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4 Introduction

One of the many roles of linguistics is to address the semantics of natural languages, that is, the
meaning of sentences in natural languages. An important part of the meaning of sentences can be
characterized by stating the conditions that need to hold for the sentence to be true. Necessarily, this
approach, called truth-conditional semantics, disregards some relevant aspects of meaning, but has
been very useful in the analysis of natural languages. Structuralist views of language (the kind held
by Saussure, for instance, and later Chomsky) have typically focused on phonology, morphology,
and syntax. Little progress, however, has been shown towards the structure of meaning, or content.

A common tool for the study of content, and structure in general for that matter, has been logic.
During most of the 20th century, an important role of logic has been to study the structure of content
of mathematical languages. Many logicians have moved on to apply the techniques developed to
the analysis of natural languages—Frege, Russell, Carnap, Reichenbach, and Montague. An early
introduction to such classical approaches can be found in [2].

As an illustration of the kind of problems that need to be addressed, consider the following
examples. The following two sentences assert the existence of a man that both walks and talks:

Some man that walks talks
Some man that talks walks

The situations with respect to which these two sentences are true are the same, and hence a truth-
conditional semantics needs to assign the same meaning to such sentences. Ambiguities arise easily
in natural languages:

Every man loves a woman

There are at least two distinct readings of this sentence. One says that for every man, there exists
a woman that he loves, and the other says that there exists a woman that every man loves. Other
problems are harder to qualify. Consider the following two sentences:

Tarzan likes Jane
Tarzan wants a girlfriend

The first sentence must be false if there is no Jane. On the other hand, the second sentence can be
true even if no woman exists.

Those examples are extremely simple, some might even say naive, but they exemplify the issues
for which a theory of natural language semantics must account. A guiding principle, apocryphally
due to Frege, in the study of semantics is the so-called Fregean principle. Essentially, it can be
stated as “the meaning of a complex expression should be a function of the meaning of its parts.”
Such a principle seems required to explain how natural languages can be learned. Since there is no
arbitrary limit on both the length and the number of new sentences human beings can understand,
some general principle such as the above must be at play. Moreover, since it would not be helpful
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to require an infinite number of functions to derive the meaning of the whole from the meaning of
the parts, a notion such as recursion must be at play as well.

That there is a recursive principle à la Frege at play both in syntax and semantics is hardly
contested. What is contested is the interplay between the two. The classic work by Chomsky [6]
advocated essentially the autonomy of syntax with respect to semantics. Chomsky’s grammars are
transformational: they transform the “surface” syntax of a sentence to extract its so-called deep
structure. The semantics is then derived from the deep structure of the sentence. Some accounts
of the Chomsky theory allows for a Fregean principle to apply at the level of the deep structure,
while more recent accounts slightly complicate the picture. A different approach is to advocate a
close correspondence between syntax and semantics. Essentially, the syntax can be seen as a map
showing how the meaning of the parts are to be combined into the meaning of the whole.

The latter approach to semantics relies on two distinct developments. First, it is based on a
kind of semantic analysis of language originating mainly with the work of Montague [9]. His was
the first work that developed a large scale semantic description of natural languages by translation
into a logical language that can be given a semantics using traditional techniques. The second
development emerged from a particular syntactic analysis of language. During his analysis of logic,
which led to development of the λ-calculus, Curry noticed that the types he was assigning to λ-
terms could also be used to denote English word classes [7]. For example, in John snores loudly, the
word John has type n, snores has type n ⇒ s, and loudly has type s ⇒ s. Independently, Lambek
introduced a calculus of syntactic types, distinguishing two kinds of implication, reflecting the non-
commutativity of concatenation [8]. The idea was to push all the grammar into the dictionary,
assigning to each English word one or more types, and using the calculus to decide whether a string
of words is a grammatically well-formed sentence. This work derived in part from earlier work by
Ajdukiewicz [1] and Bar-Hillel [4].

This book, “Type-Logical Semantics” by Carpenter, explores this particular approach. Essen-
tially, it relies on techniques from type theory: we assign a type (or more than one) to every word
in the language, and we can check that a sentence is well-formed by performing what amounts to
type-checking. In fact, it turns out that we can take the type-checking derivation proving that a
sentence has the right type, and use the derivation to derive the semantics of the sentence. In the
next sections, we will introduce the framework, and give simple examples to highlight the ideas.
Carpenter pushes these ideas quite far, as we shall see when we cover the table of contents. We
conclude with some opinions on the book.

