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Abstract. Software model checking with abstraction refinement is
emerging as a practical approach to verify industrial software systems. Its
distinguishing characteristics lie in the way it applies logical reasoning to
deal with abstraction. It is therefore natural to investigate whether and
how the use of a constraint-based programming language may lead to an
elegant and concise implementation of a practical tool. In this paper we
describe the outcome of our investigation. Using a Prolog system together
with Constraint Logic Programming extensions as the implementation
platform of our choice we have built such a tool, called ARMC (for Ab-
straction Refinement Model Checking), which has already been used for
practical verification.

1 Introduction

Software model checking with (counterexample-guided) abstraction refine-
ment is emerging as a practical approach to verify industrial software
systems [2,4,5,13,16]. Its distinguishing characteristics lie in the way it applies
logical reasoning to deal with abstraction. In particular, it implements the auto-
matic construction of abstract domains based on logical formulas. This construc-
tion requires intricate operations on logical formulas, operations which involve
both syntax-based manipulations and semantics-based logical operations such
as entailment tests between constraints. It is therefore natural to investigate
whether and how the use of a constraint-based logic programming language may
lead to an elegant and concise implementation of a practical tool. In this paper
we describe the outcome of our investigation.

Using a Prolog system together with extensions [15,17] as the implementation
platform of our choice we have built such a tool, called ARMC (for Abstrac-
tion Refinement Model Checking). The tool has already been used for practical
verification [20].

Our work builds upon, and also crucially differs from previous efforts to
exploit constraint based programming languages for the implementation of
model checkers (see e.g. [1,8,9,10,11,18,19,21]). Those efforts relate the fixpoint
definitions of runtime properties of programs with the fixpoint semantics of
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constraint logic programs. We also take advantage of this connection, but our
implementation may best be understood by its operational reading. We exploit
the logical reading of programming language constructs for the implementation
of operations that are specific to abstraction and abstraction refinement. As far
as we know, none of the existing CLP/logic-based implementations of model
checkers performs abstraction refinement.

We structure the paper as follows. First, we describe the representation of
the program to be verified by Prolog facts trans(...) that are stored in the
Prolog database. We then define the procedure post that implements the one-
step-reachability operator over sets of states, each set being represented by a
constraint. The abstraction procedure abstract takes a set of predicates (which
are atomic constraints stored in the Prolog database in a single fact preds(...))
and maps a set of states to the corresponding over-approximation. We define
abstract, concretize and abstract_post. We are then ready to define the
abstract reachability procedure abstract_fixpoint.

If the abstraction is too coarse then the call to abstract_fixpoint may lead
to the call of a refinement procedure refine, which updates the Prolog fact
preds(...) stored in the Prolog database. The subsequent iteration calls the
abstract reachability procedure again, but now the procedure abstract refers
to the new set of predicates. The refinement procedure is based on the pro-
cedure feasible that performs an intricate analysis of counterexamples that
are possible in the abstract, but may be absent in the concrete. The insights
that are gained during this analysis guide the discovery of new predicates which
are added in order to refine abstraction (for a detailed account on the underly-
ing algorithm we refer to [3]). We first define the procedure feasible and then
refine, and are then finally ready to define the ‘main’ procedure ARMC, which
is abstract_check_refine.

2 From Program Statements to Prolog Facts trans(...)

We illustrate the translation of the program to be verified into the representation
by Prolog facts in Figure 1. We translate each statement of the corresponding
goto program by a trans(...)-fact (all trans(...)-facts together represent the
transition relation of the program to be verified). In the next section, we will use
calls of the form trans(FromState, ToState, Rho, StmtId) where the first
two arguments represent the states (control location and data variables) before
and after the execution of the statement. The third argument will be bound to a
term that stands for a transition constraint, e.g. Rho = (Xp=X+1, Yp=Y). Here
the logical variables X and Xp (read “x-prime”) refer to the before- and after-
values of the C program variable x. Transition constraints relate the values of
program variables before and after the transition. We use the expression language
of the applied CLP system to form transition constraints. The fourth argument
will be bound to the label that identifies the statement. We encode the initial
and error conditions of the program with the help of the distinguished locations
start(...) and error(...).
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0: int x=0, y=0;
1: while ( x =< 10 ) {
2: x=x+1;
3: y=y+1;

