
Logic programming

Most computations are directed, progressing from an input to an
output.
In functional programming, this is made very explicit, as the input is
the argument of a function and the output is its result.
We have already seen an exception: solving constraints.
We defined a set of relations that the computer could “solve” in
various directions.
Logic programming adds two ideas to this paradigm of relational
programming:

▶ The idea that a solution is found through a query that can test
multiple alternatives.

▶ A type of symbolic pattern matching called unification.

Prolog

The most prevalent logic programming language is Prolog.
Prolog is an acronym for “programmation en logique”
(“programming in logic”).
It was developed in the 70s by Alain Colmerauer, originally to be
used for parsing natural languages.
Prolog is used in artificial intelligence applications, such as expert
systems, knowledge bases and natural language processing.
Just like Lisp, Prolog is a small language with a simple syntax and
without static typing.
The following two implementations are free and available on various
platforms:

▶ GNU Prolog (http://gprolog.org)
▶ SWI-Prolog (http://www.swi-prolog.org)

Example : append

The function append is defined as follows in Scala:

def append[A](xs: List[A], ys: List[A]): List[A] = xs match {

case Nil => ys

case x :: xs1 => x :: append(xs1, ys)

}

This function can be seen as a translation of the following two rules:

1. For all lists ys, the concatenation of the empty list and ys is ys.
2. For all x, xs1, ys, zs, if the concatenation of xs1 and ys is zs,
then the concatenation of x :: xs1 and ys is x :: zs.

In Prolog, these two rules can be written as follows:

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Remarks

▶ Variables and parameters in Prolog start with an uppercase
letter, e.g. X, Xs, Ys.

▶ [...|...] is the “cons” of lists, e.g. [X|Xs] is written as X ::

Xs in Scala.

Predicates
In Prolog, append is called a predicate.
A predicate is nothing else than a procedure that can succeed or fail.
Note that the result of a Scala function is now an additional
parameter.

Clauses

Predicates are defined using clauses, which can be facts (also called
axioms) or rules.

▶ append([], Ys, Ys) is a fact; it establishes that concatenating
[] and Ys results in Ys (for all Ys).

▶ append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs) is a rule; it
stipulates that concatenating [X|Xs] and Ys results in [X|Zs],
provided that concatenating Xs and Ys results in Zs (for all X,
Xs, Ys, Zs).

Hence, :- can be interpreted as an implication from right to left ⇐.
Every clause is terminated by a period (’.’).

Queries

A Prolog query is a predicate that may contain variables as
parameters.
The Prolog interpreter will try to find an assignment of the variables
that renders the predicate true.
For example, the call to append(List(1), List(2, 3)) in Scala
would be modeled by

append([1], [2, 3], X)

in Prolog. This would produce the answer X = [1, 2, 3].
But it is also possible to put variables in other locations.
For example,

▶ append(X, [2, 3], [1, 2, 3]) returns X = [1].
▶ append([1, 2], Y, [1, 2, 3]) returns Y = [3].

Queries (cont)

▶ append(X, Y, [1, 2, 3]) returns multiple answers:
▶ X = [], Y = [1, 2, 3], or
▶ X = [1], Y = [2, 3], or
▶ X = [1, 2], Y = [2], or
▶ X = [1, 2, 3], Y = [].

▶ append([1], Y, Z) returns a solution schema containing one
variable: Y = X, Z = [1|X].

This strategy, when it works, can be very flexible.
It is very similar to database query languages.
In fact, Prolog is often used as a language for retrieving information
from a database, especially when deductive reasoning is required.

Deductive information retrieval

Here is a small database representing a family tree:

female(mary). married(fred, mary).

female(ann). married(peter, elaine).

female(elaine). married(tom, sue).

female(jane). married(alfred, ann).

female(sue).

female(jessica).

child(bob, fred). child(sue, fred). child(jessica, ann).

child(bob, mary). child(sue, mary). child(jessica, alfred).

child(peter, fred). child(jane, sue). child(paul, jerry).

child(peter, mary). child(jane, tom). child(paul, jane).

Deductive information retrieval (cont)

We can access the information contained in the database through a
query.
A query is a predicate followed by a question mark.
Here is the transcript of a session with a small Prolog interpreter
written in Scala:

prolog> child(bob, fred)?

yes

prolog> child(bob, bob)?

no

prolog> child(bob, X)?

[X = fred]

...

Deductive information retrieval (cont)

...

prolog> more

[X = mary]

prolog> more

no

prolog> child(X, bob)?

no

The special query more requests additional solutions to the previous
query.

Deductive information retrieval (cont)

We can also define rules to derive facts that are not directly
encoded in the database. For example:

prolog> sibling(X, Y) :- child(X, Z), child(Y, Z).

results in

prolog> sibling(peter, bob)?

yes

prolog> sibling(bob, jane)?

no

prolog> sibling(bob, X)?