5 To semantics...

The first problem we need to address is how to describe the semantics of language. We will
follow in the truth-conditional tradition and model-theoretic ideas and we start with first-order
logic. Roughly speaking, first-order logic provides one with constants denoting individuals, and
predicates over such individuals. Simple example should illustrate this. Consider the sentence
Tarzan likes Jane. Assuming constants tarzan and jane, and a predicate like, this sentence
corresponds to the first-order logic formula like(tarzan, jane). The sentence Everyone likes Jane
can be expressed as ∀x.like(x, jane). This approach of using first-order logic to give semantics is
quite straightforward. Unfortunately, for our purposes, it is also quite deficient. Let us see two
reasons why that is. First, recall that we want a compositional principle at work in semantics.
In other words, we want to be able to derive the meaning of Tarzan likes Jane from the meaning
of Tarzan and Jane, and the meaning of likes. This sounds straightforward. However, the same
principle should apply to the sentence Tarzan and Kala like Jane, corresponding to the first-order
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formula like(tarzan, jane) ∧ like(kala, jane). Giving a compositional semantics seems to require
giving a semantics to the extract like Jane. What is the semantics of such a part of speech? First-
order logic cannot answer this easily. Informally, like Jane should have as semantics something
that expects an individual (say x) and gives back the formula like(x, jane). A second problem is
that the grammatical structure of a sentence can be lost during translation. This can lead to wild
differences in semantics for similar sentences. For instance, consider the following sentences:

Tarzan likes Jane.
An apeman likes Jane.
Every apeman likes Jane.
No apeman likes Jane.

These sentences can be formalized as such in first-order logic, respectively:

like(tarzan, jane)
(∃x)(apeman(x) ∧ like(x, jane))
(∀x)(apeman(x) ⇒ like(x, jane))
¬(∃x)(apeman(x)∧like(x, jane)), or equivalently, (∀x)(apeman(x) ⇒ ¬like(x, jane))

There seems to be a discrepancy among the logical contributions of the subjects in the above
sentences. There is a distinction in the first-order logic translation of these sentences that is not
expressed by their grammatical form.

It turns out that there is a way to solve those problems, by looking at an extension of first-order
logic, known as higher-order logic [3]. Let us give enough theory of higher-order logic to see how it
can be used to assign semantics to (a subset of) a natural language. This presentation presupposes
a familiarity with both first-order logic and the λ-calculus [5].4 There is a slight difference in our
approach to first-order logic and our approach to higher-order logic. In the former, formulas, which
represents properties of the world and its individuals, are the basic units of the logic. In higher-
order logics, terms are the basic units, including constants and functions, with formulas explicitly
represented as boolean-valued functions.

We start by defining a set of types that will be used to characterize the well-formedness of
formulas, as well as derive the models. We assume a set of basic types BasTyp = {Bool , Ind},
where Bool is the type of boolean values, and Ind is the type of individuals. (In first-order logic,
the type Bool is not made explicit.) The set of types Typ is the smallest set such that BasTyp ⊆ Typ,
and (σ → τ) ∈ Typ if σ, τ ∈ Typ. A type of the form σ → τ is a functional (or higher-order) type,
the elements of which map objects of type σ to objects of type τ .

The syntax of higher-order logic is defined as follows. Assume for each type τ ∈ Typ a set Varτ
of variables and a set Conτ of constants of that type. The set Termτ of terms of type τ is defined
as the smallest set such that:

Varτ ⊆ Termτ ,
Conτ ⊆ Termτ ,
αβ ∈ Termτ if α ∈ Termσ→τ and β ∈ Termσ, and
λx.α ∈ Termτ if τ = σ → ρ, x ∈ Varσ, and α ∈ Termρ.