}
4: assert( x==y );

�0 �1

�2 �3

�4

�err

stmt0

stmt1

stmt2

stmt3

stmt4

stmt5

start(ctrl(loc_0)).

error(ctrl(loc_err)).

trans(s(ctrl(loc_0), data(X, Y)), s(ctrl(loc_1), data(Xp, Yp)), (Xp=0, Yp=0), stmt_0).

trans(s(ctrl(loc_1), data(X, Y)), s(ctrl(loc_2), data(Xp, Yp)), (X=<10, Xp=X, Yp=Y), stmt_1).

trans(s(ctrl(loc_2), data(X, Y)), s(ctrl(loc_3), data(Xp, Yp)), (Xp=X+1, Yp=Y), stmt_2).

trans(s(ctrl(loc_3), data(X, Y)), s(ctrl(loc_1), data(Xp, Yp)), (Xp=X, Yp=Y+1), stmt_3).

trans(s(ctrl(loc_1), data(X, Y)), s(ctrl(loc_4), data(Xp, Yp)), (X>10, Xp=X, Yp=Y), stmt_4).

trans(s(ctrl(loc_4), data(X, Y)), s(ctrl(loc_err), data(Xp, Yp)), (X=\=Y, Xp=X, Yp=Y), stmt_5).

Fig. 1. Example program in C syntax and its representation by Prolog facts. The
correctness of the program is defined by the validity of the assertion in line 4. In terms
of the corresponding goto program depicted by the control-flow graph this means the
non-reachability of the error location �err from the start location �0. It is always possible
to encode the initial and the error condition of the program with the help of special
locations �0 and �err.

3 One-Step-Reachability Operator post

Figure 2 shows the procedure post that implements the one-step-reachability
operator over sets of states.

We “symbolically” represent a set of states by a constraint. For example, the
constraint Y>=5, X=Y represents the set of all valuations of the program variables
(see Figure 1) where the program variable y is not less than 5 and is equal
to the value of the program variable x. A program state is determined by the
valuation of the program variables and the control location. Assume the bindings
Phi = (Y>=5, X=Y), and FromState = s(ctrl(loc_2), data(X, Y)). Then
Phi and FromState together represent the set of program states at the location �2
with the valuations of the program variables constrained as described above. We
explain the use of the data(...) term later.

We consider the set of successor states under the execution of a particular
program statement in the goto program. The forth parameter of post is used
to identify this statement. In our example, the identifiers of statements, i.e. the
possible values of StmtId, range from stmt 0 to stmt 5.

We use our example to illustrate how post is executed. Assume the above
bindings for Phi and FromState. The call {Phi} injects the constraint Y>=5,
X=Y into the constraint store. The next call non-deterministically selects a
trans(...) fact from the database, say the fact identified by stmt 2. This cre-
ates the bindings
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ToState = s(ctrl(loc_3), data(Xp, Yp)),
Rho = (Xp=X+1, Yp=Y),
StmtId = stmt_2.

We observe that the variables in the term bound to FromState are unified with
the from-variables of the transition. In the example, for legibility, we have already
chosen the same variables, i.e., X and Y both for the variables in FromState and
for the from-variables.

The call {Rho} injects the transition constraint Xp=X+1, Yp=Y into the con-
straint store. This means that the constraint store now contains the constraint
Y>=5, X=Y, Xp=X+1, Yp=Y. The projection of this constraint on the variables
Xp and Yp represents the set of valuations of the program variables after the ap-
plication of the statement identified by StmtId. This projection yields Xp=1+Yp,
Yp>=5. It is instructive to reflect that this constraints indeed represents the suc-
cessor values of x and y after the increment operation for x.

