
7

Natural Language Specifications

by

Kristofer Johannisson

This chapter describes how to use the KeY tool to bridge the gap between for-
mal and informal specifications. Specifications need to be understood, main-
tained and authored by people with varying levels of familiarity with a formal
specification language such as OCL. While a user of the KeY theorem prover
should know a formal specification language, we cannot expect the same from
a typical software developer, manager or customer. Hence there is need for
specifications of different levels of formality, and we need to keep these dif-
ferent versions synchronised.

The KeY tool addresses these problems by making it possible to automat-
ically translate formal (OCL) specifications to natural language (English and
German),1 and by providing a multilingual editor in which specifications can
be edited in OCL and natural language in parallel.

This chapter starts with an overview of the natural language features
of KeY in Section 7.1. Sections 7.2 and 7.3 describe basic principles and
components. The multilingual editor is described in Section 7.4. We outline
how domain specific vocabulary is handled in Section 7.5, and conclude with
pointers to further reading and a summary in Sections 7.6 and 7.7.

7.1 Feature Overview

This section gives an overview of the natural language features of the KeY
tool. While the later sections give a more thorough description, this should
give you an idea about what is possible to achieve, and what limitations there
are.

7.1.1 Translating OCL to Natural Language

Using the KeY tool, it is possible to translate all OCL specifications in a
Borland Together project to natural language. Fig. 7.1 shows an example
1 As explained in Section 7.5, the support for German is limited.

B. Beckert et al. (Eds.): Verification of Object-Oriented Software, LNAI 4334, pp. 317–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

318 7 Natural Language Specifications

English translation provided by KeY, based on the class diagram and OCL
specifications in Fig. 7.2 and 7.3. To get an unbiased impression of what the
KeY tool can do, the reader is encouraged to consider the English translation
before reading the formal description provided by the class diagram and OCL
specifications.

The translation in Fig. 7.1 is produced automatically, no user interac-
tion is required (unless we want to customise the translation). The output is
formatted, using either LATEX (as shown here) or HTML.

Note that the structure of the natural language text is very similar to the
structure of the OCL specification, and has the same level of abstraction. We
get a direct translation of the OCL specification, not an informal explanation
of what it means.

For translating the domain specific concepts from a class diagram (classes,
attributes, operations and associations) we use some heuristics which often
work well, but not always. For instance, translating juniorLimit as “junior
limit” is probably fine, while for unsuccessfulOperations we may prefer “num-
ber of unsuccessful operations” rather than the default translation “unsuc-
cessful operations”. We therefore allow user customisation of the translation
of domain specific concepts, as described in Section 7.5.

The OCL to natural language translation can be accomplished either from
within the KeY tool, or by using stand-alone command line tools.

7.1.2 Multilingual Specification Editor

The KeY tool provides a multilingual, syntax-directed editor for editing of
OCL and natural language specifications in parallel. The editor is started
from the KeY submenu of the context menu of any class or operation in
Borland Together. It allows the user to construct an abstract syntax tree of
a specification (for instance an invariant of a class) by selecting alternatives
from menus. The syntax tree is at all times presented to the user in both
OCL and natural language.

Figure 7.4 shows an example editing session, where we have just started
editing an invariant for the class PayCard. There are three main parts of the
editor window: the syntax tree display (top left), the linearisation area (top
right), and the refinements menu (bottom). The syntax tree display shows
the abstract representation of the specification, while the linearisation area
presents the specification in OCL and natural language (English and Ger-
man). Unfinished parts of the specification—called goals, or metavariables—
are shown as question marks. The refinements menu presents possible ways
of filling in the goals. Basic editing proceeds by selecting a goal (by clicking
in the text or in the tree) and a refinement (by choosing from the hierarchi-
cal refinements menu). Since the tree is presented in both OCL and natural
language, knowledge of OCL is not required for using the editor.

Assume that we wish to complete the unfinished invariant in Fig. 7.4 into
for instance balance >= 0 (OCL) or “the balance is at least 0” (English).