What are we doing here? We are defining a term language. First-order logic introduces special
syntax for its logical connectives (∧, ∨, ¬, ⇒). It turns out, for higher-order logic, that we do not

4Higher-order logic is interesting in that it can either be viewed as a generalization of first-order logic, or as a
particular instance of the simply-typed λ-calculus.
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need to do that, we can simply define constants for those operators. (We will call these logical
constants, because they will have the same interpretation in all models.) We will assume the
following constants, at the following types: a constant not of type Bool → Bool and a constant
and of type Bool → Bool → Bool , the interpretation of which should be clear, a family of constants
eqτ each of type τ → τ → Bool , which checks for equality of two elements of type τ , and a family
of constants everyτ each of type (τ → Bool) → Bool , used to capture universal quantification.
The idea is that everyτ quantifies over objects of type τ . In first-order logic, ∀x.ϕ is true if for
every possible individual i, replacing x by i in ϕ yields a true formula. Note that ∀x binds the
variable x in first-order logic. In higher-order logic, where there is only λ as a binder, we write the
above as everyτ (λx.ϕ), which is true if ϕ is true for all objects of type τ .

This defines the syntax of higher-order logic. The models of higher-order logic are generalizations
of the relational structures used to model first-order logic. A (standard) frame for higher-order
logic is specified by giving for each basic type τ ∈ BasTyp a domain Domτ of values of that type.
These extend to functional types inductively: for a type (σ → τ) ∈ Typ, Dom(σ→τ) = {f | f :
Domσ → Domτ}, that is, the set of all functions from elements of Domσ to elements of Domτ . Let
Dom =

⋃
τ∈Typ Domτ . We also need to given an interpretation for all the constants, via a function

[[−]]τ : Conτ → Domτ assigning to every constant of type τ an object of type τ . (We simply write
[[−]] when the type is clear from the context.) Hence, a model for higher-order logic is of the form
M = (Dom, [[−]]). We extend the interpretation [[−]] to all the terms of the language. To deal
with variables, we define an assignment to be a function θ : Var → Dom such that θ(x) ∈ Domτ if
x ∈ Varτ . We denote θ[x := a] the assignment that maps x to a and y 	= x to θ(y). We define the
denotation [[α]]θM of the term α with respect to the model M = 〈Dom, [[−]]〉 and assignment θ as:

[[x]]θM = θ(x) if x ∈ Var,
[[c]]θM = [[c]] if c ∈ Con,
[[α(β)]]θM = [[α]]θM ([[β]]θM ), and
[[λx.α]]θM = f such that f(a) = [[α]]θ[x:=a]

M .

Standard frames are subject to restrictions. For instance, the domain corresponding to boolean
values must be a two-element domain, such as DomBool = {true, false}. Moreover, they must give
a fixed interpretation to the logical constants (i.e., the conjunction operator should actually behave
as a conjunction operator). Hence, we require:

[[not]](b) =
{

false if b = true
true if b = false

[[and]](b1)(b2) =
{

true if b1 = true and b2 = true
false otherwise

[[eqτ ]](v1)(v2) =
{

true if v1 = v2

false otherwise

[[everyτ ]](f) =
{

true if f(x) = true for all x ∈ Domτ

false otherwise

One can check that if we define someτ as λP.not(everyτ (λx.not(P (x)))), it has the expected
interpretation. Note that we will often use the abbreviations ϕ ∧ ψ for and(ϕ, ψ), and ¬ϕ for
not(ϕ).

A formula of higher-order logic is a term of type Bool . We say that a model M satisfies a
formula ϕ if [[ϕ]]M = true in the model. Two terms are said to be logically equivalent if they have
the same interpretation in all models. One can check, for instance, that λx.r(x) and r are logically
equivalent, as are (λx.α)β and α{β/x} (that is, α where every occurrence of x is replaced by β).
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For example, consider the following simple three individual model M , with constants tarzan,
jane, kala and like.

DomInd = {t, j, k}

[[tarzan]] = t [[jane]] = j [[kala]] = k

[[like]] =




t �→

 t �→ false

j �→ true
k �→ true

j �→

 t �→ true

j �→ false
k �→ false

k �→

 t �→ true

j �→ false
k �→ true

This model M satisfies the term like(kala)(tarzan) (Kala likes Tarzan) as [[like(kala)(tarzan)]]
= [[like]](k)(t) = true. It also satisfies the term someInd (like(jane)) (There is someone Jane likes).
It does not satisfy the term everyInd (λx.like(x)(x)) (Everyone likes himself/herself ).

We will use higher-order logic to express our semantics. The idea is to associate with every
sentence (or part of speech) a higher-order logic term. We can then use the semantics of higher-
order logic to derive the truth value of the sentence. Consider the examples at the beginning of
the section. We assume constants tarzan, kala and jane of type Ind , and a constant like of type
Ind → Ind → Bool . We can translate the sentence Tarzan likes Jane as like(tarzan)(jane), as
in first-order logic. But now we can also translate the part of speech like Jane independently as
λx.like(x)(jane).