The choice of the variables for the projection is determined by the term bound
to ToState, which is s(ctrl(loc 3), data(Xp, Yp)) in our example. The pro-
jection is performed by the elimination of existentially quantified variables, in
the example X and Y. We do not explicitly perform this elimination (neither
the renaming of primed by unprimed variables, which is usually required by
implementations of successor operators).

post(Phi, FromState, ToState, StmtId) :-
{Phi},
trans(FromState, ToState, Rho, StmtId),
{Rho}.

Fig. 2. The procedure post

4 Abstract One-Step Reachability Operator abstract post

The procedure abstract post implements a function that is defined by the
functional composition of three functions for which the notation α, post and γ
is customary in the abstract interpretation framework [7]: the abstraction, the
one-step-reachability operator, and the concretization. As we will show below,
the procedure abstract post is implemented in terms of the three procedures
abstract, post and concretize.

Procedure abstract. We define the procedure abstract in Figure 3. This
procedure computes a constraint that is an over-approximation of the cur-
rent content of the constraint store. The first argument of abstract deter-
mines the approximation function. For example, Xp=1+Yp, Yp>=5 is approx-
imated by the constraint Yp>=0, Xp>=Yp if the list of the four constraints
Xp=<0, Yp>=0, Xp=<Yp, Xp>=Yp appears in the first parameter of abstract.
It is customary to refer to the given set of constraints (which together determine
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abstract([Pred-Id|PredIdPairs], Ids) :-
( entailed(Pred) ->

abstract(PredIdPairs, TmpIds),
Ids = [Id|TmpIds]

;
abstract(PredIdPairs, Ids)

).
abstract([], []).
concretize([Id|Ids], [Pred-PId|PredIdPairs], Phi) :-

( Id = PId ->
concretize(Ids, PredIdPairs, TmpPhi),
Phi = (Pred, TmpPhi)

;
concretize([Id|Ids], PredIdPairs, Phi)

).
concretize([], _, 1=1).
abstract_post(FromCtrl, FromIds, ToCtrl, ToIds, StmtId) :-

FromState = s(FromCtrl, _),
preds(FromState, FromPredIdPairs),
concretize(FromIds, FromPredIdPairs, Phi),
post(Phi, FromState, ToState, StmtId),
ToState = s(ToCtrl, _),
preds(ToState, ToPredIdPairs),
abstract(ToPredIdPairs, ToIds).

Fig. 3. The procedures abstract, concretize, and abstract post

the approximation function) as predicates. In our running example, we refer to
the four predicates given above.

We give each predicate a unique identifier. This is its position in a given list
of predicates. The call abstract(PredIdPairs, Ids) computes a list of identi-
fiers that is bound to Ids. This list consists of the identifiers of the predicates
that appear in the approximation of the constraint in the constraint store. For
technical reasons, the first parameter of abstract is not a list of predicates, but
a list of pairs containing a predicate and its identifier (which we write using -
in Prolog).

We continue our example. If PredIdPairs is bound to
[(Xp=<0)-1, (Yp>=0)-2, (Xp=<Yp)-3, (Xp>=Yp)-4] and the constraint
store contains Xp=1+Yp, Yp>=5 then abstract creates the binding Ids =
[2,4].

Note that we have used an implicit assumption. Namely, the variables
that appear in the constraint to be approximated are literally the variables
that appear in the list of predicates (from predicate-identifier pairs). This as-
sumption is justified by the context in which abstract is called. Namely,
the call abstract(PredIdPairs, Ids) is preceded by the call preds(State,
PredIdPairs) and State is bound to a term of the form s(..., data(Xp,Yp)).
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We assume that the Prolog database contains a fact of the form preds(...).
In our example, this fact is

preds(s(ctrl(_), data(X, Y)), [(X=<0)-1, (Y>=0)-2, (X=<Y)-3, (X>=Y)-4]).

The call preds(State, PredIdPairs) now succeeds and realizes the appropri-
ate α-renaming in the predicates, namely by unifying the variable X and Y with
Xp and Yp respectively. Therefore it computes the binding of PredIdPairs shown
above.

