
Recitation Session, November 15th, 2017

Please do not write on this sheet of paper

And do not use laptops during the session

Exercise 1

Consider the following series:

 1
 1 1
 2 1
 1 2 1 1
 1 1 1 2 2 1
 3 1 2 2 1 1

1) Find the next element in the sequence above.

Now, let us encode an element of the sequence above as a List[Int].

2) Write a function to compute the next element.

def nextLine(currentLine: List[Int]): List[Int] = ???

3) Implement a stream funSeq which constructs this sequence. Recall: to construct a
stream, you can use Stream.cons[A](a: A, b: => Stream[A]): Stream[A]

lazy val funSeq: Stream[List[Int]] = …

Exercise 2

1) Write a stream of squares of integers ≥ 1. You may use Stream.from(i: Int)

val squares: Stream[Int] = …

2) Write a stream of all non-empty strings using the characters "0" and "1" and the
concatenation operation +. In other words, every non-empty string composed of "0" and "1"
should be reached at some point.

val codes: Stream[String] = …

3) Using codes, write a stream of all possible non-empty palindromes of “0” and “1”. You
may use the .reverse function defined on strings.

val palCodes: Stream[String] = …

4) Can you do the same without filtering? The palindromes need not to be in the same order.

5) Given another stream otherCodes, possibly finite or infinite, you don’t know at first:

val otherCodes: Stream[String] = [some external source]

can you build a stream allCodes interleaving palCodes and otherCodes ?