For a more interesting example, consider the treatment of noun phrases as given at the beginning
of the section. The solution to the problem of losing the grammatical structure was solved by
Russell by treating all noun phrases as though they were functions over their verb phrases. This is
analogous to what is already happening with the definition of everyInd in higher-order logic, which
has type (Ind → Bool) → Bool . Such generalized quantifier takes a property of an individual (a
property has type Ind → Bool) and produces a truth value—in the case of every, the truth value
is true if every individual has the supplied property. A similar abstraction can be applied to a noun
position. We define a generalized determiner as a function taking a property stating a restriction on
the quantified individuals, and returning a generalized quantifier obeying that restriction. Hence,
a generalized determiner has type (Ind → Bool) → (Ind → Bool) → Bool . Consider the following
generalized determiners, used above:

some2 = λP.λQ.some(λx.P (x) ∧ Q(x))
every2 = λP.λQ.every(λx.P (x) ⇒ Q(x))
no2 = λP.λQ.¬some(λx.P (x) ∧ Q(x))

One can check that the sentence An apeman likes Jane becomes some2(apeman)(λx.like(x)(jane)),
that Every apeman likes Jane becomes every2(apeman)(λx.like(x)(jane)), and that No apeman
likes Jane becomes no2(apeman)(λx.like(x)(jane)). The subject is interpreted as some2(apeman),
every2(apeman) and no2(apeman) respectively. The verb phrase likes Jane is given the expected
semantics λx.like(x)(jane). What about the original sentence Tarzan likes Jane. According to
the above, we should be able to give a semantics to Tarzan (when used as a subject) with a type
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(Ind → Bool) → Bool . One can check that if we interpret Tarzan as λP.P (tarzan), we indeed
get the required behavior. Hence, we see that the noun phrase can be given the uniform type
(Ind → Bool) → Bool , and that higher-order logic can be used to derive a uniform, compositional
semantics.

6 ... from syntax

We have seen in the previous section how we can associate to sentences a semantics in higher-order
logic. More importantly, we have seen how we can assign a semantics to sentence extracts, in a
way that does capture the intuitive meaning of the sentences. The question at this point is how to
derive the higher-order logic term corresponding to a given sentence or sentence extract.

The grammatical theory we use to achieve this is categorial grammars, originally developed by
Ajdukiewicz [1] and later Bar-Hillel [4]. In fact, we will use a generalization of their approach due to
Lambek [8]. The idea behind categorial grammars is simple. We start with a set of categories, each
category representing a grammatical function. For instance, we can start with the simple categories
np representing noun phrases, n representing nouns, and s representing sentences. Given categories
A and B, we can form the functor categories A/B and B\A. The category A/B represents the
category of syntactic units that take a syntactic unit of category B to their right to form a syntactic
unit of category A. Similarly, the category B\A represents the category of syntactic units that take
a syntactic unit of category B to their left to form a syntactic unit of category A. Consider some
examples. The category n/n represents the category of prenominal modifiers, such as adjectives:
they take a noun on their right and form a noun. The category n\n represents the category of
postnominal modifiers. The category np\s is the category of intransitive verbs: they take a noun
phrase on their left to form a sentence. Similarly, the category (np\s)/np represents the category
of transitive verbs: they take a noun phrase on their right to then expect a noun phrase on their
left to form a sentence.

Before deriving semantics, let’s first discuss well-formedness, as this was the original goal for
such grammars. The idea was to associate to every word (or complex sequence of words that
constitute a single lexical entry) one or more categories. We will call this the dictionary, or lexicon.
The approach described by Lambek [8] is to prescribe a calculus of categories so that if a sequence
of words can be assigned a category A according to the rules, then the sequence of words is deemed
a well-formed syntactic unit of category A. Hence, a sequence of words is a well-formed sentence if
it can be shown in the calculus that it has category s. As an example of reduction, we see that if σ1

has category A and σ2 has category A\B, then σ1 σ2 has category B. Schematically, A, A\B ⇒ B.
Moreover, this goes both ways, that is, if σ1 σ2 has category B and σ1 can be shown to have
category A, then we can derive that σ2 has category A\B.

