
Model-based Theory Combination

Leonardo de Moura1 Nikolaj Bjørner2

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA

Abstract

Traditional methods for combining theory solvers rely on capabilities of the solvers to produce all
implied equalities or a pre-processing step that introduces additional literals into the search space.
This paper introduces a combination method that incrementally reconciles models maintained by
each theory. We evaluate the practicality and efficiency of this approach.

Keywords: Theory Combination, Decision Procedures, SMT.

1 Introduction

A core problem of Satisfiability Modulo Theories is combining separate theory
solvers for theories T 1 and T 2 to a combined solver for the union T 1∪T 2. The
Nelson-Oppen combination method identifies sufficient conditions for combin-
ing two theories over disjoint signatures: only (disjunctions of) equalities over
shared variables that are implied by one of the theories need to be communi-
cated. Most existing implementations and optimizations of this method seek
to efficiently implement the trigger:

if T i ∪ Γi |= u � v then propagate u � v,

to exhaustively enumerating all implied (disjunctions of) equalities for a the-
ory T i and constraints Γi that are asserted in its context. Another method
[4] to obtain completeness is by enumerating equalities corresponding to the

1 Email: leonardo@microsoft.comu
2 Email: nbjorner@microsoft.com

Electronic Notes in Theoretical Computer Science 198 (2008) 37–49

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.079

mailto:leonardo@microsoft.com
mailto:nbjorner@microsoft.com
http://www.elsevier.com/locate/entcs

cross-product of all shared variable pairs and use the SAT solver for non-
deterministically choosing a partition based on the cross-product. Common
to these methods is that they are pessimistic about which equalities are propa-
gated. A more optimistic approach is by inspecting a candidate model Mi for
one of the theories T i and propagate all equalities implied by the candidate
model, hedging that other theories will agree. If not, use backtracking to fix
the model. Thus, Model-based Theory Combination is based on a trigger of
the form:

if Mi |= T i ∪ Γi ∪ {u � v} then propagate u � v .

The rationale for Model-based Theory Combination is practical: It tends to
be much cheaper to enumerate equalities that are implied in a particular model
than of all models; the number of inter-theory equalities that really matter is
small in practice (intra-theory equality propagation on the other hand does
matter); backtracking is relatively cheap with modern DPLL solvers; and
finally, one may limit the number of equalities implied by a model by model
mutation.

2 Background

A signature Σ is a set of function and predicate symbols. Each symbol is
associated with a nonnegative integer, called the arity. If arity(g) = 0, then g

is a constant symbol. We assume that the binary equality predicate � to be
always present in any signature Σ. We use the standard notion of Σ-structure

M, that is, a support set endowed with an arity-matching interpretation of
the function and predicate symbols from Σ. We use fM (pM) to denote the
interpretation of the function symbol f (predicate symbol p) in the structure
M. The truth of a Σ-formula in M is defined in the standard ways. A
formula φ is satisfiable in M iff its existential closure is true in M. In this
case, we say M is a model for φ. A sentence is a first-order formula with
no free variables. A (first-order) theory T over a signature Σ is a set of
(deductively closed) sentences over Σ. We say two theories T 1 and T 2 have
disjoint signatures when Σ1 ∩ Σ2 = {�}. A theory T is stably infinite if
every satisfiable quantifier free formula is satisfiable in an infinite model. A
theory T is convex [15] iff for all finite sets Γ of literals and for all non-empty
disjunctions

∨
i∈I ui � vi of variables, Γ |=T

∨
i∈I ui � vi iff Γ |=T ui � vi

for some i ∈ I. Intuitively, a theory is convex if for every satisfiable set of
literals there is a model where variables not implied to be equal have a distinct
interpretation. For example, linear integer arithmetic is not convex, because
the set of literals {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1} is satisfiable, no
equality xi � xj for i �= j is implied, but there is no model where x1, x2 and

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–4938

x3 are all distinct.

2.1 Nelson-Oppen combination method

Nelson-Oppen (NO) combination method [12] provides a rather simple solu-
tion for the theory combination problem for theories that are stably infinite
and have disjoint theories. More formally, let T 1 and T 2 be consistent, stably
infinite theories over disjoint (countable) signatures. Assuming satisfiability
of conjunction of literals can be decided in O(T 1(n)) and O(T 2(n)) time re-
spectively. Then,

(i) The combined theory T is consistent and stably infinite.