Procedure concretize. The procedure concretize is defined in Figure 3. It
takes a list of identifiers and computes a constraint that is the conjunction of
predicates whose identifiers are in the input list. As abstract, the procedure
concretize takes a list of predicate-identifier pairs as a parameter. Continuing
our example, we call concretize(Ids, PredIdPairs, Phi) given the bind-
ing of Ids to the list of predicate identifiers [2, 4] and the above binding of
PredIdPairs. The resulting binding to Phi is Yp>=0, Xp>=Yp, 1=1.

Procedure abstract post. The procedure abstract post is given in Figure 3.
It is the composition of the procedures concretize, post, and abstract.

We may view the procedure abstract post as a function that maps an ab-
stract state to a successor abstract state (for a fixed statement). We define an
abstract state as the pair given by a control location and a list of identifiers of
predicates. For example, under the binding of FromCtrl to ctrl(loc 2) and the
binding of FromIds to the list of identifiers [2, 4], an abstract state is given
by FromCtrl and FromIds.

The application of abstract post on FromCtrl and FromIds under the
above binding computes a successor abstract state as follows. The execution
of the first line binds FromState to the term s(ctrl(loc 2), FromData) where
FromData is a fresh variable. The call preds(FromState, FromPredIdPairs)
binds the list of predicate-identifier pairs that is stored in the Prolog database
to FromPredIdPairs. These predicates are over fresh variables, say X and Y. The
variable FromData gets bound to the term data(X, Y).

Now, the call to concretize translates the list of predicate identifiers [2, 4]
to the constraint Y>=0, X>=Y, 1=1, which is bound to Phi (and represents the
set of states whose successors will be computed and abstracted).

The call of the procedure post proceeds as described in Section 3. We as-
sume that the statement stmt 2 is selected for application. This statement goes
from location �2 to location �3. The call to post binds ToState to the term
s(ctrl(loc 3), data(Xp, Yp)), where Xp and Yp are fresh variables. Now, the
constraint store contains the constraint Y>=0, X>=Y, 1=1, Xp=X+1, Yp=Y. Its
projection to the variables Xp and Yp that are referenced by ToState is a new
constraint, namely, Xp>=1+Yp, Yp>=0. It represents the set of states that are
reachable by applying the statement stmt 2 to the set of states denoted by the
constraint Y>=0, X>=Y, 1=1 (which is the previously computed concretization
of the abstract state given by FromState and FromIds).
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assert_abst_reach_state(_, Ctrl, Ids, _, _, _) :-
abst_reach_state(_, Ctrl, ReachedIds, _),
ord_subset(ReachedIds, Ids),
!.

assert_abst_reach_state(Iter, Ctrl, Ids,
AbstStateId, StmtId, NextAbstStateId) :-

bb_get(abst_reach_state_count, LastAbstStateId),
NextAbstStateId is LastAbstStateId+1,
bb_put(abst_reach_state_count, NextAbstStateId),
assert(abst_reach_state(iter(Iter),Ctrl,Ids,NextAbstStateId)),
assert(abst_parent(NextAbstStateId, from(state(AbstStateId),

trans(StmtId)))).
abstract_fixpoint_step(Iter, NextIter) :-

abst_reach_state(iter(Iter), FromCtrl, FromIds, AbstStateId),
abstract_post(FromCtrl, FromIds, ToCtrl, ToIds, StmtId),
assert_abst_reach_state(NextIter, ToCtrl, ToIds,

AbstStateId, StmtId, NextAbstStateId),
( error(ToCtrl) ->

throw(abst_error_state(NextAbstStateId))
;

true
).

abstract_fixpoint(Iter) :-
NextIter is Iter+1,
( bagof(_, abstract_fixpoint_step(Iter, NextIter), _) ->

abstract_fixpoint(NextIter)
;

true
).

Fig. 4. The procedures assert abst reach state, abstract fixpoint step, and
abstract fixpoint. bb get/bb put store/read facts from the mutable repository.

The execution of ToState = s(ToCtrl, ) binds ToCtrl to the term
ctrl(loc 3), which represents the to-location. The call to abstract assumes
that it is applied to the predicates over the variables Xp and Yp. We create such
predicates by calling preds with the first parameter bound to s(ctrl(loc 3),
data(Xp, Yp)). Finally, the outcome of the call to abstract is a list of predicate
identifiers [2, 4] that is bound to ToIds.