It was the realization of van Benthem [12] that this calculus could be used to assign a semantics
to terms and use the derivation of categories to derive the semantics. The semantic will be given
in some higher-order logic as we saw above. We assume that to every basic category corresponds a
higher-order logic type. Such a type assignment T can be extended to functor categories by putting
T (A/B) = T (B\A) = T (B) → T (A). We extend the dictionary so that we associate with every
word one or more categories, and a corresponding term of higher-order logic. We stipulate that the
term α corresponding to a word in category A should have a type corresponding to the category,
i.e. α ∈ TermT (A).

We will use the following notation (called a sequent) α1 : A1, . . . , αn : An ⇒ α : A to mean
that expressions α1, . . . , αn of categories A1, . . . , An can be concatenated to form an expression α
of category A. We will use capital Greek letters (Γ, ∆,...) to represent sequences of expressions and
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categories. We now give rules that allow us to derive new sequents from other sequents:

α : A ⇒ α : A

Γ2 ⇒ β : B Γ1, β : B,Γ3 ⇒ α : A

Γ1, Γ2, Γ3 ⇒ α : A

In other words, if Γ2 can concatenate into an expression β with category B, and if Γ1, β : B,Γ3

can concatenate into an expression α with category A, then Γ1, Γ2, Γ3 can concatenate into α with
category A.

∆ ⇒ β : B Γ1, α(β) : A, Γ2 ⇒ γ : C

Γ1, α : A/B,∆, Γ2 ⇒ γ : C

∆ ⇒ β : B Γ1, α(β) : A, Γ2 ⇒ γ : C

Γ1, ∆, α : B\A, Γ2 ⇒ γ : C

Γ, x : A ⇒ α : B

Γ ⇒ λx.α : B/A

x : A, Γ ⇒ α : B

Γ ⇒ λx.α : A\B
For example, the following is a derivation of Tarzan likes Jane.

tarzan : np ⇒ tarzan : np
jane : np ⇒ jane : np like(tarzan)(jane) : s ⇒ like(tarzan)(jane) : s

like(tarzan) : s/np, jane : np ⇒ like(tarzan)(jane) : s
tarzan : np, like : np\s/np, jane : np ⇒ like(tarzan)(jane) : s

For example, the following derivation of the sentence fragment Tarzan likes shows that it is
of the type s/np—it is an expression that expects a noun phrase to the right to form a complete
sentence.

tarzan : np ⇒ tarzan : np
x : np ⇒ x : np like(tarzan)(x) : s ⇒ like(tarzan)(x) : s

like(tarzan) : s/np, x : np ⇒ like(tarzan)(x) : s
tarzan : np, like : np\s/np, x : np ⇒ like(tarzan)(x) : s
tarzan : np, like : np\s/np ⇒ λx.like(tarzan)(x) : s/np

A look at the theory underlying type-logical approaches to linguistics reveals some fairly deep
mathematics at work. The fact that we can derive the semantics in parallel with a derivation of
the categories associated with the sequence of words is not an accident. In fact, it is a phenomenon
known as a Curry-Howard isomorphism. The original Curry-Howard isomorphism was a corre-
spondence between intuitionistic propositional logic and the simply-typed λ-calculus: every valid
formula of intuitionistic propositional logic corresponds to a type in the simply-typed λ-calculus,
in such a way that a proof of the formula corresponds to a λ-term of the corresponding type.
Such a correspondence exists between the Lambek calculus (which can be seen as a substructural
logic, namely intuitionistic bilinear logic) and an appropriate instance of the λ-calculus, namely
higher-order logic.

We have in this review merely sketched the basics of the type-logic approach, a merciless sum-
mary of the first few chapters of the book. Carpenter investigates more advanced linguistic phe-
nomena by extending the Lambek calculus with more categorial constructions, and deriving the
corresponding semantics. For instance, he deals with generalized quantifiers, deriving the semantics
we hinted at earlier through a syntactic derivation, as well as plural forms, and modalities such as
belief. The latter requires a move to a modal form of higher-order logic known as intensional logic.
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7 The book

The book naturally divides in three parts. The first part, the first five chapters (as well as an
appendix on mathematical preliminaries), introduces the technical machinery required to deal with
linguistic issues, namely the higher-order logic used to express the semantics, and the Lambek
calculus to derive the semantics.

