Recitation Session, November 8 2017

Please do not write on this sheet of paper
And do not use laptops during the session

For comprehensions and monads

Ex 1.1

Consider a directed graph given by its set of (directed) edges stored as a list of pairs of nodes:
type Nodeld = Int

type DirectedEdge = (NodeId, NodeId)

type DirectedGraph = List[DirectedEdge]

Define, non-recursively, the triangles function that finds all cycles of length 3, with three
distinct nodes, in the given graph. You should use a for comprehension.

def triangles(edges: DirectedGraph): List[(NodeId, NodeId, NodeId)] = for ...

Each cycle should appear only once. For instance, given the edges:
List((1, 2), (2, 3), (3, 1)),

The should return exactly one of the three following possibilities:
(1, 2, 3), (2, 3, 1), (3, 1, 2).

You are free to decide which of the three you return.

Ex 1.2

After that, translate the for comprehension you wrote in the appropriate combination of
map/flatMap/filter calls.



Ex 2.

We want to show that the List datatype is a monad, with unit(x) defined as List(x). You
should use inductive reasoning (when necessary) as well as the following axioms.

Axioms:
1. Nil.flatMap(f) === Nil
2. (x :: xs).flatMap(f) === f(x) ++ xs.flatMap(f)
3. XS ++ Nil === xs
4. Nil ++ xs === Xxs
5. (xs ++ ys).flatMap(f) === xs.flatMap(f) ++ ys.flatMap(f)
6. (X :: XS) ++ ys === X :: (XS ++ ys)
7. List(x) === x :: Nil
8. (y => E)(x) === E’

E’ is the result of carefully replacing y by the expression x in E.

Show the following monad laws:
1. Left unit law:

List(x).flatMap(f) === f(x)
2. Right unit law:
list.flatMap(y => List(y)) === list

3. (Optional) flatMap associativity:
list.flatMap(f).flatMap(g) === list.flatMap(y => f(y).flatMap(g))

Hint: Prove the property for Nil, List(x) and then for arbitrary lists by induction.

Optional exercise:
Prove the “axiom” number 5 using the other axioms.