(ii) Satisfiability of quantifier free conjunction of literals in T can be decided
in O(2n2

× (T 1(n) + T 2(n))).

(iii) If T 1 and T 2 are convex, then so is T and satisfiability in T is in O(n4 ×
(T 1(n) + T 2(n))).

Let Γ be a set of literals over Σ1 ∪ Σ2. Then, the non-deterministic NO
combination method can be described in the following way. First, a satis-
fiability preserving transformation called purification is used to transform Γ
into Γ1 ∧ Γ2, such that, the symbols from Γi are in Σa

i , where Σa
i = Σi ∪ a,

and a (= V(Γ1) ∩ V(Γ2)) denotes the set of shared variables between Γ1 and
Γ2. Then, a partition of a into disjoint subsets is guessed and is expressed
as a conjunction of literals φ. For example, the partition {x1}, {x2, x3}, {x4}
is represented as x1 �� x2, x1 �� x4, x2 �� x4, x2 � x3. Then, the individual
procedures are used to decide whether Γi ∧ φ is satisfiable. The combined
procedure returns unsatisfiable if one of the procedures returns unsatisfiable.

For convex theories, instead of guessing, one can deduce the equalities to be
shared. The key idea is to propagate x � y to Γ2 whenever T 1 ∪ Γ1 |= x � y,
and vice-versa. This process is repeated until no further equations can be
propagated. Then, the individual procedures are used to decide whether Γi

is satisfiable. Sharing equalities in this case is sufficient, because a theory T 1

can assume that xM2 �= yM2 whenever x � y is not implied by T 2 and vice
versa. So, for convex theories, there is an efficient way to construct a partition
of the set of shared variables.

3 Related Work

3.1 Convex theories only

For convex theories it is sufficient to propagate all implied equalities between
shared variables. For instance, theories that admit canonizers solve equality

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–49 39

propagation by rewriting. In general, a theory T i is canonizing (as coined
in [18]) if it admits a function ↓ , such that:

T i ∪ Γi |= s � t iff s ↓Γi
= t ↓Γi

.

Linear rational arithmetic is convex, procedures based on the Fourier-
Motzkin algorithm produce all implied equalities in a straight-forward way,
but the procedure may require exponential space. For procedures based on
the Simplex algorithm, all implied equalities can be deduced using the ap-
proaches described in [16,7].

The main disadvantage of these approaches is poor performance (either
of the solver or of the equality propagation) and the inability to deal with
non-convex theories.

3.2 DTC: Delayed Theory Combination

Several SMT solvers [3] use the underlying SAT solver to guess a partition of
V(Γ1) ∩ V(Γ2), the idea is to create a literal u � v for every pair of shared
variables u and v. One may be concerned that guessing a partition would be
exponentially more expensive than deriving it when the theories are convex.
However, as shown in [6], back-jumping and lemma learning allow simulating

the standard Nelson-Oppen combination method: equalities that are implied
by a theory, once learned are not flipped.

The obvious disadvantage of this approach is that the number of additional
equality literals is quadratic in the number of shared variables. There is an
additional assumption that may be tool specific to MathSat, but are pervasive
in the results from [6]: all literals used by the SAT solver must be present
in the input to the SAT solver. At the current time of writing CVC3 [2],
Verifun [10], Yices [9], and our tool Z3 all support dynamically added literals.

Our approach, presented later, appeals to an SMT solver that allows in-
troducing literals on the fly. If this is not possible, the approach boils down
to a branching heuristic on top of DTC.

3.3 Ackermannization

When combining two theories T 1 and T 2, where T 1 is the theory of unin-
terpreted functions, one can eliminate T 1 by creating all ground instances of
Leibniz’s rule [1]:∧

ni � mi → f(n) � f(m) (1)

Thus, we can eliminate a function symbol f from a set of formulas F by
applying the procedure ackermannize:

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–4940

ackermannize(f, F) :
foreach f(n) ∈ F where n do not contain f

create a fresh constant af(n)

replace f(n) by af(n) in F

foreach af(n), af(m)

add the clause
∧

ni � mi → af(n) � af(m) to F

A partial Ackermann’s reduction heuristic is proposed and investigated
in [5]. Functions are only eliminated when the number of distinct occurrences
is smaller than the set of shared variables in the function arguments.