7.1 Feature Overview 319

For the operation charge (amount : Integer) of the class PayCard ,
given the following precondition :

• amount is greater than 0

then the following postcondition should hold :

• the balance is at least the previous value of the balance

For the operation available () : Integer of the class PayCard ,
the following postcondition should hold :

• the result is equal to the balance or the unsuccessful operations is greater than 3

For the class PayCardJunior the following invariant holds :

• the following conditions are true
– the balance is at least 0
– the balance is less than the junior limit
– the junior limit is less than the limit

For the operation createCard () : PayCardJunior of the class PayCardJunior ,
the following postcondition should hold :

• the limit of the result is equal to 10

For the operation charge (amount : Integer) of the class PayCardJunior ,
given the following precondition :

• amount is greater than 0

then the following postcondition should hold :

• if the previous value of the balance plus amount is less than the junior limit then:
– the balance is incremented by amount
otherwise:
– the balance does not change and the unsuccessful operations is incremented by 1

For the operation checkSum (sum : Integer) : Integer of the class PayCardJunior
,
the following postcondition should hold :

• if the result is equal to 1 then:
– sum is less than the junior limit
otherwise:
– sum is at least the junior limit

For the operation complexCharge (amount : Integer) of the class PayCardJunior
,
given the following precondition :

• amount is greater than 0

then the following postcondition should hold:

• if the previous value of the balance plus amount is less than the limit then:
– amount is equal to the balance minus the previous value of the balance
otherwise:
– the balance does not change and the unsuccessful operations is incremented by 1

Fig. 7.1. Example natural language translation of OCL constraints

320 7 Natural Language Specifications

PayCard
id : Integer

limit : Integer

balance : Integer

unsuccessfulOperations

: Integer

available() : Integer

charge(amount : Integer)

PayCardJunior
juniorLimit : Integer

createCard() : PayCardJunior

checkSum(sum : Integer) : Integer

complexCharge(amount : Integer)

Fig. 7.2. Example class diagram

We would then proceed in a top-down fashion, first adding the comparison
operator, and then the left and right argument to it. As shown in Fig. 7.4, the
refinement “greater than or equal” is found in the submenu of “comparison
operators”. Figure 7.5 shows the editor after selecting this refinement.

We now have a specification ? >= ? (OCL) or “? is at least ?” (English).
Since the comparison operator takes two arguments, we have two new goals
to fill in. In the figure, the leftmost goal has been selected. The refinements
menu presents only type correct alternatives, which in this case means that
we are only allowed to fill in instances of the OCL library type Real or any
of its subtypes.

To complete the example, we have to fill in the left goal with balance, and
the right with 0, but we omit these steps here. The syntax editor is further
explained in Section 7.4.

7.1.3 Suggested Use Cases

Translation of OCL to Natural Language

Being able to automatically translate OCL to natural language means that
OCL specifications can be presented to people who do not know OCL. The
translation can for instance be shown to a customer, who can then validate if
it captures the desired behaviour of a system, or to a programmer who does
not know OCL but needs to implement a system according to the specifica-
tions.

However, the provided natural language translations are on the same ab-
straction level as the original OCL specifications (as noted above). The in-
tended reader of the translations must therefore be comfortable with this
abstraction level. For instance, we cannot expect a translation of OCL spec-
ifications involving low-level implementation issues to be understandable to
a customer.

The Multilingual Editor

The editor supports editing of OCL and natural language in parallel, and
only allows the construction of specifications which are correct with respect

7.1 Feature Overview 321

OCL

context PayCard::charge(amount : Integer)

pre: amount > 0

post: balance >= balance@pre

context PayCard::available() : Integer

post: result = balance or unsuccessfulOperations > 3

context PayCardJunior

inv: self.balance >= 0 and self.balance < juniorLimit

and juniorLimit < limit

context PayCardJunior::createCard() : PayCardJunior

post: result.limit = 10

context PayCardJunior::charge(amount : Integer)

pre: amount > 0

post: if balance@pre + amount < juniorLimit

then balance = balance@pre + amount

else balance = balance@pre and

unsuccessfulOperations = unsuccessfulOperations@pre + 1

endif

context PayCardJunior::checkSum(sum : Integer) : Integer

post: if result = 1 then sum < juniorLimit

else sum >= juniorLimit endif

context PayCardJunior::complexCharge(amount : Integer)

pre: amount > 0

post: if balance@pre + amount < limit

then amount = balance - balance@pre

else balance = balance@pre and

unsuccessfulOperations = unsuccessfulOperations@pre + 1

endif

OCL

Fig. 7.3. Example OCL constraints

to the OCL syntax and type system. It should therefore be useful for instance
to a person who is not an OCL expert, but who needs to modify existing OCL
specifications, as well as to people learning OCL.

