Implicit Programming through Automated Reasoning

presented by Viktor Kuncak

Swiss Federal Institute of Technology, Lausanne

http://lara.epfl.ch/w/impro
Programming Activity

Consider three related activities:

• Development within an IDE (Eclipse, Visual Studio, emacs, vim)

• Compilation and static checking (optimizing compiler for the language, static analyzer, contract checker)

• Execution on a (virtual) machine

More compute power available for each of these → use it to improve programmer productivity
Implicit Programming

• A high-level declarative programming model
• In addition to traditional recursive functions and loops, use relations, *implicit specifications* give property of result, not how to compute it
• More expressive, easier to argue correctness
• Challenge:
 – make it executable and efficient so it is useful
• Claim: automated reasoning is key technique
The **choose** Implicit Construct

```python
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
    choose((h: Int, m: Int, s: Int) ⇒ (
        h * 3600 + m * 60 + s == totalSeconds
        && 0 <= h
        && 0 <= m && m < 60
        && 0 <= s && s < 60
    ))

3787 seconds  →  1 hour, 3 mins. and 7 secs.
```
Notions Related to Implicit Programming

• Code completion
 – help programmer to interactively develop the program

• Synthesis – core part of our vision
 – key to compilation strategies for specification constructs

• Manual refinement from specs (Morgan, Back)

• Logic Programming
 – shares same vision, in particular CLP(X)
 – operational semantics design choices limit what systems can do (e.g. Prolog)
 – CLP solvers theories limited compared to SMT solvers
 – not on mainstream platforms, no curly braces ☺, SAT
Relationship to Verification

• Some functionality is best synthesized from specs
• Others are perhaps best implemented, then verified
• But currently, no choice - always must implement
 – so specifications viewed as overhead
• Goal: make specifications intrinsic part of program, with clear benefits to programmers – execution
• Expectation: this will help both
 – verifiability and
 – productivity
• example: state assertion, not how to establish it
Implicit Programming at All Levels

Opportunities for implicit programming in

• **Development** within an IDE
 – *isynth* tool

• **Compilation**
 – *Comfusy* and *RegSy* tools

• **Execution**
 – *Scala^Z3* and *UDITA* tools

I next examine these tools, from last to first, focusing on Compilation
Execution of Implicit Constructs - constraint programming

Scala^Z3, UDITA
Scala^Z3
Invoking Constraint Solver at Run-Time

Java Virtual Machine
- functional and imperative code
- custom ‘decision procedure’ plugins

Q: implicit constraint
A: model
Q: queries containing extension symbols
A: custom theory consequences

Z3 SMT Solver

with: Philippe Suter, Ali Sinan Köksal, Robin Steiger
```python
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) = 
choose((h: Var[Int], m: Var[Int], s: Var[Int]) ⇒ ( 
    h * 3600 + m * 60 + s == totalSeconds 
    && 0 <= h
    && 0 <= m && m < 60
    && 0 <= s && s < 60
  ))
```

It works, certainly for constraints within Z3’s supported theories

Implemented as a library (jar + z3.so / dll) – no compiler extensions

Executing **choose** using Z3

3787 seconds \(\longrightarrow\) 1 hour, 3 mins. and 7 secs.
Programming in Scala\(^{\text{^Z3}}\)

find triples of integers \(x, y, z\) such that \(x > 0, y > x, 2x + 3y \leq 40, x \cdot z = 3y^2\), and \(y\) is prime

val results = for{
 (x,y) <- findAll((x: Var[Int], y: Var[Int])) => x > 0 && y > x && x * 2 + y * 3 <= 40;
 if isPrime(y);
 z <- findAll((z: Var[Int])) => x * z === 3 * y * y)
 yield (x, y, z)

Use Scala syntax to construct Z3 syntax trees
a type system prevents certain ill-typed Z3 trees
Obtain models as Scala values
Can also write own plugin decision procedures in Scala
UDITA: system for Test Generation

void generateDAG(IG ig) {
 for (int i = 0; i < ig.nodes.length; i++) {
 int num = chooseInt(0, i);
 ig.nodes[i].supertypes = new Node[num];
 for (int j = 0, k = -1; j < num; j++) {
 k = chooseInt(k + 1, i - (num - j));
 ig.nodes[i].supertypes[j] = ig.nodes[k];
 }
 }
}