Ackermannization has the same disadvantage as DTC in that the number
of additional literals is quadratic in the size of the input. It is furthermore
problematic to use Ackermannization in the context of several theories and
when combining SMT solvers with quantifier instantiation.

3.3.1 Dynamic Ackermannization

Congruence closure algorithms for deduction in equational theories are ubiq-
uitous. Efficient and incremental congruence closure based procedures are
described in [7,13]. However, these algorithms miss the following propagation
rule:

f(n) �� f(m) =⇒
∨

ni �� mi . (2)

This propagation rule (which is a contrapositive of (1)) has a dramatic per-
formance benefit in some benchmarks, and Ackermann’s reduction gives this
rule for free. For example, the following simple formula takes O(2N) time to
be solved using the algorithms presented in [7,13]. In contrast the formula can
be solved in polynomial time if either O(N2) axioms are added up front by
ackermannize or the above propagation rule is used resulting in “only” O(N)
space and time overhead.

N∧
i=1

(pi ∨ xi � v0) ∧ (¬pi ∨ xi � v1) ∧ (pi ∨ yi � v0) ∧ (¬pi ∨ yi � v1),

f(xN , . . . , f(x2, x1) . . .) �� f(yN , . . . , f(y2, y1) . . .)(3)

This performance problem reflects a limitation in the current congruence clo-
sure algorithms used in SMT solvers, and it is not related with the theory
combination problem. In fact, the formula above uses only one theory. In [9],
an approach, called Dynamic Ackermannization, is proposed to cope with this
problem. There, clauses corresponding to Ackermann’s reduction are added
when a congruence rule participates in a conflict.

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–49 41

4 Model-based Theory Combination

Our approach minimizes the number of produced shared equalities. It is based
on the fact that, in practice, the number of local inconsistencies is much bigger
than the number of global (cross theory) inconsistencies. It works for convex
and non-convex theories alike.

(i) Each theory T i maintains a model Mi for Γi, or at times only for a subset
of Γi.

(ii) From time to time, if uMi = vMi, then the theory creates the case-split
u � v, the positive case is tried first.

(iii) At the discresion of the theory solver, change a model Mi to M′

i to
satisfy newly assigned literals, or to imply fewer equalities.

It is fairly straight-forward to integrate this approach in a DPLL(T) frame-
work, that we rename DPLL(T M), as the search is now model-guided. Bor-
rowing notation from [11,14], the relevant new rules are presented in Fig. 1.
The full set of rules are repeated from [14] in Fig. A.1. The transition rules
modify triplets of the form M, Γ ||F , where M is a set of models for theories
T 1, . . . , T n, Γ is a set of asserted literals, and F is a set of clauses. The rule
M-Propagate creates a fresh equality literal (u � v)d when a model associated
with one of the theories imply it, but the equality is not present in the context
Γ. The equality literal is pushed on Γ, thus propagating the equality to all
theories sharing variables u and v. The tag d on the literal indicates that
the literal may be negated during backtracking. The M-Mutate rule allows
changing models during backtracking search. For instance, after applying De-

cide, a newly assigned literal �d may not be satisfied in the existing models.
We do not need to specify when M-Mutate is applied. In particular, theory
solvers are not required to maintain models for their contexts at all times
during a search. Models are only required when other case splits have been
attempted. For example, when using linear programming for an integer linear
programming problem, a simplex tableau may choose to delay introducing
Gomory cuts to obtain an integer interpretation until other constraints have
been propagated.

We use the following optimizations to minimize even further the number
of necessary case splits. Let RM be an equivalence relation on V such that
RM(u, v) iff uM = vM. Let classes(R) be the set of equivalence classes induced
by R.

(i) Opportunistic equality propagation: Equalities that can be inferred with-
out additional expense to the theory solver are always propagated eagerly.
Section 5 gives an example of opportunistic equality propagation.