5 Abstract Reachability Procedure abstract fixpoint

We define the procedure abstract fixpoint together with the auxiliary
procedures assert abst reach state, abstract fixpoint step in Figure 4.
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Figure 8 (shown in the appendix) presents the execution of abstract fixpoint
on our example program, which is shown in Figure 1. The procedure
abstract fixpoint computes an approximation of the set of reachable states of
the program to be verified. It also checks whether the error location is contained
in the approximation, i.e., if an abstract state at location loc err is created. If
this check succeeds then the iteration halts and throws an exception. We discuss
the exception handling in Section 6.

The procedure abstract fixpoint implements a fixpoint computation that
iteratively builds up a set of facts abst reach state(...) stored in the
Prolog database. Each such fact represents an abstract state that is deter-
mined to be reachable by the abstract fixpoint computation. For example, the
fact abst_reach_state(iter(2), ctrl(loc_2), [2,3], 3) represents an ab-
stract state at the control location ctrl(loc 2) and the list of predicate iden-
tifiers [2, 3]. The first argument of abst reach state(...), here iter(2),
shows at which iteration the abstract state is created and inserted into the
database. The last argument shows the identifier of the abstract state, which is
3 in our example. Since the list [2, 3] refers to the predicates X-Y=<0, X-Y>=0
(from the list of predicates as fixed by the fact preds(...) currently in the
Prolog database, see Figure 8), the abstract state represents the set of program
state at the location �3 with equal values of the variables x and y. Figure 8 also
shows facts abst parent(...). We do not discuss them in this section. They
will play a role in Section 6.

The procedure assert abst reach state first checks whether a given ab-
stract state, which is represented by Ctrl and Ids, is already present in the
database. This is the case if there exists a reachable abstract state whose
list of identifiers ReachedIds is contained in the list Ids. In this case the
given abstract state represents a smaller set of program states at the same
control location. For example, an abstract state with predicate identifiers
[2, 3, 4] represents a smaller set of program states than an abstract state
with predicate identifiers [3, 4]. A longer list of identifiers corresponds to
a larger conjunction of predicates, i.e. to a stronger constraint. We imple-
ment the comparison between lists of identifiers by a call to the library pro-
cedure ord subset because our implementation guarantees that these lists are
ordered.

The procedure assert abst reach state inserts the given abstract state
into the database if it is not already present. It computes the value for
NextAbstStateId, which is used to label the given abstract state.

The procedure abstract fixpoint calls abstract fixpoint step by using
the bagof procedure of Prolog. It iterates over all abstract states that are created
at the iteration with number Iter (and stored as abst reach state(...) facts
in the Prolog database) and over all program statements (which are stored as
trans(...) facts). The call to abstract fixpoint step fails if no new abstract
state is created (and hence a fixpoint is reached).
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6 Abstraction Refinement Procedure
abstract check refine

Given a set of predicates, the procedure abstract fixpoint computes an over-
approximation of the reachable state space of the program, as we described
in the previous section. If this over-approximation does not contain the error
location then the program is proven correct. Otherwise, there exists a sequence
of abstract states that begins at the start location and ends at the error location.
Each step in this sequence corresponds to the application of a program statement
to an abstract state. We call this sequence of statements a counterexample path,
or counterexample for short. Now, the procedure feasible determines which of
the following two cases applies.

In the first case, the error location is indeed reachable (from the initial loca-
tion) by executing the sequence of statements. We say that the counterexample
is feasible. We report that the program is not correct and return the coun-
terexample. In the second case, the sequence is not feasible. We say that the
counterexample is spurious. The abstraction was too coarse. This means that
the set of predicates does not yet contain the “right” predicates. The procedure
refine discovers new predicates and adds them to the set of existing ones.