For people who are already proficient in OCL, and who are not concerned
with natural language translation, a traditional text editor is a more suitable
tool for creating and modifying OCL specifications.

322 7 Natural Language Specifications

Fig. 7.4. Example editor session 1

Fig. 7.5. Example editor session 2

7.2 The Grammatical Framework 323

OCL as Single Source

An important part of our approach is to use OCL as “single source”: by
creating and maintaining specifications in OCL (possibly using the multilin-
gual editor), and then automatically translating them to natural language,
we avoid the problem of having different versions of the same specification
which need to be synchronised.

7.2 The Grammatical Framework

The natural language functionality in KeY is based on a multilingual gram-
mar of specifications written in the Grammatical Framework (GF) formalism
[Ranta, 2004].

A GF grammar defines abstract and concrete syntax. The abstract syntax
gives rules for how to form abstract syntax trees. In a typical GF application
grammar these trees are used as a non-linguistic, semantic representation of
a restricted domain. In our case, we use abstract syntax trees to represent
requirements specifications.

The concrete syntax defines how to present abstract syntax trees as ex-
pressions of a particular language, which can be a formal or a natural one. By
having several concrete syntaxes for the same abstract syntax we get a mul-
tilingual grammar. We have defined concrete syntaxes for OCL, English, and
German, which means that specifications represented in GF abstract syntax
can be presented in these three languages.

The multilingual grammar for OCL, English and German specifications
is written in the GF formalism. The GF system then provides functional-
ity based on this grammar: it derives parsers and linearisers for the three
languages as shown in Fig. 7.6. We can, for instance, parse an OCL specifica-
tion (resulting in an abstract syntax tree) and then linearize it into English
or German. Although we can also parse English or German specifications,
the fragment of these languages described by our grammar is very small: we
cannot expect to successfully parse arbitrary informal English or German
specifications.

As noted above in Section 7.1.1, the structure of the natural language
translation of an OCL specification provided by our tool is very similar to
the structure of the original OCL specification. We can now explain the rea-
son for this: the translation and the original specification both share the
same abstract syntax, and the linearisation rules as defined by the concrete
syntaxes for OCL, English and German cannot be arbitrarily complex. GF
linearisation rules must be compositional, meaning that the linearisation of a
tree is always expressed in terms of the linearisation of its subtrees, not the
subtrees themselves.

An important aspect of our multilingual GF grammar is that it consists of
a static as well as a dynamic part. The static part captures the OCL type sys-
tem, basic OCL constructions such as invariants or if-then-else expressions,

324 7 Natural Language Specifications

Fig. 7.6. GF parsing and linearisation

and the predefined types and operations of the OCL library. The dynamic
part is a description of the domain specific concepts—classes, attributes, op-
erations and associations—found in the class diagram of the current Borland
Together project. This part of the GF grammar is generated from the current
class diagram. Section 7.5 describes the basics of this generation, and how it
can be customised.

7.2.1 GF Examples

To illustrate the general principles of GF we give some examples of abstract
and concrete syntax rules, loosely based on our multilingual GF grammar
(without explaining all the details of the GF formalism).

In the abstract syntax, we want to represent the domain of OCL speci-
fications, for instance, we have to represent classes, expressions and queries.
The following is one way to do this in GF abstract syntax:

GF
cat Class;
cat Expr (c:Class);
fun IntegerC : Class;
fun maxQ : (x,y : Expr IntegerC) -> Expr IntegerC;
fun intLit : Int -> Expr IntegerC;

GF

This defines two categories Class and Expr: If c is a Class, then Expr c
represents expressions of type c (Expr is a dependent type, since it requires
an argument). Using these two categories, we can then introduce the GF
functions IntegerC and maxQ to represent the OCL library class Integer,
and the query max (which returns the maximum of two integers). The function
intLit allows us to use the built-in integer type of GF for integer literals.

7.2 The Grammatical Framework 325

The concrete syntax then gives rules for how to linearize abstract syn-
tax trees in OCL, English, or German. Here we consider some examples for
English. Writing GF concrete syntax is much like working in a functional
programming language with record-types, strings, and finite algebraic data
types. We must provide a record type for each category in the abstract syn-
tax, and a function building records of the correct type for each abstract
syntax function.