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–4942

M-Propagate

M, Γ ||F =⇒ M, Γ(u � v)d ||F if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u, v ∈ V, (u � v) �∈ L

uMi = vMi

add (u � v) to L

M-Mutate

M, Γ ||F =⇒ M
′, Γ ||F if

{
M

′ is some variant of M

Fig. 1. Model-based propagation

(ii) Postponing model-based equality propagation: we delay applying the
rule M-Propagate until case splits on already existing literals have been
performed.

(iii) Model mutators, the idea is to use a function δ(Mk) that returns a more
diverse model. More formally, |classes(RMk

)| ≤ |classes(Rδ(Mk))|

5 Simplex: An example model-producing theory solver

Following [8], a theory solver for linear arithmetic, and integer linear arith-
metic, can be based on a Simplex Tableau of the form:

xi �
∑

xj∈N

aijxj xi ∈ B,

where B and N denote the set of basic and nonbasic variables, respectively. In
addition to this tableau, the solver state stores upper and lower bounds li and
ui for every variable xi and a mapping β that assigns a rational value β(xi)
to every variable xi. The bounds on nonbasic variables are always satisfied by
β, that is, the following invariant is maintained

∀xj ∈ N , lj ≤ β(xj) ≤ uj.

Bounds constraints for basic variables are not necessarily satisfied by β, so for
instance, it may be the case that li > β(xi) for some basic variable xi, but
pivoting steps can be used to fix bounds violations, or detect an infeasible
tableau. We hope it does not come as a total surprise that the current model
for the simplex solver is given by β. Enumerating the equalities implied by β

is simple: enumerate all the values of β(xi), inserting each value into a hash
table. The expected time of enumerating all equalities is then O(|B ∪ N|).

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–49 43

5.1 Opportunistic equality propagation

In a Simplex tableau, some equalities can be inferred using the following inex-
pensive rules. We say that a variable xi is fixed iff li = ui, a linear polynomial∑

xj∈V
aijxj is fixed iff for every xj ∈ V, xj is fixed or aij = 0. Given a linear

polynomial P =
∑

xj∈V
aijxj , we use β(P) to denote

∑
xj∈V

aijβ(xj).

FixedEq

li ≤ xi ≤ ui, lj ≤ xj ≤ uj =⇒ xi � xj if li = ui = lj = uj

EqRow

xi � xj + P =⇒ xi � xj if P is fixed, and β(P) = 0

EqOffsetRows

xi � xk + P1

xj � xk + P2

=⇒ xi � xj if

⎧⎨
⎩

P1 and P2 are fixed,

and β(P1) = β(P2)

EqRows

xi � P + P1

xj � P + P2

=⇒ xi � xj if

⎧⎨
⎩

P1 and P2 are fixed,

and β(P1) = β(P2)

The first rule can be implemented using a mapping from values to fixed
variables, the second rule can be easily checked when a row is updated during
a pivoting step. The rule EqOffsetRows is a simpler and less expensive version
of EqRows. It can be implemented using a mapping (xk, v) �→ xi, where xk

and xi are variables, and v is a value. In our implementation, the first three
rules are eagerly applied, and the last one is only applied before M-Propagate.
We also aggressively remove fixed variables from the basis.

These rules can miss some implied equalities. For instance, from the con-
straints (4), the rules detect the implied equality z � w, but miss the equality
x � y, because z is not a fixed variable. Fortunately, the bound propagation
technique described in [8] can be used imply the bound 0 ≤ w, making w a
fixed variable, and enabling the application of the rule EqRow.

x � y + w + s, z � w + s, 0 ≤ z, w ≤ 0, 0 ≤ s ≤ 0 (4)

5.2 Mutation using freedom intervals

The freedom of a non-basic variable xj is defined as the interval [Lj , Uj], where:

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–4944

Lj = max

„j
β(xj) +

li − β(xi)

aij

| aij > 0

ff
∪

j
β(xj) +

ui − β(xi)

aij

| aij < 0

ff
∪ {lj}

«

Uj = min

„j
β(xj) +

ui − β(xi)

aij

| aij > 0

ff
∪

j
β(xj) +

li − β(xi)

aij

| aij < 0

ff
∪ {uj}

«

Intuitively, if β satisfies all rows and bound constraints, then β will also satisfy
them after executing update(xj , v) for any value v in the interval [Lj , Uj], where
the update procedure is defined as:

update(xj , v)

foreach xi ∈ B, β(xi) := β(xi) + aij(v − β(xj))

