
Verification of Data Structures
Using

The Pointer Assertion Logic Engine
and Jahob

Feride Çetin
Kremena Diatchka

Pointer Assertion Logic Engine

� Catch type and memory errors
� Check data structure invariants
� Annotate programs with specifications in

Pointer Assertion Logic
� Encode programs in MSOL
� Check the validity using MONA
� Requires loop and function call invariants
� Highly modular

Pointer Assertion Logic

� Store Model

� Graph Types
� The Programming Language

� Program Annotations

Store Model

� Store ={a heap, program variables}

� Heap = {records}
� Record fields = {pointers, boolean values}

� Pointer value = {null, record}
� Program variables = {data variable, pointer

variable}

Graph Types

� Definition: Tree-shaped data structure with
extra pointers.

� Backbone: The underlying tree

� Data fields: Define the backbone
� Pointer fields: Point anywhere in the backbone

Program Annotations

� PAL: Monadic Second Order Logic on graph
types

� Annotations are invariants of the program
(formulas) used:
– To constrain pointer field destinations
– As loop and procedure call invariants
– Pre- and post-conditions in procedure declarations
– in assert and split statements

Pointer fields

� A pointer field must satisfy the formula given in its
type declaration unless it is overridden with pointer
directives of the form:

� ptrdirs -> { (T . p [form])* }
� Allows pointer fields to be constrained differently at

different program points.
� Important: Temporary but intentional invalidation of

data structure invariants often occurs in imperative
programs

� Well-formed pointer directives => pointer field denote
exacly one record

Properties

� A pair consisting of a formula and a set of
pointer directives:

� property -> [form ptrdirs]

� Denotes the set of stores where
– the formula form is satisfied;
– the data variables denote disjoint acyclic

backbones spanning the heap
– each pointer field satisfies its pointer directive

Verification pipeline

Verified
by

Transduction
(Encoding)Desugaring

ANNOTATIONS
-pointer field constraints
-loop & procedure call
invariants
-pre- & post-conditions of
procedures
-assert & split statements

Transduce Triple
(Hoare Triple)
Transduction
Declaration

MSOL MONA

Desugaring: Splitting the program into
Hoare Triples

� Modelling transformations of heap with Hoare
Triples generated for each cut-point of the
program

� Form: triple -> property stm
� A triple is valid if

– executing stm in a store where property is satisfied cannot
violate any assertions occurring in stm; and

– the execution always terminates in a store consisting of
disjoint, acyclic backbones spanning the heap in which all
pointer directives hold.

Encoding Hoare Triples

� Encode each Hoare triple in monadic
second-order logic
– decidable using MONA

� Transduction technique:
– Simulate (transduce) the statements
– Update store predicates
– Check the validity of the resulting formula

Store predicates

� All properties of a store can be expressed
using these predicates in MONA logic
– bool_T_b(v)
– succ_T_d(v,w)
– …

� Transduction process -> store predicates for
each program point

Summary

� Pointer Assertion Logic Engine checks:
– the pointer directives are well-formed
– all assertions are valid
– all cut-point properties are satisfiable
– memory errors and
– violations of the data structure invariants

� Data structures verified using PAL
– Singly-linked lists
– Doubly-linked lists with tail pointers
– ...

PALE limitation

� Problem: all fields not part of the backbone
must be exactly determined by the backbone

2 level skip list Students-schools

Backbone field: next
Derived field: attends

Backbone field: next
Derived field: nextSub

Jahob

� Verifies properties of Java programs with
dynamically allocated data structures

� Modular analysis

� Can prove that an implementation
– satisfies specifications
– Maintains data structure invariants
– Never produces run-time errors

Jahob outline

� Developers give specifications as higher-order logic
(HOL) formulas

� Split HOL formulas into conjuncts
� Approximate conjunct

– Translation to first order logic
– Field constraint analysis
– BAPA

� Prove approximation formula using theorem provers
and decision procedures

Field constraint analysis

� Field constraint for a field: formula specifying
a set of objects to which the field can point

� Can analyze non-deterministic field
constraints

� Approach
– Verify backbone
– Verify constraints on cross-cutting fields

Field Constraint Analysis

� Uniquely determine where fields point to

� Specify constraint on the field

� f: function representing the field
� F: defining formula for f
� Based on approximating f with F

),()(. yxFyxfxy ↔=∀

),()(. yxFyxfxy →=∀

Students field constraints

Skip list field constraint

Project: verifying simple data
structures using Jahob

� Verified
– List with header node
– Queue
– Cyclic list

� Tried
– Instantiable queue

� In progress
– Leaf-linked tree

Verifying a cyclic list

� Backbone field: next1
� Derived field: next

� Field constraint

Verifying a cyclic list: class invariants

private static ghost specvar next1 :: "obj => obj";

public static specvar content :: objset;

public static specvar isolated :: "obj => bool";

public invariant unallocIsolated:

Verifying a cyclic list: class invariants

invariant firstIsolated:

private static specvar last :: "obj => bool";

invariant isTree: "tree [next1]";

invariant fieldConstraint:

The end!

� Verifying data structures this way can be
frustrating

� Worth it in safety-critical applications

