
On Interactive Synthesis of Code Snippets

Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac⋆

firstname.lastname@epfl.ch

Swiss Federal Institute of Technology (EPFL), Switzerland

Abstract. We describe a tool that applies theorem proving technology
to synthesize code fragments that use given library functions. Our ap-
proach takes into account polymorphic type constraints as well as code
behavior. We have found our system to be useful for synthesizing code
fragments for common programming tasks, and we believe it is a good
platform for exploring software synthesis techniques.

1 Introduction

Algorithmic software synthesis from specifications is a difficult problem. Yet
software developers perform a form of synthesis on a daily basis, by transform-
ing their intentions into concrete programming language expressions. The goal
of our tool, isynth, is to explore the relationship and synergy between algorith-
mic synthesis and developers’ activities, by deploying synthesis for code frag-
ments in interactive settings. To make the problem more tractable, isynth aims
to synthesize small fragments, as opposed to entire algorithms. isynth builds code
fragments containing functions drawn from large and complex libraries, saving
the developers from a substantial effort to search for appropriate methods and
their compositions. isynth is a synthesis algorithm deployed within an integrated
development environment. It uses an interface that conceptually extends the
familiar code-completion feature. When invoked, isynth suggests multiple mean-
ingful expressions at a given program point, using type information and test
cases.

isynth primarily relies on type information to perform its synthesis task. A
user invokes isynth at the program point when defining some value. The type
of the value is known but not its definition. The user is interested in getting
suggestions for the value definition. To find the building blocks for code frag-
ments, isynth examines the current scope of an incremental Scala compiler in-
tegrated into the editor and gathers the available values, fields, and functions.
The use of type information is inspired by Prospector [MXBK05], but isynth has
an important additional dimension: it handles not only simple but also generic
(parametric) types [DM82], which are a mainstream mechanism to write safe
and reusable code in languages including ML, Java, C#, and Scala.

The support for generic types is a fundamental generalization compared to
previous tools. The resulting set of possible intermediate types is no longer finite

⋆ Alphabetical order of authors.

and the synthesis of a value of a given type becomes undecidable. isynth is based
on an encoding of the synthesis problem into first-order logic. This encoding has
the property that a value of the desired type can be built from functions of given
types iff there exists a proof for the corresponding theorem in first-order logic.
It is therefore related to the known connections between proof theory and type
theory. In type-theoretic terms, isynth attempts to check whether there exists a
term of a given type in a given polymorphic type environment. If such terms
exist, the goal is to produce a finite ranked subset of them.

isynth implements a custom resolution-based algorithm to find multiple proofs
representing candidate code fragments that satisfy the typing constraints. The
use of resolution is related to traditional deductive program synthesis [MW80],
but our approach attempts to derive code fragments by using type information
instead. In addition, isynth implements a filtering functionality, which inserts the
candidate fragments into the code. It then tests the program for the absence of
crashes, including violations of assertions or postconditions. This functionality
incorporates input/output behavior [JGST10], but uses it mostly to improve the
precision of the primary mechanism, type-driven synthesis.

We believe that an important aspect of the software development process is
that an accurate specification is often not available. A synthesis tool should be
equipped to deal with under-specified problems, and be prepared to generate
multiple alternative solutions when asked to do so. Our algorithm fulfills this
requirement: it generates multiple solutions and ranks them using a system of
weights. The current weight computation takes into account the proximity of
values to the point in which the values are used. A database of code samples, if
available, could be used to derive weights, providing effects similar to some of
the previous systems [SC06,MXBK05]. Given a weight function, isynth directs
its search using a technique related to ordered resolution [BG01].

Contributions. In summary, we present isynth, the first interactively deployed
synthesis tool based on parameterized types, test cases, and weights indicating
preferences. isynth is based on an implementation of a variation of an ordered
resolution calculus. We have found isynth to be fast enough for interactive use
and helpful in synthesizing meaningful code fragments.