To express that a class in OCL corresponds to a noun in English we use
the following concrete syntax:

GF
param Number = Sg | Pl;
lincat Class = {s : Number => Str};
lin IntegerC = {s = table {Sg => "integer"; Pl => "integers"}};

GF

Here we introduce a parameter type for representing singular and plural
number. The lincat judgement states that the category Class corresponds
to records containing a field s, which is a string inflected in number (a finite
function from Number to Str). Then, IntegerC is linearised as an inflection
table with the singular and plural form of the noun “integer”.

To linearize an abstract tree (maxQ x y), where x and y have type Expr
IntegerC, as an English noun phrase “the maximum of x and y”, we give the
following rules to complete our small GF grammar (we also need to include
a linearisation for the intLit function):

GF
lincat Expr = {s : Str};
lin maxQ x y = {s = "the" ++ "maximum" ++ "of" ++ x.s ++

"and" ++ y.s};
lin intLit i = {s = i.s};

GF

Loading this grammar into the GF system, we can then parse for example
the string “the maximum of 2 and 7”, which gives us the abstract syntax tree
(maxQ (intLit 2) (intLit 7)).

When writing larger GF application grammars, such as the one used to
link OCL and natural language, you normally work on a higher level of ab-
straction than in these small examples. Instead of defining your own types for
nouns and number (or for gender and case, as we would need for German),
you make use of the resource grammar library which is supplied with the GF
system. This library provides an interface of linguistically motivated types
(e.g., types for number, gender, nouns, verbs and sentences) and functions
(e.g., for building a sentence from a verb phrase and a noun phrase). Im-
plementations of the interface are provided for several languages. By making

326 7 Natural Language Specifications

use of the resource library interface we can therefore share code between the
English and German concrete syntax in our multilingual grammar.

7.3 System Overview

There are a number of components involved in linking OCL to natural lan-
guage: a multilingual GF grammar, the GF system, a syntax-directed editor,
a GF grammar generator taking class diagrams as input, and also a stand-
alone OCL parser and typechecker. Fig. 7.7 shows how these components
relate to each other in terms of input and output.

Fig. 7.7. System components

Grammar Generation

All functionality relies on the existence of the GF grammar for specifications,
and as described in Section 7.2 above, parts of this grammar are dynamically
generated from a class diagram. The class diagram is in turn extracted from
Borland Together.

OCL Parsing and Typechecking

When translating an OCL specification to natural language, or when starting
the multilingual editor for a given OCL specification, the first step is to turn
the OCL text into a GF abstract syntax tree. To do this, we are not using the
parser automatically derived by GF, but a custom parser and typechecker.
Note that typechecking OCL requires also the class diagram as input.

7.4 The Multilingual Editor 327

There are a number of reasons for using a custom parser and typechecker:
we need to work around a limitation in the parser derived by GF for our
particular grammar, it makes it simpler to deal with all the various implicit
forms in OCL concrete syntax, and it also makes it possible to give better
error messages when encountering type errors. Finally, we expect the external
parser, which is derived using a standard context-free parser generator, to be
more efficient than the GF parser when parsing large specifications.

GF

The input to GF is the grammar (static and dynamic parts) and an abstract
syntax tree. To translate OCL to natural language, the tree is then just lin-
earised into English and German. In case of the editor, the user manipulates
the syntax tree in the editor, while viewing the result in OCL, English and
German in parallel.

7.4 The Multilingual Editor

The multilingual editor allows you to edit specifications in OCL, English
and German in parallel. It is based on the generic GF syntax editor [Khegai
et al., 2003] but has been customised for the domain of software specifications
[Daniels, 2005]. The editor is started from the KeY submenu of the context
menu of any class or operation in Borland Together. If the class or operation
is already annotated with an OCL specification, it is parsed and shown in the
editor, otherwise the editor starts up with an empty invariant (for classes) or
with empty pre- and postconditions (for operations). The editor is intended
for editing the OCL specification of one class or operation at a time.

7.4.1 Syntax-Directed Editing

The editor is syntax-directed: editing consists of manipulating the abstract
syntax tree of a specification, rather than a string of characters as in a typical
text editor. The tree is at all times presented in OCL, English and German,
as defined by the GF grammar for specifications (the user can choose which
languages to show). Since we are editing a syntax tree, we can only construct
syntactically correct specifications. The editor also includes a type system
and ensures that the syntax tree is always type-correct.

There are two basic ways of manipulating a syntax tree in the editor:
refinement (top-down editing) and wrapping (bottom-up).