β(xj) := v

Freedom intervals can be used to produce a more diverse β without performing
any pivoting operation. A simple greedy heuristic seems to be quite effective:
for each non-basic variable xj , execute update(xj , v), if there is a value v ∈
[Lj , Uj] such that |classes(Rβ)| < |classes(Rβ′)|, where β ′ denotes β after the
update operation.

6 Experimental Evaluation

The experiments were conducted using a 32bit Pentium 4 processor running
at 3.6Ghz, 2Gb of memory, and 2Mb of cache. The timeout was set to 10
minutes. We compared our approach against other SMT solvers and against
different strategies within our solver Z3. We used the same benchmarks used
in [5]. The benchmarks were translated to the SMT-LIB format, and are
available for download in our website 3 . We also included, for N ∈ [1, 99] the
examples from (3) and the following simple family of satisfiable formulas in
the comparison for N ∈ [2, 99]:

ϕ=

N∧
i=1

f(xi) ≥ 0 ∧ xi ≥ 0 ∧ xi �� xi+1 (5)

All benchmarks but the Ackermann suite use the theories of uninterpreted
functions and linear arithmetic. Tables 1 and 2 summarize the results ob-
tained in our experiments. Each cell has the accumulated time, in seconds,
used by each solver to solve a family of benchmarks. It does not include the
time spent in instances where the solver produced the unknown result. A
solver is considered to have produced the unknown result when it times out

3 http://research.microsoft.com/∼leonardo/SMT07

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–49 45

http://research.microsoft.com/~leonardo/SMT07

MathSAT MathSAT-dtc Yices Z3

EufLaArithmetic 52 1851.50 (11) 785.87 (1) 10.45 17.34

Hash 199 520.90 19.39 11.48 6.54

Wisa 256 886.36 (1) 6916.18 4.37 2.78

RandomCoupled 400 517.05 518.15 9516.11 (51) 56.16

RandomDecoupled 500 11989.60 (1) 97.07 19362.40 (51) 41.95

Simple (5) 98 1366.33 7053.98 (29) 2328.63 (53) 1.00

Ackermann (3) 99 228.49 (82) 344.00 (82) 2.99 1.72

Total 1604 17360.23 (95) 15734.64 (112) 31236.43 (155) 127.49

Table 1
Experimental results

or crashes. The number of unknown results is displayed using parenthesis.
MathSAT-dtc denotes the MathSAT solver with the command line option -DTC

that forces it to use Delayed Theory Combination. We used Yices version 1.0.8
in the experiments. Yices is also based on DTC, but the shared equalities are
lazily generated, and it uses a filtering mechanism to avoid the generation of
unnecessary shared equalities [9]. Yices and Z3 implement Dynamic Ackerm-
annization suggested in [9]. Six different versions of our Z3 solver were used:
Z3-dtc uses delayed theory combination and the additional equalities between
shared variables are eagerly generated; Z3-dtc* is similar to Z3-dtc but uses the
current model to implement a branching heuristic for the generated equalities;
Z3-ack uses Ackermann’s reduction as a pre-processing step; Z3-neq, Z3-ndack

and Z3 all use Model Based Theory Combination, but Z3-neq does not use
opportunistic equality propagation, and Z3-ndack does not use Dynamic Ack-
ermannization. Notice that our implementation of Z3-dtc does not include
several optimizations that may be useful for a DTC framework. It does not
take advantage of theory propagation for arithmetic.

The benchmarks in the EufLaArithmetic family are trivial if the linear arith-
metic solver performs some form of opportunistic equality propagation. The
Simple family described above was used to demonstrate that DTC is not ro-
bust. Yices performs poorly on most satisfiable instances in the RandomCou-

pled and RandomDecoupled families.

Model based theory combination seems to be more robust than DTC or
Ackermann’s reduction. In these benchmarks, the average number of shared
equalities propagated by Z3 using M-Propagate was 2.46. The maximum was
57.

