
Recitation Session, November 15th, 2017

Please do not write on this sheet of paper

And do not use laptops during the session

Exercise 1

Consider the following series:

 1
 1 1
 2 1
 1 2 1 1
 1 1 1 2 2 1
 3 1 2 2 1 1

1) Find the next element in the sequence above.

1 3 1 1 2 2 2 1

Now, let us encode an element of the sequence above as a List[Int].

2) Write a function to compute the next element.

def nextLine(currentLine: List[Int]): List[Int] = {
 currentLine.foldLeft(List.empty[Int]) { (acc, x) =>
 acc match {
 case y :: count :: rest if x == y => x :: (count + 1) :: rest
 case _ => x :: 1 :: acc
 }
 }.reverse
}

3) Implement a stream funSeq which constructs this sequence. Recall: to construct a
stream, you can use Stream.cons[A](a: A, b: => Stream[A]): Stream[A]

lazy val funSeq: Stream[List[Int]] =
 Stream.cons(List(1), funSeq.map(nextLine))

Exercise 2

1) Write a stream of squares of integers ≥ 1. You may use Stream.from(i: Int)

val squares: Stream[Int] = Stream.from(1).map(x => x * x)

2) Write a stream of all non-empty strings using the characters "0" and "1" and the
concatenation operation +. In other words, every non-empty string composed of "0" and "1"
should be reached at some point.

lazy val codes: Stream[String] = "0" #:: "1" #:: codes.flatMap {
 (s: String) => (s + "0") #:: (s + "1") #:: Stream.empty[String]
}

3) Using codes, write a stream of all possible non-empty palindromes of “0” and “1”. You
may use the .reverse function defined on strings.

def isPalindrome(x: String): Boolean = x.reverse == x
val palCodes: Stream[String] = codes.filter(isPalindrome)

4) Can you do the same without filtering? The palindromes need not to be in the same order.

val palCodes: Stream[String] = for {
 c <- codes
 middle <- Seq("", "0", "1")
} yield c + middle + c.reverse

5) Given another stream otherCodes, possibly finite or infinite, you don’t know at first.
Can you build a stream allCodes interleaving palCodes and otherCodes ?

def interleave[A](xs: Stream[A], ys: Stream[A]): Stream[A] =
 (xs, ys) match {
 case (x #:: xr, y #:: yr) => x #:: y #:: interleave(xr, yr)
 case (Stream.Empty, _) => ys
 case (_, Stream.Empty) => xs
 }

val allCodes = interleave(palCodes, otherCodes)