Chapter 1, Introduction, provides an outline of the role of semantics in linguistic theory.
Carpenter discusses the central notions of truth and reference, the latter telling us how linguistic
expressions can be linked to objects in the world. He gives a survey of topics that linguistic theories
need to address, including synonymy, contradiction, presupposition, ambiguity, vagueness. He also
surveys topics in pragmatics, the branch of linguistic concerned with aspects of meaning that
involve more than literal interpretation of utterances. Finally, he argues for the methodology of the
book, in terms of originality, compositionality, model theory and grammar fragments. Some caveats
apply: he studies models of natural language itself, not models of our knowledge or ability to use
language; furthermore, these models are not intended to have any metaphysical interpretation, but
are only a description and approximation of natural language.

Chapter 2, Simply Typed λ-Calculus, lays out the basic theory of the simply typed λ-
calculus. The simply typed λ-calculus provides an elegant solution to the problem of giving a
denotation for the basic expressions of a language in a compositional manner, as explained in
Chapter 3. This chapter concentrates on the basic theory, describing the language of the simply
typed λ-calculus, along with a model theory and a proof theory for the logical language, that
formalizes whether two λ-calculus expressions are equal (have the same denotation in all models).
The standard λ-calculus notions of reductions, normal forms, strong normalization, the Church-
Rosser theorem, and combinators are discussed. An extension of the simply typed λ-calculus with
sums and products is described.

Chapter 3, Higher-Order Logic, introduces a generalization of first-order logic where quantifi-
cation and abstraction occurs over all the entities of the language, including relations and functions.
Higher-order logic is defined as a specific instance of the simply typed λ-calculus, with types cap-
turing both individuals and truth values, and logical constants such as conjunction, negation, and
universal quantification. The usefulness of the resulting logic is demonstrated by showing how it
can handle quantifiers in natural languages in a uniform way. The proof theory of higher-order
logic is discussed.

Chapter 4, Applicative Categorial Grammar, is an introduction to the syntactic theory
from which the denotation of natural language terms is derived, that of categorial grammars. Cat-
egorial grammars are based on the notion of categories representing syntactic functionality, and
describe how to syntactically combine entities in different categories to form combined entities in
new categories. The framework described in this chapter is the simplest form of applicative cate-
gorial grammar, which will be extended in later chapters. After introducing the basic categories,
the chapter shows how to assign semantic domains to categories, and how to associate with every
basic syntactic entity a term in the corresponding domain, creating a lexicon. The basics of how to
derive the semantic meaning of a composition of basic syntactic entities based on the derivation of
categories is explored. Finally, a discussion of some of the consequences of this way of assigning se-
mantic meaning is given; mainly, it focuses on ambiguity and vagueness, corresponding respectively
to expressions with multiple meanings, and expressions with a single undetermined meaning.

Chapter 5, The Lambek Calculus, introduces a logical system that extends the applicative
categorial grammar framework of the previous chapter. The Lambek calculus allows for a more
flexible description of the possible ways of putting together entities in different categories. The
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Lambek calculus is presented both in sequent form and in natural deduction form, the former
appropriate for automatic derivations, the latter more palatable for humans. The Lambek calculus
is decidable (i.e., the problem of determining whether the calculus can show a given sentence
grammatical is decidable). The correspondence between the Lambek calculus and a variant of
linear logic is established.

The following four chapters show how to apply the machinery of the first part to different
aspects of linguistic analysis.

Chapter 6, Coordination and Unbounded Dependencies, studies two well-known linguistic
applications of categorial grammars. The first, coordination, corresponds to the use of and in
sentences. Such a coordination operator can occur on many levels, coordinating two nouns (Joe
and Victoria), two adjectives (black and blue), two sentences, etc. Coordination at any level is
achieved by lifting the coordination to the level of sentences, via the introduction of a polymorphic
coordination operator in the semantic framework. This operator can be handled in the Lambek
calculus via type lifting. The resulting system remains decidable. An extension of the Lambek
calculus with conjunction and disjunction is considered, to account for coordinating, for example,
unlike complements of a category, such as in Jack is a good cook and always improving. The
second well-known use of categorial grammars is to account for unbounded dependencies, that is,
relationships between distant expressions within an expression, the distance potentially unbounded.
This is handled by introducing a new categorial combinator A ↑ B, an element of which can be
analyzed as an A with a B missing somewhere within it. The appropriate derivation rules can be
added to the Lambek calculus.