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–4946

Z3-dtc Z3-dtc* Z3-ack Z3-neq Z3-ndack Z3

EufLaArithmetic 796.71 (11) 2830.38 (4) 1094.47 (1) 786.15 11.56 17.34

Hash 310.10 305.75 23.68 5.89 6.02 6.54

Wisa 364.71 385.06 12.31 4.89 2.40 2.78

RandomCoupled 8122.45 (166) 12451.82 (103) 101.24 56.45 56.65 56.16

RandomDecoupled 12421.30 (85) 15316.60 (71) 56.54 51.23 48.39 41.95

Simple (5) 7.26 7.34 33.89 0.45 1.00 1.00

Ackermann (3) 728.22 (77) 733.58 (77) 37.99 1.74 874.21 (77) 1.72

Total 22750.75 (339) 32030.53 (255) 1360.12 (1) 906.78 1000.23 (77) 127.49

Table 2
Experimental results (only Z3)

7 Conclusions

This paper introduced a new approach for dealing with equality propagation
in the context of convex theories where equality deduction is expensive and
more generally, in the context of non-convex theories. Both in theory, and
as we validated experimentally, the approach solves a number of practical
deficiencies with other known solutions to integrating theories.

Model-based Theory Combination requires that a decidable theory main-
tains a notion of a model that supports efficiently answering queries of the

form uM = vM.

7.1 On the significance of Ackermann’s reduction

The Wisa benchmark set is used in [5] to illustrate the usefulness of Acker-
mann’s reduction in contrast with DTC. With Model-based Theory Combi-
nation, Ackermann’s reduction does not help on these set of benchmarks. We
therefore believe they reflect more the problems with DTC than the advan-
tages of Ackermann’s reduction. On the other hand, the synthetic Ackermann

benchmarks, one can observe the utility of the reduction. Dynamic Acker-
mann reduction is not without an overhead: new literals are added to the
search space, and the new literals cause T-Propagate to spend additional over-
head of walking use-lists. Future work includes investigating whether it is
a practical advantage to build in the propagation directly into a congruence
closure algorithm.

7.2 Are theories amenable to Model-based combinations?

Our main example of a model producing theory solver was a classical Sim-
plex solver. We are experimenting with adding model-based solvers to other
theories, and we hope to be reporting on our findings in future work.

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–49 47

8 Acknowledgment

The authors would like to thank Alberto Griggio for providing the latest ver-
sion of MathSAT and adding a command line option for enabling Delayed
Theory Combination.

References

[1] Ackermann, W., Solvable cases of the decision problem, Studies in Logic and the Foundation
of Mathematics (1954).

[2] Barrett, C. and C. Tinelli, CVC3, in: W. Damm and H. Hermanns, editors, CAV’07, Berlin,
Germany, LNCS 4590 (2007).

[3] Bozzano, M., R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum and
R. Sebastiani, Efficient theory combination via boolean search., Inf. Comput. 204 (2006),
pp. 1493–1525.

[4] Bozzano, M., R. Bruttomesso, A. Cimatti, T. A. Junttila, P. van Rossum, S. Schulz and
R. Sebastiani, The MathSAT 3 System, in: R. Nieuwenhuis, editor, CADE, LNCS 3632 (2005),
pp. 315–321.

[5] Bruttomesso, R., A. Cimatti, A. Franzén, A. Griggio, A. Santuari and R. Sebastiani, To
Ackermann-ize or Not to Ackermann-ize? On Efficiently Handling Uninterpreted Function
Symbols in UF(E), in: LPAR, 2006, pp. 557–571.

[6] Bruttomesso, R., A. Cimatti, A. Franzén, A. Griggio and R. Sebastiani, Delayed Theory
Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis.,
in: LPAR, 2006, pp. 527–541.

[7] Detlefs, D., G. Nelson and J. B. Saxe, Simplify: a theorem prover for program checking, J.
ACM 52 (2005), pp. 365–473.

[8] Dutertre, B. and L. de Moura, A Fast Linear-Arithmetic Solver for DPLL(T), in: CAV’06,
LNCS 4144 (2006), pp. 81–94.