We used to it to find real bugs in
 javac, JPF itself, Eclipse, NetBeans refactoring
On top of Java Pathfinder’s backtracking mechanism
Can enumerate all executions
Key: suspended execution of non-determinism

Java + choose
- integers
- (fresh) objects

with: M. Gligoric, T. Gvero, V. Jagannath, D. Marinov, S. Khurshid
Implemented and released in official Java PathFinder

JPF .. the **swiss army knife** of Java™ verification

jpf-delayed

Milos Gligoric and Tihomir Gvero, {milos.gligoric, tihomir.gvero}@gmail.com, January 2010

Repository

The repository for jpf-delayed is http://babelfish.arc.nasa.gov/hg/jpf/jpf-delayed.

Delayed Choice

The basic **delayed choice** postpones non-deterministic choice of values until they are used, reducing the size of the search tree. The technique works with both int and boolean, i.e., with Verify.getInt and Verify.getBoolean methods. Additionally, we speed up the basic **delayed choice** by introducing copy propagation that keeps non-deterministic values symbolic even if they are copied through memory locations. We also implement a special class for linked structures, called ObjectPool, which has the following methods for non-deterministic assignments of objects:

```java
public final class ObjectPool<T> implements Iterable<T> {
    public ObjectPool(Class<?> clz, int size, boolean includeNull) {...}
    public T getAny() {...}
    public T getNew() {...}
    public Iterator<T> iterator() {...}
}```
Implicit Programming at All Levels

Opportunities for implicit programming in

- Development within an IDE
  - isynth tool

- Compilation
  - Comfusy and RegSy tools

- Execution
  - Scala\(^{\text{Z3}}\) and UDITA tools

I next examine these tools, from last to first, focusing on Compilation
Compilation of Implicit Constructs: (complete, functional) synthesis
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =

choose((h: Int, m: Int, s: Int) ⇒ (  
h * 3600 + m * 60 + s == totalSeconds  
&& h ≥ 0  
&& m ≥ 0 && m < 60  
&& s ≥ 0 && s < 60 )  )

3787 seconds  →  1 hour, 3 mins. and 7 secs.

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =

val t1 = totalSeconds div 3600
val t2 = totalSeconds + ((-3600) * t1)
val t3 = min(t2 div 60, 59)
val t4 = totalSeconds + ((-3600) * t1) + (-60 * t3)
(t1, t3, t4)
Comparing with runtime invocation

Pros of runtime invocation

• Conceptually simpler
• Can use off-the-shelf solver
• for now can be more expressive and even faster
• but:

Pros of synthesis

• Change in complexity: time is spent at compile time
• Solving most of the problem only once
• Partial evaluation: we get a specialized decision procedure
• No need to ship a decision procedure with the program

```plaintext
val times =
for (secs ← timeStats)
yield secondsToTime(secs)
```
Our approach

• Synthesis as programming language construct

```scala
...
val x = readInteger() + 4

val r = choose(y ⇒ 5*x + 7*y = 31)