[X = peter]

prolog> more

[X = sue]

...

Deductive information retrieval (cont)

...

prolog> more

[X = bob]

prolog> more

[X = peter]

prolog> more

[X = sue]

prolog> more

no

Deductive information retrieval (cont)

Question: Why does every sibling appear twice in the solutions?
The previous request does not return what expected: bob appears as
his own brother.
We can correct this by defining

prolog> sibling(X, Y) :- child(X, Z), child(Y, Z), not(same(X, Y)).

Here, the predicate same is simply defined as

same(X, X).

The not operator is special (and somewhat problematic!) in Prolog.
not(P) succeeds if the original predicate P fails.
For example, to define that a person is male, we can use

male(X) :- not(female(X)).

Recursive rules

Rules can also be recursive.
For example, to define that X is an ancestor of Y:

parent(X, Y) :- child(Y, X).

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

The capability to define recursive rules distinguishes logic
programming from database query languages.
Exercise: Define the predicate “X is an uncle of Y”.
Exercise: Define the predicate “X and Y are cousins”.

Implementation of Prolog

The Prolog interpreter seems to have a sort of “intelligence”.
We are now going to discover what makes this possible.
There are two main ingredients:

▶ A pattern matching mechanism based on unification.
▶ A derivation finding mechanism.

Representing terms

We can represent Prolog terms using a Term class with two
sub-classes, Var for variables and Constr for constructors.

trait Term {

def freevars: List[String] = ...

def map(s: Subst): Term = ...

}

case class Var(a: String) extends Term

case class Constr(a: String, ts: List[Term]) extends Term

For example, the variable X is represented by

Var(”X”)

And the term cons(X, nil) is represented by

Constr(”cons”, List(Var(”X”), Constr(”nil”, List())))

Representing terms (cont)

Prolog also has syntactic sugar for terms representing lists that can
be translated as follows:

[] = nil

[S|T] = cons(S, T)

[S] = cons(S, nil)

[T_1, ..., T_n] = cons(T_1, ... cons(T_n, nil) ...)

The class Term defines two methods:

▶ freevars returns a list of all the names of the type variables of
the term.

▶ map applies a substitution to the term (see below).

Simple pattern matching

When given a query such as child(peter, X)?, the interpreter tries
to find a fact in the database that matches the query.
Matching means assigning terms to the variables of the query in
such a way that the query and the fact become identical.
In our example, [X = fred] or [X = mary] would be possible
assignments since child(peter, fred) and child(peter, mary) are
facts in the database.
Variable assignments (or substitutions) are represented by lists of
bindings.
Each binding associates a variable name with a term:

type Subst = List[Binding]

case class Binding(name: String, term: Term)

Simple pattern matching (cont)

We can define a lookup function that searches for a substitution for
a binding involving a given name:

def lookup(s: Subst, name: String): Option[Term] = s match {

case List() => None

case b :: s1 => if (name == b.name) Some(b.term)

else lookup(s1, name)

}

Substitutions as functions

The function map applies a substitution to a term.
It is defined as follows:

class Term {

def map(s: Subst): Term = this match {

case Var(a) => lookup(s, a) match {

case Some(b) => b map s

case None => this

}

case Constr(a, ts) => Constr(a, ts map (t => t map s))

}

...

}

Functions for pattern matching

We are now ready to implement the pattern matching algorithm
using two pmatch functions.
Here is the first of them:

def pmatch(pattern: Term, term: Term, s: Subst): Option[Subst] =

(pattern, term) match {

case (Var(a), _) => lookup(s, a) match {

case Some(term1) => pmatch(term1, term, s)

case None => Some(Binding(a, term) :: s)

}

case (Constr(a, ps), Constr(b, ts)) if a == b =>

pmatch(ps, ts, s)

case _ => None

}

Functions for pattern matching (cont)

Explanations: The function pmatch takes three arguments:

▶ a pattern (i.e. a term containing variables),
▶ a term (which must not contain variables itself), and
▶ a substitution representing an assignment of variables, the
terms of which have already been fixed.

If a match is found, the function returns a result of the form
Some(s) where s is a substitution.
If no match is found, it returns the constant None as a result.
The matching algorithm works by pattern matching pairs of
patterns and terms:

▶ If the pattern is a variable, we first have to check that the
variable has not been assigned already.

Functions for pattern matching (cont)

▶ If this is the case, we continue by matching the term that was
assigned to the variable.

▶ Otherwise, we extend the substitution with a new binding that
associates the name of the variable with the term.

▶ If the pattern and the term both have the same constructor as
their head, we continue by recursively matching their elements,
using the second matching function.

