
Game Programming by

Demonstration
Mikaël Mayer, Viktor Kuncak

How to introduce programming to
new users?

My brother Cédric teaching
his children how to play on a
phone

Motivation

• Millions of smartphone users and gamers

• Few are programmers - because it is hard
• requires the programmer to learn complex APIs

• involves debugging, which is time-consuming

• disconnect between the code and the game

• How to make programming more accessible ?

What is more accessible ?

versus

Pong Designer : our approach for
game programming by

demonstration.

Games developed

• Pong

• Brick Breaker

• Pacman

• Space invaders

• Pool

• Maze

• ….

Game programming

• Game engines:

Game state at time T

Game state at time T+1

and events until T + 1

Physics, graphics engine

Game logic is conventionally written in languages like C++,
Flash, Java, Scala

Game logic

Conventional game programming

1.Find out conditions for the rule to apply
• Object-specific, triggers, events, etc.

2.Write code to run when these conditions hold.
• Modify state.

3.Rewrite other rules to comply with the new rule.
• Run, debug after playing

Game logic

Pong Designer Approach

Can we do the same by demonstration?

Pong Designer Approach

…
1.Pause the game
2.Prepare game state

• Previous time
• Or arrange objects

3.Select events
4.Change state
5.Validate

• System infers rules
• Manual modification

6.Repeat

events

• Create initial state
• Start the game and see how it evolves

• Default behaviors apply

Demonstrating game logic
Continuously run the game
and refine the behavior

Create initial state

Main techniques

• Touch-based interface

• Access to 5 seconds history

• Visualization and modification of everything

• Automatic rule inference

• Incremental addition of demonstrations

Changes are visual

• Game state

Change numbers, text,
color, speed, position

Events are visible

Input and output are both modifiable

Inferring rules

• Accept the changes

Validate the changes The rule is automatically inferred

The user can modify the rule and
constants

Code is interactive

• Changing constants shows the effects in the game

Colors Position

Numbers

Game state
before rule

Game state
after rule

How infer rules?

Game state
before rule

Game state
after rule

Game state
before

Game state
before

Game state
after

Game state
after

Rule inference
(synthesis)

Templates inferring rules
• Generalizing from input/output examples:

If block.x ≠ block.prev_x

« block.x = block.prev_x + {block.x - block.prev_x}

|| block.x = {block.x}

|| block.x = 2*obj.x – obj2.x //for some obj, obj2

….»

Resolve the ambiguity by either providing a second
example (implicit), or selecting the desired line of code
(explicit).

Template parameters

•Objects
• Iterate through all, find which ones can explain

the demonstration (alignment, result, etc.)

• Iterate through pairs of objects (mirror, binary
operations, etc.)

•Constants
(position, color, velocity, angle, text)
• Approximate comparison.

• Grid fit for angles and positions.

Accepting new examples

• Fibonacci through examples:

Fibonacci 1, 1, 2 Fibonacci 1, 2, 3

Fibonacci 2, 3, 5 Fibonacci 3, 5, 8

Syracuse sequence

• Clock as a ball

• Demonstrate n/2, n*3, n*3+1

• Test on n%2 to copy either n/2 or 3n+1

• Demonstrate appending number to “seq:”

Primes listing

• 2 balls
• One to increment the test, the other to increment the

quotient

• Demonstrate remainder with (11, 3) => 2

• Output if quotient greater than half

• Stop if
remainder=0

Minsky Machine

• Clock as a ball transferring the PC to read memory.

• Memory on a counter
• A rule-per-integer-value increases or decreases registers

and set up new conditional program counters

• Integers testing if registers are zero
• Override program counter

Available on-line

lara.epfl.ch/w/pong

play.google.com/store/apps/details?id=ch.epfl.lara.sy
nthesis.kingpong

New version is coming soon

http://lara.epfl.ch/w/pong
https://play.google.com/store/apps/details?id=ch.epfl.lara.synthesis.kingpong

Upcoming version of Pong Designer

• Better engine and interface

• Categories
For b in blocks:

if ball collides b:
b.visible = false

• Behaviors using constraints

X = Choose(x  right ≤ border.left)

Existing approaches
• Accessible game programming

• Scratch
• Construct 2
• Kodu
• GameMaker

• Interactive programming environments
• Khan Academy 2012
• Kojo
• Bret Victor, Inventing on Principle
• TouchDevelop

• Learning from input-output examples
• Automating String processing (Gulwani, 2012)
• Marquise (Myers et al., 1993)
• Behavioral Programming (Harel et al. 2012)

Conclusion

• Aim to bring game development to end users

• On-the-fly incremental rule demonstration

• Automatic rule inference

• Touch-based interface

• Access to history

• Visualization and modification of everything

• Freely available working implementation on
Android

lara.epfl.ch/w/pong

http://lara.epfl.ch/w/pong

Questions?