println("r^2: " + r*r)
...
```

• Like compilation, synthesis should *always succeed*

Turn decision procedures into synthesis procedures
Decision vs. synthesis procedures for a well-defined class of formulas

**Decision procedure** (model-generating)
- Takes: a formula
- Makes: a model of the formula

5\*x + 7\*y = 31
  
  \[
  x := 2 \\
  y := 3
  \]

**Synthesis procedure**
- Takes: a formula, with input (params) and output variables
- Makes: a program to compute output values from input values

Inputs: \{x\} outputs: \{y\}

\[
5\*x + 7\*y = 31 \\
\]

\[
y := (31 - 5\*x) / 7
\]
Complete Functional Synthesis

• **Synthesis:** our procedures start from an implicit specification.

• **Functional:** computes a function that satisfies a given input/output relation.

• **Complete:** guaranteed to work for all specification expressions from a well-defined class.

**Tool:** **Comfusy**

Mikaël Mayer, Ruzica Piskac, Philippe Suter, in PLDI 2010, CAV 2010
Possible starting point: quantifier elimination

• A specification statement of the form

\[ \vec{r} = \text{choose}\left(\vec{\bar{x}} \Rightarrow F(\vec{\bar{a}}, \vec{\bar{x}})\right) \]

“let \( r \) be \( x \) such that \( F(a, x) \) holds”

• Corresponds to constructively solving the quantifier elimination problem

\[ \exists \vec{\bar{x}}. F(\vec{\bar{a}}, \vec{\bar{x}}) \]

where \( \vec{\bar{a}} \) is a parameter
Quantifier elimination

• Converts a formula into an equivalent one with no quantified variables

Observation: we can obtain witness terms for the eliminated variables

• Witness terms become the instructions of the synthesized program

• Prominent application of Q.E.: integer linear arithmetic
Q.E. for integer linear arithmetic

• Problem of great interest:
  – [Presburger, 1929], [Cooper, 1972]
  – [Pugh, 1992],
  – [Weispfenning, 1997]
  – Nipkow: elegant and verified, runs within Isabelle

• Our algorithm for integers:
  – Works on disjunctive normal form
  – Handling of inequalities as in [Pugh 1992]
  – Efficient in handling equalities (solves integer systems)
  – Computes **witness terms**, builds a program from them
choose((x, y) ⇒ 5 * x + 7 * y == a && x ≤ y)

Corresponding quantifier elimination problem:

∃ x ∃ y . 5x + 7y = a ∧ x ≤ y

Use extended Euclid’s algorithm to find particular solution to 5x + 7y = a:

(5,7 are mutually prime, else we get divisibility pre.)

Express general solution of equations for x, y using a new variable z:

x = -7z + 3a
y = 5z - 2a

Rewrite inequations x ≤ y in terms of z:

5a ≤ 12z

Obtain synthesized program:

val z = ceil(5*a/12)
val x = -7*z + 3*a
val y = 5*z - 2*a

For a = 31:

z = ceil(5*31/12) = 13
x = -7*13 + 3*31 = 2
y = 5*13 - 2*31 = 3
choose\((x, y) \Rightarrow 5 \cdot x + 7 \cdot y == a \&\& x \leq y \&\& x \geq 0)\)

Express general solution of equations for \(x, y\) using a new variable \(z\):

\[
\begin{align*}
x &= -7z + 3a \\
y &= 5z - 2a
\end{align*}
\]

Rewrite inequations \(x \leq y\) in terms of \(z\):

\[z \geq \text{ceil}(5a/12)\]

Rewrite \(x \geq 0\):

\[z \leq \text{floor}(3a/7)\]

Precondition on \(a\):

\[\text{ceil}(5a/12) \leq \text{floor}(3a/7)\]

(Exact precondition)

Obtain synthesized program:

\[
\begin{align*}
\text{assert}(\text{ceil}(5a/12) \leq \text{floor}(3a/7)) \\
\text{val } z &= \text{ceil}(5a/12) \\
\text{val } x &= -7z + 3a \\
\text{val } y &= 5z - 2a
\end{align*}
\]

With more inequalities we may generate a for loop.
NP-Hard Constructs

• Disjunctions
  – Synthesis of a formula computes program and exact precondition of when output exists
  – Given disjunctive normal form, use preconditions to generate if-then-else expressions (try one by one)

• Divisibility combined with inequalities:
  – corresponding to big disjunction in q.e. , we will generate a for loop with constant bounds (could be expanded if we wish)
General Form of Synthesized Functions for Presburger Arithmetic

\textbf{choose } \textbf{x such that } F(x,a) \implies x = t(a)

Result \( t(a) \) is expressed in terms of 
+ , - , \( C^* \), /C , if 

Need arithmetic for solving equations 
Need conditionals for 
\begin{itemize} 
  \item disjunctions in input formula 
  \item divisibility and inequalities (find a witness meeting bounds and divisibility by constants) 
\end{itemize}

\( t(a) = \text{if } P_1(a) t_1(a) \text{ elseif ... elseif } P_n(a) t_n(a) \) 
else error(“No solution exists for input”,a)
When do we have witness generating quantifier elimination?

• Suppose we have
  – class of specification formulas \( S \)
  – decision procedure for formulas in class \( D \) that produces satisfying assignments
  – function (e.g. substitution) that, given concrete values of parameters \( a \) and formula \( F \) in \( S \), computes \( F(x,a) \) that belongs to \( D \)

• Then we have synthesis procedure for \( S \)
  (proof: invoke decision procedure at run-time)

If have decidability \( \rightarrow \) also have computable witness-generating QE in the language extended w/ computable functions
Synthesis for sets

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
    choose((a: Set[T], b: Set[T]) ⇒ (
        a union b == s && a intersect b == empty
        && a.size – b.size ≤ 1
        && b.size – a.size ≤ 1
    ))

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
    val k = ((s.size + 1)/2).floor
    val t1 = k
    val t2 = s.size – k
    val s1 = take(t1, s)
    val s2 = take(t2, s minus s1)
    (s1, s2)
Synthesis for non-linear arithmetic