7.4.2 Top-Down Editing: Refinement

Refinement consist of selecting a goal—an unfinished part of the tree, dis-
played as a question mark—and filling in this goal by selecting a refinement

328 7 Natural Language Specifications

from a menu. The selected refinement may in turn contain new goals which
need to be filled in.

Each goal has a type, and the refinements menu only lists refinements of
this type. A type can for instance be “integer expressions”, “sentences”, or
“attributes”. The types and refinements available are given by the underlying
GF grammar.

We consider the example from the beginning of this chapter again, as
shown in Fig. 7.8. In the upper left part of the editor window we see the
abstract syntax tree of a specification, which is presented in OCL and natural
language in the upper right part of the window. There are two unfinished
parts (goals), one for each argument to the comparison operator (>=).

Fig. 7.8. Editing by refinement

7.4.3 Bottom-Up Editing: Wrapping

Wrapping consists of selecting any part of the syntax tree—with or without
unfinished parts—and replacing it with a new construction, which contains
the previously selected subtree as a part. For instance, if we have constructed
the invariant self.balance >= 0, and would like to add that balance should
also be smaller than limit, we do this by wrapping it using and. The first step
is to select the subtree corresponding to self.balance >= 0, as shown in
Fig. 7.9.

7.4 The Multilingual Editor 329

Fig. 7.9. Editing by wrapping, step 1

The current selection is now a sentence. Since and is a construction which
takes two sentences into a new sentence, we can wrap the current selection
using and. This is done by selecting “wrap boolean ’and’ for sentences as
argument 1” in the refinements menu. The result is shown in Fig. 7.10: the
previously selected subtree balance >= 0 has now been wrapped as the first
argument to and, resulting in balance >= 0 and ?.

7.4.4 Other Editor Features

The editor also includes other features, for instance, as you would expect
there is a clipboard for copying and pasting syntax trees, as well as an undo
command. Another feature is refinement by parsing: instead of filling in a
goal by selecting a refinement, one can enter a text string. The string is then
parsed and (if parsing was successful) the goal is filled in with the resulting
syntax tree. In this case, it is the parser derived by GF which is being used,
not the custom OCL parser and typechecker.

7.4.5 Expressions and Sentences

The editor makes a distinction between expressions and sentences. Expres-
sions are instances of any of the classes from the class diagram, or of the
OCL library types such as Integer or Boolean. Sentences are used to express
invariants, pre- and postconditions. An example expression is self.balance

330 7 Natural Language Specifications

Fig. 7.10. Editing by wrapping, step 2

(“the balance”), an example sentence is self.balance >= 0 (“the balance is
at least 0”). We mention this distinction since it is not present in OCL itself:
there is no concept of sentences in the OCL language specification. Instead,
expressions of type Boolean are used for invariants, pre- and postconditions.
However, in the editor expressions and sentences are two different types: goals
of expression type cannot be filled in with a sentence, and vice versa.

All OCL library operations as well as all domain specific attributes and
operations which return Boolean from the point of view of OCL are considered
as sentences in the editor. It is always possible to convert a sentence into a
Boolean expression, but this has to be done explicitly.

7.4.6 Subtyping

The OCL type system includes subtyping: wherever an expression of a type
T is expected, we can also use an expression of type T ′ as long as T ′ is a
subtype of T . For instance, the OCL comparison operators <, >, <=, and >=
are all defined for the class Real. However, since Integer is a subtype of Real,
we can also use them to compare integers.

GF has no built-in notion of subtyping. In the GF grammars for specifica-
tions, this problem is solved by including explicit coercions (typecasts). These
coercions are part of the abstract syntax tree, but are not visible in the OCL
or natural language rendering of the tree. The editor usually creates these
coercions automatically without requiring user interaction, but sometimes—

7.5 Translation of Domain Specific Concepts 331

in particular when an existing specification is modified—the user has to be
aware of the coercions.

7.5 Translation of Domain Specific Concepts

As previously mentioned, the translation of domain specific concepts is de-
fined by GF grammar modules which are generated from the class diagram
of the current project in Borland Together. This generation is based on some
simple rules described below. If the automatically derived translation is not
appropriate, it can be customised by hand.

The generation and customisation are both based on the assumption that
the language used in class diagrams is English, and that OCL specifications
are to be translated into English. The generated GF modules can be used
with the German GF grammar anyway, but the resulting German contains
fragments of the English used in the class diagram (as seen in the syntax
editing examples in Section 7.4).