The procedure abstract check refine repeatedly executes abstract
fixpoint, feasible, and refine. It terminates in one of two cases. Either a
feasible counterexample is computed, or it discovers the right set of predicates.
The latter case means that the procedure abstract fixpoint computes a suffi-
ciently precise over-approximation of the set of reachable states of the program,
one which does not contain the error location. In this section, we define the
procedures feasible, refine, and abstract check refine.

Counterexample checking procedure feasible. We check the feasibility
of the path between the initial and error location in the abstract reachability
tree by applying the procedure feasible. It is defined in Figure 5. If the proce-
dure succeeds for the abstract state identifier SId that is given in the exception
abst_error_state(ErrorStateId), see Figure 4, then we report that the pro-
gram is incorrect and print the error path.

feasible(AbstStateId, ToState, AccPath, ErrorPath) :-
( abst_parent(AbstStateId, from(state(PrevAbstStateId),

trans(StmtId))) ->
trans(FromState, ToState, Rho, StmtId),
{Rho},
feasible(PrevAbstStateId,FromState,[StmtId|AccPath],ErrorPath)

;
ErrorPath = AccPath

).

Fig. 5. The procedure feasible
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Continuing our example, we will follow the execution of the call feasible(9,
, [], ErrorPath). We assume the context of Figure 8. That is, the call of
abstract fixpoint has inserted the shown abst parent(...) facts. These facts
form a tree whose root is the start abstract state 0. Each path in the tree
corresponds to a sequence of statements, according to the abst parent(...)
facts. The call feasible(9, , [], ErrorPath) determines whether the path
is feasible or whether it is a spurious counterexample.

The first execution step of the call feasible(9, , [], ErrorPath) re-
trieves the fact abst_parent(9, from(state(8), trans(stmt_5))) and binds
StmtId to stmt 5. Then, it retrieves the fact

trans(s(ctrl(loc_4), data(X1, Y1)), s(ctrl(loc_err), data(X0, Y0)),
(X1=\=Y1, X0=X1, Y0=Y1), stmt_5)

and binds Rho to the transition constraint X1=\=Y1, X0=X1, Y0=Y1. The next
line injects this constraint into the constraint store.

The effect of the recursive call to feasible is that the line {Rho} in that
recursive call injects the transition constraint X2>10, X1=X2, Y1=Y2, which be-
longs to the statement stmt 4. This statement precedes the statement stmt 5
on the path that ends in the abstract state 9.

The recursion in the procedure feasible terminates, and upon termination
we distinguish two cases. In the first case, the conjunction of transition con-
straints that are injected into the constraint store is not satisfiable. This means
that the corresponding sequence of statements is not feasible. In the second case,
we have explored the path from the given abstract state to the start abstract
state. Since the start abstract state does not have a corresponding abst parent
fact, the call abst parent(1, ...) fails. Hence, feasible terminates and binds
ErrorTrace to the list of identifiers of the statements along the path.

In our example, the call feasible(9, ...) fails. The transition constraint
for the statement stmt 0 is inconsistent with the conjunction of the transition
constraints for other statements on the path leading to the error abstract state 9.
This means that the call {Rho} fails in the recursive call feasible(2, ...).

We have already discussed the handling of fresh variables in terms FromState
and ToState in Section 3. The situation here is analogous. We need to cre-
ate instances of constraints over the appropriate variables. We observe that
the term bound to FromState gets passed to the formal parameter ToState
in the recursive call to feasible. Hence, we obtain the sequence of transition
constraints such that the from-variables of each constraint are equal to the to-
variables of its successor constraint. In our example, the constraint store contains
X1=\=Y1, X0=X1, Y0=Y1, X2>10, X1=X2, Y1=Y2 after the first recursive call
to feasible.

Predicate discovery procedure refine. The procedure refine is defined in
Figure 6. We assume that each transition constraint can be partitioned into two
lists. The first list consists of constraints over from-variables, and is called list of
guards. The second list consists of a list of update expressions of the form Xp =
Exp where Xp is a to-variable and Exp is an expression over the from-variables.
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wp(Updates, Guards, Formula, WP) :-
( Updates = [U|Us] ->

U,
wp(Us, Guards, Formula, WP)

;
append(Guards, Formula, WP)

).
refine(AbstStateId, ToState, Formula) :-

( abstract_parent(AbstStateId, from(state(PrevAbstStateId),
trans(StmtId))) ->

stmt(FromState, ToState, Guards, Updates, StmtId),
wp(Updates, Guards, Formula, WP),
insert_preds(FromState, WP),
refine(PrevAbstStateId, FromState, WP)

;
true

).