```python
def decomposeOffset(offset: int, dimension: int) -> (int, int):
 choose((x: int, y: int) ⇒ (
 offset == x + dimension * y && 0 ≤ x && x < dimension
))
```

- The predicate becomes linear at run-time
- Synthesized program must do case analysis on the sign of the input variables
- Some coefficients are computed at run-time
Compile-time warnings

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
    choose((h: Int, m: Int, s: Int) ⇒ (h * 3600 + m * 60 + s == totalSeconds
        && h ≥ 0 && h < 24
        && m ≥ 0 && m < 60
        && s ≥ 0 && s < 60
    ))

Warning: Synthesis predicate is not satisfiable for variable assignment:
    totalSeconds = 86400
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
    choose((h: Int, m: Int, s: Int) ⇒ (
        h * 3600 + m * 60 + s == totalSeconds
        && h ≥ 0
        && m ≥ 0 && m ≤ 60
        && s ≥ 0 && s < 60
    ))

Warning: Synthesis predicate has multiple solutions for variable assignment:
    totalSeconds = 60
Solution 1: h = 0, m = 0, s = 60
Solution 2: h = 0, m = 1, s = 0
Arithmetic pattern matching

```python
def fastExponentiation(base: int, power: int) -> int = {
 def fp(m: int, b: int, i: int): int = i match {
 case 0 => m
 case 2 * j => fp(m, b*b, j)
 case 2 * j + 1 => fp(m*b, b*b, j)
 }
 fp(1, base, p)
}
```

- Goes beyond Haskell’s \((n+k)\) patterns
- Compiler checks that all patterns are reachable and whether the matching is exhaustive
Experience with Comfusy 😊

• Works well for examples we encountered
  – Needed: synthesis for more expressive logics, to handle more examples
  – Seems ideal for domain-specific languages

• Efficient for conjunctions of equations (could be made polynomial)

• **Extends to synthesis with parametric coefficients**

• Extends to logics that reduce to Presburger arithmetic (implemented for BAPA)
Comfusy for Arithmetic ☹

- Limitations of Comfusy for arithmetic:
  - Naïve handling of disjunctions
  - Blowup in elimination, divisibility constraints
  - *Complexity of running synthesized code (from QE): doubly exponential in formula size*
  - Not tested on modular arithmetic, or on synthesis with optimization objectives
  - Arbitrary-precision arithmetic with multiple operations generates time-inefficient code
  - Cannot do bitwise operations (not in PA)
RegSy

Synthesis for regular specifications over unbounded domains
J. Hamza, B. Jobstmann, V. Kuncak
FMCAD 2010
Synthesize Functions over Integers

- Given weight $w$, balance beam using weights 1kg, 3kg, and 9kg
- Where to put weights if $w=7$kg?
Synthesize Functions over Integers

• Given weight \( w \), balance beam using weights 1kg, 3kg, and 9kg

• Where to put weights if \( w = 7 \)kg?

• Program that computes correct positions of 1kg, 3kg, and 9kg for any \( w \) (if possible)?
Synthesize function that, given weight \( w \), computes values for \( l_1, l_3, l_9, r_1, r_3, r_9 \) such that:
\[
w + l_1 + 3l_3 + 9l_9 = r_1 + 3r_3 + 9r_9
\]
\[
l_1 + r_1 \leq 1, \quad l_3 + r_3 \leq 1, \quad l_9 + r_9 \leq 1
\]
Assumption: Integers are non-negative
Parameterized Optimization

Parametric linear constraints over integers $p, c, d_1, d_2$, e.g.,

$$R(p, c, d_1, d_2) := (4d_1 + 3d_2 \leq p) \land (d_1 + 3d_2 \leq c)$$

Synthesize function $(d_1, d_2) := f(p, c)$ that

(i) satisfies constraints, i.e., $R(p, c, f(p, c))$