Functions for pattern matching (cont)

Exercise: Implement the second pattern matching function, which
has the following signature:

def pmatch(patterns: List[Term], terms: List[Term], s: Subst)

: Option[Subst]

This function must return Some(s1), where s1 is a substitution
extending s that matches the patterns in patterns to the
corresponding terms in terms.
It must return None if no such substitution exists or if the two lists
are of different lengths.

Unification

The pattern matching algorithm works well for extracting facts, but
fails to work on rules.
In fact, the left-hand side (or head) of a rule can itself contain
variables.
In order to match a rule, we need to assign variables in the head of
the rule and in the query at the same time.
For example, given the rule

sibling(X, Y) :- child(X, Z), child(Y, Z), not(same(X, Y)).

and the query sibling(peter, Z)?, we need to match sibling(X, Y)

to sibling(peter, Z), which leads to either one of the assignments
[X = peter, Y = Z] or [X = peter, Z = Y].

Unification (cont)

The pattern matching algorithm must be generalized in order to
make it symmetric.
The resulting algorithm is called unification.
To unify two terms x and y means to find a substitution s such that
x map s and y map s are equal.
Example: Here are some examples of unifications.

unify(sibling(peter, Z), sibling(X, Y)) = [X = peter, Z = Y]

unify(same(X, X), same(mary, Y)) = [X = mary, Y = mary]

unify(cons(X, nil), cons(X, Y)) = [Y = nil]

unify(cons(X, nil), cons(X, a)) = <failure>

unify(X, cons(1, X)) = <failure>

The last case is rather subtle: here unification fails because there is
no finite term T such that T = cons(1, T).

Unification (cont)

However, there is an infinte term that satisfies the equation, namely
the term representing an infinite list of 1’s.
Normal Prolog interpreters only compute finite terms composed of
variables and constructors (called Herbrand terms), after the
logician Jacques Herbrand (1908–1931)).

Implementation of unify

def unify(x: Term, y: Term, s: Subst): Option[Subst] = (x, y) match {

case (Var(a), Var(b)) if a == b =>

Some(s)

case (Var(a), _) => lookup(s, a) match {

case Some(x1) => unify(x1, y, s)

case None => if ((y map s).freevars contains a) None

else Some(Binding(a, y) :: s)

}

case (_, Var(b)) =>

unify(y, x, s)

case (Constr(a, xs), Constr(b, ys)) if a == b =>

unify(xs, ys, s)

case _ => None

}

Implementation of unify (cont)

Like for pattern matching, we implement an incremental version of
unify, where an intermediate substitution is passed as a third
parameter.
The main changes with respect to pattern matching are the
following:

▶ We now explicitly handle the case where the two sides are the
same variable. In that case, the unification succeeds with the
given substitution.

▶ The case where one side is a variable has been duplicated to
make the procedure symmetric.

▶ We now verify that a variable does not appear in the term to
which it is bound, in order to avoid infinite terms.
(This is often called occurrence test).

Complexity of unification

Without the occurrence test, the complexity of unification is linear
in the size of the two terms to be unified.
This may seem surprising as the size of the result of a unification
can be exponential in the size of the terms!
Example: Unifying

seq(X1, b(X2, X2), X2, d(X3, X3))

seq(a(Y1, Y1), Y1, c(Y2, Y2), Y2)

results in

seq(a(b(c(d(X3, X3), d(X3, X3)), c(d(X3, X3), d(X3, X3))),

b(c(d(X3, X3), d(X3, X3)), c(d(X3, X3), d(X3, X3)))),

b(c(d(X3, X3), d(X3, X3)), c(d(X3, X3), d(X3, X3))),

c(d(X3, X3), d(X3, X3)),

d(X3, X3))

Complexity of unification (cont)

It is easy to see that, when we extend the sequence, the first term of
the unifier grows exponentially with the size of the sequence.
However, the unification remains linear, because it shares trees
rather than copying them.

Complexity of unification (cont)

Complexity of the occurrence test
With the occurrence test as it is implemented now, the unification
becomes worst-case exponential in the size of its input, because
sub-trees may be traversed multiple times.
By marking sub-trees that have already been visited, we can speed
up the occurrence test to make it linear in the size of the term
graph.
Thus, unification the becomes a quadratic algorithm.
It is possible to do even better, and make unification an O(n log n)
algorithm.

O(n)
(A. Martelli, U. Montanari, Nota Interna B76-16, 1976)

Backtracking

The Prolog interpreter recursively compares a part of the query (the
goal) with a clause of the program.

▶ If the query is empty, the interpreter has succeeded.
▶ If the query is not empty, the interpreter tries to match the first

predicate.
▶ To match means to unify with the left-hand side of the clause.
▶ Clauses are tried in the order in which they are written.
▶ If no clause succeeds, the interpreter fails.
▶ If a clause matches, the interpreter applies itself recursively on

the right-hand side of the clause.

