
Implementation of FlatMap on Future

Principles of Functional Programming



Implementation of FlatMap

Let’s take a closer look at flatMap:

trait Future[T] {

def onComplete(callback: Try[T] => Unit) = ...

def flatMap[S](f: T => Future[S]): Future[S] = ???

}

How can we implement flatMap in terms of onComplete?
Here’s a simplified implementation.
In fact, that implementation is almost automatic; all we need to do is
follow the types.



Implementation of FlatMap

Start the implementation by creating a result future.

trait Future[T] { self =>

def flatMap[S](f: T => Future[S]): Future[S] =

new Future[S] {

...

}



Implementation of FlatMap

We need to provide its onComplete method:

trait Future[T] { self =>

def flatMap[S](f: T => Future[S]): Future[S] =

new Future[S] {

def onComplete(callback: Try[S] => Unit): Unit =

...

}



Implementation of FlatMap

The obvious thing to do is consult the current future via self.onComplete:

trait Future[T] { self =>

def flatMap[S](f: T => Future[S]): Future[S] =

new Future[S] {

def onComplete(callback: Try[S] => Unit): Unit =

self onComplete {

case Success(x) => ...

case Failure(e) => ...

}

}

}



Implementation of FlatMap

If that returns a value x, compute f(x), …

trait Future[T] { self =>

def flatMap[S](f: T => Future[S]): Future[S] =

new Future[S] {

def onComplete(callback: Try[S] => Unit): Unit =

self onComplete {

case Success(x) => f(x) ...

case Failure(e) => ...

}

}

}



Implementation of FlatMap

If that returns a value x, compute f(x), and pass its result to callback.

trait Future[T] { self =>

def flatMap[S](f: T => Future[S]): Future[S] =

new Future[S] {

def onComplete(callback: Try[S] => Unit): Unit =

self onComplete {

case Success(x) => f(x).onComplete(callback)

case Failure(e) => ...

}

}

}



Implementation of FlatMap

In case of failure, pass it along directly to callback.

trait Future[T] { self =>

def flatMap[S](f: T => Future[S]): Future[S] =

new Future[S] {

def onComplete(callback: Try[S] => Unit): Unit =

self onComplete {

case Success(x) => f(x).onComplete(callback)

case Failure(e) => callback(Failure(e))

}

}

}



Implementation of FlatMap

In case of failure, pass it along directly to callback.

trait Future[T] { self =>

def flatMap[S](f: T => Future[S]): Future[S] =

new Future[S] {

def onComplete(callback: Try[S] => Unit): Unit =

self onComplete {

case Success(x) => f(x).onComplete(callback)

case Failure(e) => callback(Failure(e))

}

}

}

The actual implementation is somewhat more involved since it also has to
handle thread scheduling.


