
One problem is caches.

▶ Each core might have a different copy of shared memory in its private
cache.

▶ Write-back of caches to main-memory happens at unpredictable
times.

Another problem is optimizing compilers: they are generally allowed to
reorder instructions as if no other thread was watching.

Observing Reorderings

object ThreadsReordering extends App {

for (i <- 9 until 100000) {

var a, b = false

var x, y = -1

val t1 = thread { a = true; y = if (b) 0 else 1 }

val t2 = thread { b = true; x = if (a) 0 else 1 }

t1.join()

t2.join()

assert(!(x == 1) && (y == 1), s”x = $x, y = $y, i = $i”)

}

}

The assertion will fail every once in a while :-(.

An Explanation

Safe Publication

synchronized not only ensures atomic execution; it also ensures that writes
are visible. Specifically:

▶ After obj.synchronized { ... } was executed by thread t, all writes
of t up to that point are visible to every thread that subsequently
executes a obj.synchronized { ... }.

Example: Money Transfers

Let’s design an online banking system in which we want to log money
transfers.
First, here is the code to collect log messages:

import scala.collection._

private val transfers = mutable.ArrayBuffer[String]()

private val log = new Monitor {}

def logTransfer(name: String, n: Int) = log.synchronized {

transfers += s”transfer to account $name = $n”

}

Note the synchronized, which is needed because += is not by itself atomic.

Accounts

Next, here is class Account:

class Account(val name: String, initialBalance: Int) extends Monitor {

private var myBalance = initialBalance

def balance = myBalance

def add(n: Int) = synchronized {

myBalance += n

if (n > 10) logTransfer(name, n)

}

def getUID = ThreadsGetUID.getUniqueId()

}

(getUID will be needed later)

Test Code

Finally, here is some code that simulates account movements:

val jane = new Account(”Jane”, 100)

val john = new Account(”John”, 200)

val t1 = thread { jane.add(5) }

val t2 = thread { john.add(50) }

val t3 = thread { jane.add(70) }

t1.join(); t2.join(); t3.join()

log(s”--- transfers ---\n$transfers”)

Note the nested synchronized calls: First on add, then on logTransfer.

Transfers

Let’s add a method that transfers money from one account to another (as
an atomic action):

def transfer(a: Account, b: Account, n: Int) =

a.synchronized {

b.synchronized {

a.add(n)

b.add(-n)

}

}

Testing Transfers

Test it as follows:

val jane = new Account(”Jane”, 1000)

val john = new Account(”John”, 2000)

log(”started...”)

val t1 = thread { for (i <- 0 until 100) transfer(jane, john, 1) }

val t2 = thread { for (i <- 0 until 100) transfer(john, jane, 1) }

t1.join(); t2.join();

log(s”john = ${john.balance}, jane = ${jane.balance}”)

What behavior do you expect to see?

1. The program terminates with both accounts having the same balance
at the end as at the beginning.

2. The program terminates with accounts having a different balance.
3. The program crashes.
4. The program hangs.

Deadlocks

Here’s a possible sequence of events:

A situation like this where no thread can make progress because each
thread waits on some lock is called a deadlock.

Preventing Deadlocks

In the previous example, a deadlock arose because two threads tried to
grab two locks in different order.
To prevent the deadlock, we can enforce that locks are always taken in the
same order by all threads.
Here’s a way to do this:

def transfer(a: Account, b: Account, n: Int) = {

def adjust() { a.add(n); b.add(-n) }

if (a.getUID < b.getUID)

a.synchronized { b.synchronized { adjust() } }

else

b.synchronized { a.synchronized { adjust() } }

}

Thread Coordination

Here’s another common task: Implement an (asynchronous) channel.
Two classes of threads, producers, and consumers.

▶ producers send an element to the channel.
▶ consumers take an element from the channel.
▶ at most one element can be in the channel at any one time.
▶ If channel is full, producers have to wait.
▶ If channel is empty, consumers have to wait.

Implementation Schema

Here’s an outline of class OnePlaceBuffer

class OnePlaceBuffer[Elem] extends Monitor {

private var elem: Elem = _

private var full: Boolean = false

def put(e: Elem): Unit = synchronized {

if (full) ???

else { elem = e; full = true }

}

def get(): Elem = synchronized {

if (!full) ???

else { full = false; elem }

}

}

Question: How to implement the ???s?

Busy Waiting

We could wait by

class OnePlaceBuffer[Elem] extends Monitor {

private var elem: Elem = _

private var full: Boolean = false

def put(e: Elem) = while (!tryToPut(e)) {}

def tryToPut(e: Elem): Boolean = synchronized {

if (full) false

else { elem = e; full = true; true }

}

// similarly for get

}

This technique is called polling or busy waiting.
Problem: Consumes compute time while waiting.