▶ If the recursive call fails, the interpreter continues with the next
clause, otherwise it succeeds.

▶ If the interpreter succeeds, it continues with the next predicate
in the query.

Replacing a failure with a list of successes

How can we formalize the previously described strategy?
In general, how can we express backtracking in a functional
language?
Idea: instead of representing failures, we construct the list of all
successes (the possible solutions).
Thus,

▶ a failure is represented as an empty list of solutions.
▶ a conjunctive search becomes an intersection of lists.
▶ a disjunctive search becomes a concatenation of lists.

To guarantee termination and for efficiency reasons, the lists of
solutions must be constructed lazily, upon request of a new solution.
Hence, we will model such lists using streams.

Search example

Assume that we are given a graph in which every node has a
successors field that contains a list of the successors of the node in
the graph.

class Node {

val successors: List[Node]

...

}

We will assume that the graph is acyclic.
The goal is to find a path between two given nodes, or fail if there is
no such path.
The idea is that, instead of returning a path or failing, we always
return a list, that of all possible paths between the two given nodes.

Search example (cont)

This is achieved through the following function:

def paths(x: Node, y: Node): Stream[List[Node]] =

if (x == y)

Stream.cons(List(x), Stream.empty)

else

for { z <- x.successors.toStream

p <- paths(z, y) } yield x :: p

or, without using for comprehensions:

def paths(x: Node, y: Node): Stream[List[Node]] =

if (x == y)

Stream.cons(List(x), Stream.empty)

else

x.successors.toStream flatMap (z => paths(z, y) map (p => x :: p))

Search example (cont)

Note that the concatenation of the different solutions is achieved
through the use of the flatMap function.
Note also, that we need to convert the list of successors to a
stream, in order to ensure the lazy generation of the solutions.

The interpreter function

We now come back to the main interpreter function.
Its task is to answer a given query, given a program consisting in a
list of clauses.
The solutions are represented by a stream of substitutions.
Interpretation: For each substitution s in the stream, the instance of
the query obtained from query map s can be derived from the
clauses.

def solve(query: List[Term], clauses: List[Clause]): Stream[Subst] = {

def solve1(query: List[Term], s: Subst): Stream[Subst] = { ... }

solve1(query, List())

}

Recall that type Subst = List[Binding].

The heart of the interpreter

The implementation of the function solve is based on the nested
function solve1, that takes two parameters:

▶ The list of predicates query that remain to be solved.
▶ The current substitution s, which needs to be applied to all the

terms in the query and the clauses.

Here is its implementation:

def solve1(query: List[Term], s: Subst): Stream[Subst] = query match {

case List() =>

Stream.cons(s, Stream.empty)

case q :: query1 =>

for { clause <- clauses.toStream

s1 <- tryClause(clause.newInstance, q, s);

s2 <- solve1(query1, s1) } yield s2

}

The heart of the interpreter (cont)

The for comprehension expresses that, in order to solve a query q

:: query1,
▶ we try to match all clauses (in order);
▶ for each clause, we try to solve the first predicate q of the

query, by using a new instance of the clause;
▶ for each success in the previous step, we continue by solving

the remainder query1 of the query.

The function tryClause is defined as follows:

def tryClause(c: Clause, q: Term, s: Subst): Stream[Subst] =

unify(q, c.lhs, s) match {

case Some(s1) => solve1(c.rhs, s1)

case None => Stream.empty

}

}

The heart of the interpreter (cont)

In other words,

▶ if the predicate q unifies with the head of the clause, we
continue by solving the right-hand side of the clause,

▶ otherwise we fail.

Creating new instances

A clause can be used several times in a derivation
For example, here is a Prolog program that finds all the paths in a
graph:

successor(a, b).

successor(b, c).

path(X, X).

path(X, Y) :- successor(X, Z), path(Z, Y).

In order to construct the path between a and c, we need to match
the clause successor(X, Z) to the two axioms successor(a, b) and
successor(b, c).
This is why solve1 needs to create a fresh instance of a clause
before using it in a derivation.

Class Clause

This leads to the following implementation of the class Clause.

case class Clause(lhs: Term, rhs: List[Term]) {

def freevars =

(lhs.freevars ::: (rhs flatMap (t => t.freevars))).distinct

def newInstance = {

var s: Subst = List()

for (a <- freevars) { s = Binding(a, newVar(a)) :: s }

Clause(lhs map s, rhs map (t => t map s))

}

}

Problems with depth-first search

The interpreter uses a depth-first search strategy in order to find a
solution.
In other words, when the head of a clause matches, the interpreter
immediately tries to prove the precondition of the clause.
In our case, this leads to the following sequence of goals to prove:

path(a, c)

successor(a, b), path(b, c)

path(b, c)

successor(b, a), path(a, c)

path(a, c)

...

… and so on until the stack overflows.

