Recitation Session, November 15th, 2017

Please do not write on this sheet of paper
And do not use laptops during the session

Exercise 1

Consider the following series:

1) Find the next element in the sequence above.
13112221
Now, let us encode an element of the sequence above as a List[Int].
2) Write a function to compute the next element.
def nextLine(currentLine: List[Int]): List[Int] = {

currentLine.foldLeft(List.empty[Int]) { (acc, x) =>
acc match {

case y :: count :: rest if x == => x :: (count + 1) :: rest
case _ => X :: 1 :: acc
}.reverse

}

3) Implement a stream funSeq which constructs this sequence. Recall: to construct a
stream, you can use Stream.cons[A](a: A, b: => Stream[A]): Stream[A]

lazy val funSeq: Stream[List[Int]] =
Stream.cons(List(1), funSeq.map(nextLine))



Exercise 2
1) Write a stream of squares of integers = 1. You may use Stream.from(i: Int)
val squares: Stream[Int] = Stream.from(1).map(x => X * Xx)

2) Write a stream of all non-empty strings using the characters "0" and "1" and the
concatenation operation +. In other words, every non-empty string composed of "0" and "1"
should be reached at some point.

lazy val codes: Stream[String] = "@" #:: "1" #:: codes.flatMap {
(s: String) => (s + "@") #:: (s + "1") #:: Stream.empty[String]
}

3) Using codes, write a stream of all possible non-empty palindromes of “0” and “1”. You
may use the .reverse function defined on strings.

def isPalindrome(x: String): Boolean = X.reverse == X
val palCodes: Stream[String] = codes.filter(isPalindrome)

4) Can you do the same without filtering? The palindromes need not to be in the same order.

val palCodes: Stream[String] = for {
Cc <- codes
middle <- Seq("", "e", "1")

} yield ¢ + middle + c.reverse

5) Given another stream otherCodes, possibly finite or infinite, you don’t know at first.
Can you build a stream allCodes interleaving palCodes and otherCodes ?

def interleave[A](xs: Stream[A], ys: Stream[A]): Stream[A] =
(xs, ys) match {
case (X #:: xr, y #:: yr) => x #:: y #:: interleave(xr, yr)
case (Stream.Empty, ) => ys
case (_, Stream.Empty) => xs

}

val allCodes = interleave(palCodes, otherCodes)