7.5.1 Grammar Generation

The grammar generation provides default translations for the concepts—
classes, attributes, operations, and associations—in a class diagram. Cur-
rently, this generation is based on a few simple rules:

• Classes are treated as common nouns, or as common noun phrases. In
case the name of the class is capitalised (as in PublicKey), it is split into
separate words, where the last word is considered as a noun which is
modified by the other words. For instance, a class Person is treated as a
common noun “person”, while a class PublicKey is treated as a common
noun phrase “public key”.

• Properties (attributes, operations and associations) are treated as noun
phrases, except for Boolean properties, which are treated as sentences.
Capitalization is used also for properties, e.g., an attribute juniorLimit
is translated as the noun phrase “junior limit”. Boolean properties which
start with “is-”, e.g., isEmpty or isValidated, are treated as adjectives (e.g.,
“. . . is empty”, “. . . is validated”).

7.5.2 Customising the Translation

If the translation provided by the generated grammar modules is not ap-
propriate, it can be customised by hand. We plan to make it possible to
perform such customisation by having the user add annotations to the Bor-
land Together class diagram, but at present there is no such functionality. To

332 7 Natural Language Specifications

customise the translation, one must instead modify the generated GF gram-
mar files directly. However, as described below, this can be done without
requiring GF expertise.

Customisation is done on the level of concrete syntax. The generated
concrete syntax makes use of a grammar-level API, which contains functions
for common constructions. This API abstracts from the complexity of the
rest of the grammar. To modify the generated concrete syntax it is therefore
enough to have an understanding of the API, it is not necessary to be a GF
expert.

This API is described in detail on the web site for the OCL-Natural Lan-
guage tool (⇒ Sect. 7.6), here we just consider a small example. As mentioned
in the previous example in Section 7.1.1, the default translation of the unsuc-
cessfulOperations attribute of the PayCard class is “unsuccessful operations”,
although “number of unsuccessful operations” might be a more natural trans-
lation. The generated GF concrete syntax for unsuccessfulOperations is the
following:

GF
lin unsuccessfulOperations = mkSimpleProperty (adjCN

["unsuccessful"] ((strCN ["operations"])));

GF

The left hand side of this linearisation judgement is simply the name of the
construction in the abstract syntax which represents unsuccesfulOperations.
The right hand side gives the linearisation of this construction, expressed
using the functions mkSimpleProperty, adjCN and strCN of the grammar
API.

This generated linearisation can be changed to produce “the number of
unsuccessful operations” instead by using the ofCN and strCN functions:

GF
lin unsuccessfulOperations = mkSimpleProperty (ofCN

(strCN "number") (adjCN ["unsuccessful"] ((strCN
["operations"]))));

GF

7.6 Further Reading

The basic motivations and design principles of a GF based tool to link OCL
and natural language are described in a paper by Hähnle et al. [2002]. A
later paper shows that the tool scales well enough to handle a case study:
translating OCL specifications of the JAVA CARD API to natural language
[Burke and Johannisson, 2005]. There is also a web site for the tool.2

2 http://www.key-project.org/oclnl/

http://www.key-project.org/oclnl/

7.7 Summary 333

7.7 Summary

The KeY tool makes it possible for people who are not OCL experts to
create and maintain OCL specifications, by providing a multilingual, syntax-
directed editor in which specifications can be edited in OCL and natural
language in parallel. OCL specifications can also be translated to natural
language independently of the editor, which enables people who have no
knowledge of OCL to make use of formal specifications.

A limitation is that the provided natural language translation has roughly
the same structure and level of abstraction as the original OCL specification.
In this sense, we do not provide informal explanations of formal specifications.
Also, automatic formalisation of arbitrary informal specifications falls outside
the scope of the KeY tool.

The natural language tools are built around a multilingual Grammatical
Framework grammar for specifications in OCL, English and German. The
translation of domain-specific concepts can be customised on the grammar
level.

	Natural Language Specifications by Kristofer Johannisson
	Feature Overview
	Translating OCL to Natural Language
	Multilingual Specification Editor
	Suggested Use Cases

	The Grammatical Framework
	GF Examples

	System Overview
	The Multilingual Editor
	Syntax-Directed Editing
	Top-Down Editing: Refinement
	Bottom-Up Editing: Wrapping
	Other Editor Features
	Expressions and Sentences
	Subtyping

	Translation of Domain Specific Concepts
	Grammar Generation
	Customising the Translation

	Further Reading
	Summary