Fig. 6. The procedures wp and refine

abstract_check_refine :-
start(StartCtrl),
bb_put(abst_reach_state_count, 1),
assert(abst_reach_state(iter(0), StartCtrl, [], 1)),
catch( abstract_fixpoint(0),

abst_error_state(AbstErrorStateId),
( feasible(AbstErrorStateId, _, [], Path) ->

format(’counterexample ~p\n’, [Path]),
fail

;
refine(AbstErrorStateId, _, []),
retractall(abst_reach_state(_, _, _, _)),
retractall(abst_parent(_, _)),
abstract_check_refine

)
).

Fig. 7. The procedure abstract check refine

For each fact trans(FromState, ToState, Rho, StmtId) we assume that the
Prolog database contains a fact stmt(...) of the form

stmt(FromState, ToState, Guards, Updates, StmtId)

where Guards and Updates form a partition of Rho. For example,
given the bindings FromState = s(ctrl(loc 4), data(X, Y)), ToState =
s(ctrl(loc err), data(Xp, Yp), and StmtId = stmt 5 we obtain the list of
guards [X=\=Y] and the list of updates [Xp=X, Yp=Y].
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abst reach state(iter(0), ctrl(loc 0), [], 1)

abst reach state(iter(1), ctrl(loc 1), [2,3], 2)

abst reach state(iter(2), ctrl(loc 2), [2,3], 3) abst reach state(iter(2), ctrl(loc 4), [2,3], 4)

abst reach state(iter(3), ctrl(loc 3), [1,3], 5)

abst reach state(iter(4), ctrl(loc 1), [3], 6)

abst reach state(iter(5), ctrl(loc 2), [3], 7) abst reach state(iter(5), ctrl(loc 4), [3], 8)

abst reach state(iter(6), ctrl(loc err), [3], 9)

stmt0

stmt1 stmt4

stmt2

stmt3

stmt1

stmt4

stmt5

preds(s(ctrl(_), data(X,Y)), [(X-Y>=1)-1, (X-Y=<0)-2, (X-Y>=0)-3]).

abst_reach_state(iter(0), ctrl(loc_0), [], 1).
abst_reach_state(iter(1), ctrl(loc_1), [2,3], 2).
abst_reach_state(iter(2), ctrl(loc_2), [2,3], 3).
abst_reach_state(iter(2), ctrl(loc_4), [2,3], 4).
abst_reach_state(iter(3), ctrl(loc_3), [1,3], 5).
abst_reach_state(iter(4), ctrl(loc_1), [3], 6).
abst_reach_state(iter(5), ctrl(loc_2), [3], 7).
abst_reach_state(iter(5), ctrl(loc_4), [3], 8).
abst_reach_state(iter(6), ctrl(loc_err), [3], 9).

abst_parent(2, from(state(1), trans(stmt_0))).
abst_parent(3, from(state(2), trans(stmt_1))).
abst_parent(4, from(state(2), trans(stmt_4))).
abst_parent(5, from(state(3), trans(stmt_2))).
abst_parent(6, from(state(5), trans(stmt_3))).
abst_parent(7, from(state(6), trans(stmt_1))).
abst_parent(8, from(state(6), trans(stmt_4))).
abst_parent(9, from(state(8), trans(stmt_5))).

Fig. 8. The facts abst reach state(...) and abst parent(...) computed and as-
serted by the call of abstract fixpoint. We assume the context of the Prolog database
with the given fact preds(...) (fixing the set of predicates) and the trans(...)-
facts given in Figure 1 (representing the program to be verified). The pictorial rep-
resentation relates the facts abst reach state(...) by edges according to the facts
abst parent(...).