Wait and Notify

Monitors can do more than just locking with synchronized.
They also offer the following methods:

wait() suspends the current thread,
notify() wakes up one other thread waiting on the current object,
notifyAll() wakes up all other thread waiting on the current object.

Blocking Implementation

class OnePlaceBuffer[Elem] extends Monitor {

var elem: Elem = _; var full = false

def put(e: Elem): Unit = synchronized {

while (full) wait()

elem = e; full = true; notifyAll()

}

def get(): Elem = synchronized {

while (!full) wait()

full = false; notifyAll(); elem

}

}

Questions:

1. Why notifyAll() instead of notify()?
2. Why while (full) wait() instead of if (full) wait()?

The Fine Print

▶ wait, notify and notifyAll should only be called from within a
synchronized on this.

▶ wait will release the lock, so other threads can enter the monitor.
▶ notify and notifyAll schedule other threads for execution after the

calling thread has released the lock (has left the monitor).

Signals

The Java implementation is not quite the same as the original model of
Monitors by Per Brinch Hansen, as implemented in the languages Modula
and Modula-2.
The original model has synchronized but not wait and notify and
notifyAll.
Instead, it introduces signals.
A signal can be thought of implementing the following class:

class Signal {

def wait(): Unit // wait for someone to send

def send(): Unit // wakes up the first waiting thread

}

Buffer Implementation with Signals

class OnePlaceBuffer[Elem] extends Monitor {

var elem: Elem = _

var full = false

val isEmpty, isFull = new Signal

def put(e: Elem): Unit = synchronized {

while (full) isEmpty.wait()

isFull.send()

full = true; elem = e

}

def get(): Elem = synchronized {

while (!full) wait()

isEmpty.send()

full = false; elem

}

}

Why would we prefer this?

Can Signals be Implemented in a Library?

Let’s try:

class Signal {

def send(): Unit = synchronized { notify() }

def wait(): Unit = synchronized { wait() }

}

(We’d have to rename wait because it is final in AnyRef, but never mind
for now).
What do you expect to see when combining this with one-place buffers?

1. correct and faster implementation
2. wrong behavior
3. deadlocks

Stopping Threads

▶ The JVM contains a method stop() on class Thread, but it is
deprecated, and should not be used.

▶ [Why is Thread#stop() bad, yet killing a process is acceptable?]
▶ The best thing to do instead is to notify threads that they should

stop by setting a global variable, which needs to be polled regularly.

Volatile Variables

Sometimes we need only safe publication instead of atomic publication.
In these situations there’s a cheaper solution than using synchronized: we
can use a volatile field:
Example:

@volatile var found = _

val t1 = thread { ... ; found = true }

val t2 = thread { while (!found) ... }

Guarantees of Volatile

Making a variable @volatile has two effects:

▶ Assignments to the variable will not be reordered wrt to other
statements in the thread.

▶ Assignments to the variable are visible immediately to all other
threads.

Using Volatile: Parallel Search

Let’s assume we want to search in parallel a number of pages for an
occurrence of a pattern.
Once a pattern is found, all threads should stop searching.
This can be achieved as follows:
class Page(val txt: String, var position: Int)

object Volatile extends App {

val pages = for (i <- 1 to 5) yield

new Page(”Na” * (100 - 20*i) + ” BatMan!”, -1)

...

Parallel Search ctd

@volatile var found = false

for (p <- pages) yield thread {

var i = 0

while (i < p.txt.length && !found)

if (p.txt(i) == ’!’) {

p.position = i

found = true

}

else i += 1

}

while (!found) Thread.‘yield‘()

log(s”results: ${pages.map(_.position)}”)

}

What happens if the @volatile is left out?

Memory Models in General

A memory model is an abstraction of the hardware capabilities of different
computer systems.
It essentially abstracts over the underlying systems cache coherence
protocol.
Memory models are non-deterministic, to allow some freedom of
implementation in compiler and hardware.
Every memory model is a compromise, since it has to trade off between:

▶ more guarantees = easier to write concurrent programs,
▶ fewer guarantees = more capabilities for optimizations.

The Java Memory Model

The Defines a “happens-before” relationship as follows.

▶ Program order: Each action in a thread happens-before every
subsequent action in the same thread.

▶ Monitor locking: Unlocking a monitor happens-before every
subsequent locking of that monitor

▶ Volatile fields: A write to a volatile field happens-before every
subsequent read of that field.

▶ Thread start: A call to start() on a thread happens-before all
actions of that thread.

▶ Thread termination. An action in a thread happens-before another
thread completes a join on that thread.

▶ Transitivity. If A happens before B and B happens-before C, then A
happens-before C.

The Java Memory Model

Consider:

val t1 = thread { val t2 = thread {

x = 1 println(x)

lock.synchronized { lock.synchronized { println(y) }

y = 2 println(x)

} }