Chapter 7, Quantifiers and Scope, studies the contribution of quantified noun phrases to the
meaning of phrases in which they occur. Such generalized quantifiers, such as every kid, or some
toy, are traditionally problematic because they take semantic scope around an arbitrary amount of
material. For instance, every kid played with some toy has two readings, depending on the scope of
the quantifiers every and some (is there a single toy with which every kid plays, or does every kid
play with a possibly different toy?) Accounting for such readings is the aim of this chapter. Two
historically significant approaches to quantifiers are surveyed: Montague’s quantifying in approach,
and Cooper’s storage mechanism. Then, the type-logical solution of Moortgat is described. The
idea is to introduce a new category B ⇑ A of expressions that act locally as B’s but take their
semantic scope over an embedding expression of category A. Generalized quantifiers are given
category np ⇑ s, since they act like a noun phrase (category np) in situ, but scope semantically to
an embedding sentence (category s). The Lambek calculus is extended with appropriate derivation
rules. The issues of quantifier coordination, quantifiers within quantifiers, and the interaction with
negation are discussed. Other topics related to quantifiers and determiners in general, such as
definite descriptions, possessives (every kid’s toy), indefinites (some student), generics (italians),
comparatives (as tall as), and expletives (it, there) are analyzed within that context.

Chapter 8, Plurals, provides a type-logical account of plurality. First, the notion of group is
added to the syntax and semantics. The type Group is considered to be a subtype of the type
Ind and thus the domain of Group is a subset of the domain of Ind . A relation linking a group
to the property that defines membership in the group is defined, and restrictions are imposed to
ensure that every group has a unique property that defines membership of that group. With this
interpretation, categories for plural noun phrases and plural nouns are studied. The notions of
distributors (to view a group as a set of individuals) and collectors (to view a set of individuals
as a group) are defined, to handle, for example, verbs that apply only to individuals or only to
groups. The issues of coordination and negation are examined in the context of plurals. Further
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topics examined include plural quantificatives and, more generally, partitives (each, all, most, or
numerical partitives such as three of, etc.), nonboolean coordination with and, comitative (the use
of with in Tarzan climbed the tree with Cheetah), and mass terms such as snow and water.

Chapter 9, Pronouns and Dependency, analyses the use of non-indexical pronouns such as
him, she, itself, especially the dependent use of such pronouns. Dependent pronouns are charac-
terized as having their interpretation depend on the interpretation of some other expression (the
antecedent). For example, he in Jody believes he will be famous. A popular interpretation of
pronouns in type-logical frameworks is as variables, although the treatment is subtle, at least for
non-reflexive pronouns such as the he above. (Admittedly, this topic is an outstanding problem for
type-logical grammars.) Reflexive pronouns, such as himself in Everyone likes himself, can be han-
dled as quantifiers. Topics related to pronomial forms are examined, such as reciprocals (the each
other in The three kids like each other), pied piping (the which in the table the leg of which Jody
broke), ambiguous verb-phrases ellipses (Jody likes himself and Brett does too), and interrogatives.

The final part, the last three chapters, extend the framework with modalities to account for
intensional aspects of natural languages.

Chapter 10, Modal Logic, introduces the logical tools required to deal with intensionality,
tense and aspect. The key concept is that of a modal logic, where operators are used to qualify
the truth of a statement. The chapter presents both a model theory (Kripke frames) and a proof
theory for S5, a particular modal logic of necessity. A brief discussion of how the techniques of
modal logic can be used to model indexicality precedes the presentation of a general modal model.
First-order tense logics, which extend first order logics with modal operators about the truth of
statements in the past and future, are presented in some depth, as they are able to provide a model
of tenses in natural language. Time can be regarded as a collection of moments, or as a collection
of possibly overlapping intervals. Higher order logic is extended to include modal operators by
taking the domains of worlds and time to be basic types, on the same level as the domains of
individuals and truth values, yielding a framework referred to as intensional logic. This approach
avoids a number of problems associated with simply abstracting the model for higher order logic
over possible worlds.