We continue our example. We follow the execution of the call refine(9,
, []). This call is performed after the call feasible(9, ...) fails. The call
to abstract parent binds PrevAbstStateId to 8 and StmtId to stmt 5. The
next line retrieves the guards and updates for stmt 5. These are passed to the
procedure wp, which computes the weakest precondition of Formula with respect
to the guards and updates.

The call wp([Xp=X, Yp=Y], [X=\=Y], [], WP) binds WP to [X=\=Y].
The call to insert_preds(s(ctrl(loc_4), data(X, Y)), [X=\=Y]) adds the
predicates to the list of predicates that is stored in the Prolog database
as preds(...). The recursive call to refine continues the discovery of
predicates, which is guided by the remaining statements from the counter-
example.

We continue to follow the execution of refine and show the execution of
the call to wp after the second recursive step. For simplicity of presentation
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abst reach state(iter(0), ctrl(loc 0), [], 1)

abst reach state(iter(1), ctrl(loc 1), [2,3,4], 2)

abst reach state(iter(2), ctrl(loc 2), [2,3,4], 3) abst reach state(iter(2), ctrl(loc 4), [2,3,4], 4)

abst reach state(iter(3), ctrl(loc 3), [1,3,4], 5)

stmt0

stmt1 stmt4

stmt2

preds(s(ctrl(_), data(X,Y)), [(X-Y>=1)-1, (X-Y=<0)-2, (X-Y>=0)-3, (X-Y=<1)-4]).

Fig. 9. Sufficiently precise reachable abstract states computed by abstract check
refine for the program in Figure 1. None of abstract states visits the error location
ctrl(loc err).

we assume the from-variables X and Y together with to-variables Xp and Yp.
Then, the call wp([Xp=X, Yp=Y+1], [], [Xp=\=Yp], WP) binds WP to the list
[X=\=Y+1].

The presented implementation of WP exploits the particular syntactic form of
update expressions, and can be generalized to arbitrary updates by resorting to
the projection of the constraint store, e.g. using techniques from [12].

Abstraction refinement procedure abstract check refine. The proce-
dure abstract check refine is defined in Figure 7. It calls the procedures
abstract fixpoint, feasible, and refine as described above.

We continue the illustration based on the example in Figure 1. See Figure 8.
First, abstract check refine creates the root of the tree. It binds StartCtrl
to the start location. For our program it is loc 0. Then, it initializes the counter
for reachable abstract states. The creation of the start abstract state completes
the setup required to compute the reachable abstract states. Now, the abstract
reachability tree is computed by abstract fixpoint. The control location of
the abstract state 9 is the error location. Hence, after this abstract is cre-
ated the procedure abstract fixpoint throws an exception given by the term
abst error state(9). This exception triggers the analysis of the corresponding
counterexample by the procedure feasible. The analysis is described above in
this section. Its outcome is negative, i.e., feasible fails. The call to refine re-
fines the abstraction. Now, the previously created facts abst reach state and
abst parent are pruned from the Prolog database. This finishes the current
iteration of abstract check refine.

We continue with the recursive call to abstract check refine. See Fig-
ure 9. It shows the new set of predicates computed by the refinement proce-
dure. Again, the root of the tree is created and the tree is computed by a call
to abstract fixpoint. Observe that the error location loc err is not reached.
ARMC proves the program correct.
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7 Conclusion and Future Work

By presenting the procedures above, we have demonstrated how the use of a
constraint-based logic programming language may lead to an elegant and concise
implementation of a practical tool for software model checking with abstraction
refinement.

We believe that our work may trigger further activities of research in two
directions, corresponding to two groups of researchers. The first group consists
of expert logic programmers who can optimize the presented implementation
by using the programming constructs we have found suitable, but doing so in
more sophisticated ways than we have been able to. The second group consists of
expert developers of software verification tools who want to evaluate new algo-
rithms (e.g. for abstraction refinement) and use the implementation techniques
that we present in this paper.

Acknowledgements. We thank Jan-Georg Smaus for his comments on the paper.
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