2 Examples

As a simple first example, consider the problem of retrieving data stored in a
file. Suppose that we have the following definitions:

def fopen(name:String):File = { ... }
def fread(f:File, p:Int):Data = { ... }
var currentPos : Int = 0
...
def getData():Data = �

There is a number of definitions in the scope. The developer is about to define,
at the position marked by �, the body of the function getData that computes
a value of type Data. When the developer invokes isynth, the result is a list

of valid expressions (snippets) for the given program point, composed from the
values in the scope. Assuming that among the definitions we have functions fopen

and fread, of types shown above, the tool will return as one of the suggestions
fread(fopen(fname), currentPos), which is a simple way to retrieve data from the
file given the available operations. In our experience, isynth often returns snippets
in a matter of milliseconds. Such snippets may be difficult to find manually for
complex and unknown APIs, so isynth can also be thought as a sophisticated
extension of a search and code completion functionality.

Parametric polymorphism. We next illustrate the support of parametric
polymorphism in isynth. Consider the standard higher-order function map that
applies a given function to each element of the list. Assume that the map function
is in the scope. Further assume that we wish to define a method that takes as
arguments a function from integers to strings and a list of strings, and returns
a list of strings.

def map[A,B](f:A ⇒ B, l:List[A]):List[B] = { ... }
def stringConcat(lst : List[String]) : String = { ... }
...
def printInts(intList:List[Int], prn: Int ⇒ String): String = �

isynth returns stringConcat(map[Int, String](fun, intList)) as a result, instantiat-
ing polymorphic definition of map and composing it with stringConcat. isynth

efficiently handles polymorphic types through resolution and unification.

Using code behavior. The next example shows how isynth applies testing
to discard those snippets that would make code inconsistent. Define the class
FileManager containing methods for opening files either for reading or for writing.

class Mode(mode:String)
class File(name:String, val state:Mode)

object FileManager {
private final val WRITE:Mode = new Mode(”write”)
private final val READ:Mode = new Mode(”read”)

def openForReading(name:String):File = �

ensuring { result => result.state == READ}
}
object Tests { FileManager.openForReading(”book.txt”) }

If it would be based only on the type inferences rules, isynth would return both
new File(name, WRITE) and new File(name, READ). However, it also checks the
method contract (pre- and post-conditions) and verifies whether each of the
returned snippets complies with them. Because of postconditions requiring that
the file is open for reading, isynth discards the snippet new File(name, WRITE)
and returns only new File(name, READ).

Applying user preferences. The last example demonstrates a way in which
a user can influence the ranking of the returned solutions. This is an important
issue, because, due to the large number of solutions found, it is crucial to identify

those that would be more valuable for the user. In this example, we define the
class Calendar for managing the events.

object Calendar {
private val events:List[Event] = List.empty[Event]
def reserve(user:User, date:Date):Event = { ... }
def getEvent(user:User, date:Date):Event = { ... }

def remove(user:User, date:Date):Event = �

}

Assume that a user wants to get a code snippet for remove. Running the
above example without any user suggestions returns reserve(user, date) and
getEvent(user, date), in this order. When invoking isynth, a user can also give a
list of strings as input. Those strings are names of methods which the user wants
to appear in the returned code snippet. We again run isynth, having “getEvent”
as a user suggestion, and the ranking of returned snippets changed: this time
getEvent(user, date) was the first returned result. isynth ranks the results based
on the weight function.

3 Foundations and Algorithm

The main algorithm is based on first-order resolution and thus we formalize type
constrains in first-order logic. We introduce predicate hasType to describe that
value v is of type T : hasType(v, T). We use Hindley-Milner type description and
interpret → with the special function symbol arrow. First-order logic formal-
ism makes possible to easily encode polymorphism using universally quantified
variables.

We also added weights to clauses. Those weights are slightly different than
the weights based on multiset ordering of clauses and used in the first-order
provers [BG01]. To begin with, we define an ordering on the symbols and to
each symbol we assign the weight. This ordering and weights are defined as
follows: the user preferred symbols have the smallest weight and are the greatest.
They are followed by the local symbols occurring in the method. The remaining
symbols of the corresponding class have greater weight than the local symbols.
Finally, the symbols of the greatest weight are those which do not occur in the
class. Those are symbols coming from various API and library methods.

Once the ordering and the weights of the symbols are fixed, we compute
the weight of a term similarly as in Knuth-Bendix ordering. The only difference
is that we additionally recalculate the weight of every term containing a user-
preferred symbol. We do this so that they do not “vanish” when combined with
a symbol of a greater weight.