(ii) maximizes profit $(d_1, d_2) := 6d_1 + 9d_2$

Note: integers have unbounded number of bits
Synthesize Functions over bit-Streams

Smoothing a function:

- Given sequence $X$ of 4-bit numbers
- Compute its average sequence $Y$

\[ 4Y[n..n+3] = X[n-4...n-1] + 2X[n..n+3] + X[n+4..n+7] \]
Expressiveness of Spec Language

• Non-negative integer constants and variables
• Boolean operators ($\wedge, \vee, \lnot$)
• Linear arithmetic operator ($+, c \cdot x$)
• Bitwise operators ($|, \&$, $!$)
• Quantifiers over numbers and bit positions

PAbit = Presburger arithmetic with bitwise operators
WS1S= weak monadic second-order logic of one successor
Problem

Given

– relation R over bit-stream (integer) variables in WS1S (PAbit)
– partition of variables into inputs and outputs

Constructs program that, given inputs, computes correct output values, whenever they exist.
Basic Idea of Regular Synthesis

• View integers as finite (unbounded) bit-streams (binary representation starting with LSB)
• Specification in WS1S (PAbit)
• Synthesis approach:
  – Step 1: Compile specification to automaton over combined input/output alphabet (automaton specifying relation)
  – Step 2: Use automaton to generate efficient function from inputs to outputs realizing relation
Example: Parity of Input Bits

• Input x and output y are bit-streams
• Spec: output variable y indicates parity of non-zero bits in input variable x
  – y=00* if number of 1-bits in x is even, otherwise y=10*
  – Examples:

  \[
  \begin{array}{c|c}
  x & y \\
  \hline
  0 & 0 \\
  1 & 0 \\
  1 & 0 \\
  0 & 1 \\
  1 & 0 \\
  \end{array}
  \]

  \[
  \begin{array}{c|c}
  x & y \\
  \hline
  1 & 0 \\
  0 & 0 \\
  1 & 0 \\
  1 & 0 \\
  1 & 0 \\
  \end{array}
  \]
Example: Parity of Input Bits

• Step 1: construct automaton for spec over joint alphabet

Spec: $y=00^*$ if number of 1-bits in $x$ is even, otherwise $y=10^*$

Accepting states are green

$x: 0 1 1$
$y: 0 0 0$

Note: must read entire input to know first output bit (non-causal)
Idea

• Run automaton on input, collect states for all possible outputs (subset construction)
• From accepting state compute backwards to initial state and output corresponding value

Automaton has all needed information but subset construction for every input
Our Approach: Precompute
without losing backward information

WS1S spec → Mona

Synthesis:
1. Det. automaton for spec over joint alphabet
2. Project, determinize, extract lookup table

Synthesized program: Automaton + lookup table

Execution:
1. Run A on input w and record trace
2. Use table to run backwards and output

Input word → Output word
Time and Space

• Automata may be large, but if table lookup is constant time, then forth-back run is linear in input (in number of bits)

• Also linear space
  – can trade space for extra time by doing logarithmic check-pointing of state gives $O(\log(n))$ space, $O(n \log(n))$ time
Prototype and Experiments

• RegSy is implemented in Scala
• Uses MONA to construct automaton on joint alphabet from specification
• Build input-deterministic automaton and lookup table using a set of automata constructions
• Run on several bit-stream and parametric linear programming examples
Experiments

| No | Example     | MONA (ms) | Syn (ms) | |A| | |A'| | 512b | 1024b | 2048b | 4096b |
