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Variance and Pattern Matching 

 

This week, we will work on the idea of variance, and on pattern matching. Recall that  
● Lists are covariant in their only type parameter. 
● Functions are contravariant in the argument, and covariant in the result. 

 
Ex 1. Consider the following hierarchies: 
 
abstract class Fruit 
class Banana extends Fruit 
class Apple extends Fruit 
abstract class Liquid 
class Juice extends Liquid 
 
Consider also the following typing relationships for A, B, C, D: 
A <: B and C <: D. 
 
Fill in the subtyping relation between the types below. Bear in mind that it might be that neither 
type is a subtype of the other. 
 

List[Banana]  List[Fruit] 

List[A]  List[B] 

Banana => Juice  Fruit => Juice 

Banana => Juice  Banana => Liquid 

A => C  B => D 

List[Banana => Liquid]  List[Fruit => Juice] 

List[A => D]  List[B => C] 

(Fruit => Juice) => Liquid  (Banana => Liquid) => Liquid 

(B => C) => D  (A => D) => D 

Fruit => (Juice => Liquid)  Banana => (Liquid => Liquid) 

B => (C => D)   A => (D => D) 



 
 
 
Ex 2. The following data types represent simple arithmetic expressions: 
 
  abstract class Expr 
  case class Number(x: Int) extends Expr 
  case class Var(name: String) extends Expr 
  case class Sum(e1: Expr, e2: Expr) extends Expr 
  case class Prod(e1: Expr, e2: Expr) extends Expr 
 
Define a function deriv(expr: Expr, v: String): Expr returning the expression that is the 
partial derivative of  expr with respect to the variable v. 
 
  def deriv(expr: Expr, v: String): Expr = ??? 
 

Here’s an example run of the function: 
 
 > deriv(Sum(Prod(Var(“x”), Var(“x”)), Var(“y”)), “x”) 
 Sum(Sum(Prod(Var(“x”), Number(1)), Prod(Number(1), Var(“x”))), Number(0)) 
 

Ex 3. Write an expression simplifier that applies some arithmetic simplifications to an 
expression. For example, it would turn the above monstrous result into the following expression: 
 

  Prod(Var(“x”), Number(2)) 
 

 