Chapter 11, Intensionality, uses modal logic to extend the type-logical framework to cover
intensional constructions. In particular, World is added as a new basic type, and the assignment
of types to basic categories is modified, replacing Bool with World → Bool , i.e. truth values may
be different at different worlds. This change facilitates the inclusion of many constructs, such as
propositional attitudes (Frank believes Brooke cheated), modal adverbs (possibly), modal auxiliaries
(should, might), and so-called control verbs (persuaded, promised), although some constructs remain
problematic. The “individual concepts” approach is considered, where the type of a noun phrase
is World → Ind instead of Ind , i.e. the referent of a noun phrase may differ from world to world.
Other approaches to intensionality, which do not involve possible worlds, are explained briefly.
Finally, the last section returns to the issue of giving a categorization of control verbs, and gives
some problematic examples showing the need for more work in this area.

Chapter 12, Tense and Aspect, extends the grammar and semantics with a theory of tense.
It presents Reichenbach’s approach to simple and perfect tenses, how this applies to discourse, and
Vendler’s verb classes—a semantic classification of verbs that is correlated with their syntactic use.
The approach Carpenter adopts for tense and aspect is based on insights derived from these works,
and on further development of these works by other authors. To extend the grammar, verbs are
subcategorized by classifying them based on whether they are finite or non-finite, and whether they
involve simple or perfect tense, resulting in several different categories for sentences. A new basic
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type is introduced, representing time periods, and all of the sentence categories are assigned the
same type: functions from time periods to truth values. The temporal argument always corresponds
to the time of the event being reported. (This is essentially similar to the intensional approach
of the previous chapter, but here we distinguish time periods from possible worlds.) From this
beginning, the grammar is developed to encompass many of the English constructs involving tense
and aspect. Many of these constructs are very complex in their usage and generally there do not
seem to be simple and complete solutions to incorporating them into the grammar.

8 Opinion

There are some typos (potentially confusing, as they sometimes occur in the types for functions), as
well as some glossing over central topics (such as the discussion of groups in Chapter 8). Carpenter
doesn’t generally delve into syntactic explanations, that is, explaining why the theory of syntax he
develops does or does not permit certain sentences. Moreover, for linguists, it may be important to
note that Carpenter does not develop a theory of morphology (the structure of words at the level
of morphemes).

This book fills a sorely void niche in the field of semantics of natural languages via type-logical
approaches. There are some books on the subject, but the most accessible are severely limited
in their development [13], while the others are typically highly mathematical and focus on the
metatheory of the type-logical approach [10].

Carpenter’s book is a reasonable blend of mathematical theory and linguistic applications.
Its great strength is an excellent survey of type-logical approaches applied to a great variety of
linguistic phenomena. On the other hand, the preliminary chapters presenting the underlying
mathematical theory are slightly confusing—not necessarily surprising considering the amount of
formalism needed to account for all the linguistic phenomena studied. A background or at least
exposure to ideas from both logic and programming language semantics is extremely helpful. In this
sense, this book seems slightly more suited, at least as an introductory book, to mathematicians
and computer scientists interested in linguistic applications, than to linguists interested in learning
about applicability of type-logical approaches. (Although this book could nicely follow a book such
as [13], or any other introductory text on type-logical grammars that focuses more on the “big
picture” than on the underlying mathematical formalisms.) People that are not linguists will most
likely find chapters 9 and on hard to follow, as they assume more and more knowledge of linguistic
phenomena.

This book points to interesting areas of ongoing research. In particular, the later sections of
the book on aspects of intensionality highlight areas where the semantics of natural languages are
not clear. (This is hardly a surprise, as intensional concepts have always been problematic, leading
philosophers to develop many flavors of modal logics to attempt to explain such concepts.) Another
avenue of research that is worth pointing out, although not discussed in this book, is the current
attempt to base semantics of natural languages not on higher-order logic as presented in this book,
but rather on Martin-Löf constructive type theory, via categorial techniques [11].
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9 Introduction

With the rise of computer networks in the past decades, the spread of distributed applications with
components across multiple machines, and with new notions such as mobile code, there has been
a need for formal methods to model and reason about concurrency and mobility. The study of
sequential computations has been based on notions such as Turing machines, recursive functions,
the λ-calculus, all equivalent formalisms capturing the essence of sequential computations. Un-
fortunately, for concurrent programs, theories for sequential computation are not enough. Many
programs are not simply programs that compute a result and return it to the user, but rather
interact with other programs, and even move from machine to machine.

Process calculi are an attempt at getting a formal foundation based on such ideas. They emerged
from the work of Hoare [4] and Milner [6] on models of concurrency. These calculi are meant to
model systems made up of processes communicating by exchanging values across channels. They
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