|----|-------------|-----------|----------|---------|---|---|---------|------|------|------|------|------|
| 1  | addition    | 318       | 132      | 4       | 9  | 509 | 995     | 1967 | 3978 |
| 2  | approx      | 719       | 670      | 27      | 35 | 470 | 932     | 1821 | 3641 |
| 3  | company     | 8291      | 1306     | 58      | 177| 608 | 1312    | 2391 | 4930 |
| 4  | parity      | 346       | 108      | 4       | 5  | 336 | 670     | 1310 | 2572 |
| 5  | mod-6       | 341       | 242      | 23      | 27 | 460 | 917     | 1765 | 3567 |
| 6  | 3-weights-min| 26963     | 640      | 22      | 13 | 438 | 875     | 1688 | 3391 | (highlighted) |
| 7  | 4-weights   | 2707      | 1537     | 55      | 19 | 458 | 903     | 1781 | 3605 |
| 8  | smooth-4b   | 51578     | 1950     | 1781    | 955| 637 | 1271    | 2505 | 4942 |
| 9  | smooth-f-2b | 569       | 331      | 73      | 67 | 531 | 989     | 1990 | 3905 |
| 10 | smooth-b-2b | 569       | 1241     | 73      | 342| 169 | 347     | 628  | 1304 |
| 11 | 6-3n+1      | 834       | 1007     | 233     | 79 | 556 | 953     | 1882 | 4022 |

In 3 seconds solve constraint, minimizing the output; inputs and outputs are of order $2^{4000}$
Summary of RegSy

• Synthesize function over bit-stream (integer) variables
• Specification: WS1S or PA with bit-wise operators (including quantifiers)
• Linear complexity of running synthesized code (linear in number of input bits)
• Synthesize specialized solvers to e.g. disjunctive parametric linear programming problems
• Recent work: replace MONA with different construction
Alonzo Church

• Lambda calculus (1936)
  Foundation of modern functional programming languages

• Church synthesis problem (1957)
  Synthesis as foundation of future programming languages/systems
Implicit Programming at All Levels

Opportunities for implicit programming in

- **Development** within an IDE
  - *isynth* tool

- **Compilation**
  - *Comfusy* and *RegSy* tools

- **Execution**
  - *Scala^Z3* and *UDITA* tools

I next examine these tools, from last to first, focusing on Compilation
Implicit Constructs in IDEs: code completion using automated reasoning
**isynth** - Interactive Synthesis of Code Snippets

```scala
def map[A,B](f:A => B, l:List[A]): List[B] = { ... }
def stringConcat(lst : List[String]): String = { ... }
...
def printInts(intList:List[Int], prn: Int => String): String = ...
```

Returned value:
```
stringConcat(map[Int, String](prn, intList))
```

Is there a term of given type in given environment?
Monomorphic: decidable. Polymorphic: undecidable
Solution: use first-order resolution

**isynth** tool:

- based on first-order resolution – combines forward and backward reasoning
- supports method combinations, type polymorphism, user preferences
- ranking of multiple returned solutions
  - using a system of weights
  - preserving completeness
- further enhancements under way
Conclusion: Implicit Programming

Development within an IDE

– isynth tool – FOL resolution as code completion

Compilation

– Comfusy: decision procedure $\rightarrow$ synthesis procedure
  Scala implementation for integer arithmetic, BAPA
– RegSy: solving WS1S constraints

Execution

– Scala$^\land$Z3: constraint programming
– UDITA: Java + choice as test generation language

http://lara.epfl.ch/w/impro