
:==== Global reachability invariants ==== Assume that atomic only applies to sequences of relations (so we treat them as biger atomic relations). While theorem for parallel programs (r1 [] ... [] rn)* || (r1 [] ... [] rn)* || While theorem when atomic is present - implementing atomic * global lock * transactions with state copying Assume any set of states is expressible in our logic (allow set theory or FO logic with axioms). Invariant for resulting while program is a global reachability invariant. * good: only talks about current state * bad: potentially refers to all components of parallel process Alternative: complete history variables * good: only talks about individual parallel process (except for join points) * bad: refers not only to current, but also past states Any point in between: introduce auxiliary variables, which can be local or global, whatever is best for the given program. Example. x=0 (x:=x+1 || x:=x+10) x=11 ==== Owicki-Gries method ==== * [[http://doi.acm.org/10.1145/360051.360224|Verifying properties of parallel programs: an axiomatic approach]] Idea * whenever modifying a group of shared variables (=resource), enforce certain invariants on those variables * prevent interleavings within updates to variables of a resource Examples: bytes of a word, nodes in a list Parallel composition construct declares resources and starts parallel threads: resource r1(vars1), ..., rn(varsn) cobegin S1 || ... || Sn coend (Assume only one such top-level construct, for simplicity. Assume one resource.) Accessing variables in a resource: with r when B do S Requirements: * variable written in some process and used in another must be in a resource * if a variable is in a resource, it can only be accessed using 'with' statement Proof rules: introduce global invariant I for shared variables P B I S Q I ||||||||{ P with r when B do S Q P1 S1 Q1, ..., Pn Sn Qn ||||||||||||||||||- P1 ... Pn I (S1 || ... || Sn) Q1 ... Qn I Requirements: *