[9] Dutertre, B. and L. de Moura, The Yices SMT Solver, http://yices.csl.sri.com/tool-paper.pdf
(2006).

[10] Flanagan, C., R. Joshi and J. B. Saxe, An explicating theorem prover for quantified formulas,
Technical Report HPL-2004-199, HP Laboratories, Palo Alto (2004).

[11] Ganzinger, H., G. Hagen, R. Nieuwenhuis, A. Oliveras and C. Tinelli, DPLL(T): Fast decision
procedures., in: CAV’04, LNCS 3144, 2004, pp. 175–188.

[12] Nelson, G. and D. C. Oppen, Simplification by cooperating decision procedures, ACM
Transactions on Programming Languages and Systems 1 (1979), pp. 245–257.

[13] Nieuwenhuis, R. and A. Oliveras, Fast Congruence Closure and Extensions, Inf. Comput. 2005

(2007), pp. 557–580.

[14] Nieuwenhuis, R., A. Oliveras and C. Tinelli, Solving SAT and SAT Modulo Theories: From
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T)., J. ACM 53 (2006),
pp. 937–977.

[15] Oppen, D. C., Complexity, convexity and combinations of theories., Theor. Comput. Sci. 12

(1980), pp. 291–302.

[16] Rueß, H. and N. Shankar, Solving linear arithmetic constraints, Technical Report SRI-CSL-04-
01, SRI International (2004).

[17] Sheini, H. M. and K. A. Sakallah, SMT(LU): a step toward scalability in system verification.,
in: S. Hassoun, editor, ICCAD (2006), pp. 844–851.

[18] Shostak, R. E., Deciding combinations of theories., J. ACM 31 (1984), pp. 1–12.

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–4948

A A presentation of DPLL(T M)

Fig. A.1 repeats from [14] the presentation of DPLL(T) as an abstract transi-
tion system. We have added M to each sequent to emphasize that the current
state during proof-search also carries a model. In contrast to [14], we use a set
L of literals to choose case split candidates from. We assume L is a super-set
of the literals occurring in the set of clauses F . Besides the fresh equality liter-
als introduced by the rule M-Propagate, non-convex theory implementations,
such as an integer linear solver may introduce fresh literals as a side-effect of
performing branch-and bound search.

UnitPropagate

M, Γ ||F, C ∨ � =⇒ M, Γ� ||F, C ∨ � if

(
Γ |= ¬C

� is undefined in Γ

Decide

M, Γ ||F =⇒ M, Γ�d ||F if

(
� occurs in L

� is undefined in Γ

Fail

M, Γ ||F, C =⇒ fail if

(
Γ |= ¬C

Γ contains no decision variables

Backjump

M, Γ�dΓ′ ||F, C =⇒ M, Γ�′ ||F, C if

8>>>>>><
>>>>>>:

Γ�dΓ′ |= ¬C,

there is a clause C′ ∨ �′ such that

F, C |= C′ ∨ �′ and Γ |= ¬C′;

�′ is undefined in Γ;

�′ or ¬�′ occurs in F or in �dΓ′

T-Propagate

M, Γ ||F =⇒ M, Γ� ||F if

8><
>:

Γ |=T �

� occurs in L

� is undefined in Γ

Learn

M, Γ ||F =⇒ M, Γ ||F, C if

(
all atoms of C occur in L

F |=T C

Forget

M, Γ ||F, C =⇒ M, Γ ||F, C if

n
F |=T C

Restart
M, Γ ||F =⇒ M, ∅ ||F

Fig. A.1. DPLL with exhaustive theory propagation

L. de Moura, N. Bjørner / Electronic Notes in Theoretical Computer Science 198 (2008) 37–49 49

	Introduction
	Background
	Nelson-Oppen combination method

	Related Work
	Convex theories only
	DTC: Delayed Theory Combination
	Ackermannization

	Model-based Theory Combination
	Simplex: An example model-producing theory solver
	Opportunistic equality propagation
	Mutation using freedom intervals

	Experimental Evaluation
	Conclusions
	On the significance of Ackermann's reduction
	Are theories amenable to Model-based combinations?

	Acknowledgment
	References
	A presentation of DPLL(TM)