Snippet Synthesis Algorithm. Figure 1 describes the basic version of our
algorithm. It takes as an input a partial Scala program and a program point
where we ask for a code snippet. Additionally, it also takes as an argument the
maximum number of resolution steps.

The first step of the algorithm is to traverse the program syntax tree, create
the clauses, and assign the weights to the symbols and clauses. We pick a minimal
weight clause and resolve it with all other clauses of greater weight. If we derive
a contradiction (empty clause), we extract its proof tree. Moreover, based on this
proof tree we derive a new clause that prevents the same derivation of the empty
clause in the future. This new clause is then added to the clause set. We repeat
this procedure until the clause set becomes saturated or the given threshold on
the resolution steps is exceeded. Finally, we reconstruct terms from the proof
trees, and create the code snippets. They snippets are further tested by invoking
a test case that involves the code and discarding the snippet if the code crashes.

Backward Reasoning. In isynth we combine the algorithm described in
Figure 1 with backward reasoning. With ? T we denote the query asking for a
value of the type T . The main rule we use is

hasType(x, Arrow(T1, T2)) ? T2

? T1

This way we managed to accelerate search for solutions.

INPUT: partial Scala program, program point, maximal number of steps
OUTPUT: list of code snippets

def basicSynthesizeSnippet(p : partial Scala program, maxSteps : Int) : List[Snippet] = {
var weightedClauses = extractClauses(p)
var saturated = false
var solutions = emptySet
var step = 0
while (step < maxSteps && !saturated) {

val c : Clause = pickMinWeight(weightedClauses)
saturated = true
for (c’ <− weight(c) < weight(c’) || (weight(c) = weight(c’) && c != c’)) {

val newC = resolution(c,c’)
if !(newC in weightedClauses) {

saturated = false
if (newC.isEmptyClause) {

val s = extractSolution(newC)
solutions = solutions union { s }
val cBlock = createClausePreventingThisProof(s)
weightedClauses = weightedClauses union { cBlock }

}
}

}
step++

}
return (solutions.map(proofToSnippet)).filter(passesTest(p))

}

Fig. 1. Basic algorithm for synthesizing code snippets

4 isynth Implementation and Evaluation

The system isynth is implemented in Scala and built on top of the Ensime plu-
gin, which allows the access to the Scala compiler’s internal information, as for
instance to ASTs. It also allows to display code snippets back to the user in
interactive way.

Our intention is to use isynth within a software development environment.
When invoked, isynth runs the algorithm described in Section 3 and tries to
synthesize the required code. If it finds suitable code snippets, ranks them based
on their weights, and it returns them in a popup menu. If the user finds the
required snippet in that list, isynth inserts the chosen value in the program.

To illustrate performance, consider Figure 2. All those examples were ran on
Intel(R) Core(TM) i7 CPU 2.67 GHz with 4 GB RAM. Times to execute those
examples were usually less than two milliseconds. The tests that we ran indicate
that our system scales well. For instance, we were able to synthesize a snippet
using six methods in 0.72 seconds from the set of 442 declarations.

Program # Loaded Declarations # Methods in Synthesized Snippets Time [s]

FileReader 5 4 0.001

Map 3 3 < 0.001

FileManager 3 7 0.001

Calendar 29 3 0.001

FileWriter 442 6 0.72

SwingBorder 161 2 0.02

TcpService 112 3 0.62

Fig. 2. Basic algorithm for synthesizing code snippets

The above examples and the system isynth are available on the following web
site: http://lara.epfl.ch/web2010/isynth.

References

[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In
Handbook of Automated Reasoning, pages 19–99. 2001.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In POPL, 1982.

[JGST10] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In ICSE (1), 2010.

[MW80] Zohar Manna and Richard Waldinger. A deductive approach to program
synthesis. ACM Trans. Program. Lang. Syst., 2(1):90–121, 1980.

[MXBK05] David Mandelin, Lin Xu, Rastislav Bod́ık, and Doug Kimelman. Jungloid
mining: helping to navigate the api jungle. In PLDI, 2005.

[SC06] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: mining for sample
code. In OOPSLA, 2006.

